UNIT - II LOGIC GATES AND GATES CLASSIFICATION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "UNIT - II LOGIC GATES AND GATES CLASSIFICATION"

Transcription

1 UNIT - II Logic Gates: Gates Classifications: Basic Gates (AND, OR, NOT), Universal Gates (NAND, NOR), Exclusive Gates (XOR, XNOR)(except circuit diagram) Logic Symbols, Logic Operators, Logical expression and truth table of Basic, Universal and Exclusive gates. Conversion of Universal Gates to Basic Gates LOGIC GATES AND GATES CLASSIFICATION Logic gates are the basic building blocks of any digital system. It is an electronic circuit having one or more than one input and only one output. The relationship between the input and the output is based on a certain logic. Based on this, logic gates are named as AND gate, OR gate, NOT gate etc. A large number of electronic circuits (in computers, control units, and so on) are made up of logic gates. These process signals which represent true or false. AND Gate The AND gate implements the AND function. With the gate shown to the left, both inputs must have logic 1 signals applied to them in order for the output to be a logic 1. With either input at logic 0, the output will be held to logic 0 Logic diagram

2 OR GATE The AND gate implements the AND function. With the gate shown to the left, both inputs must have logic 1 signals applied to them in order for the output to be a logic 1. With either input at logic 0, the output will be held to logic 0 A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one output. The OR gate returns Logic diagram NOT Gate The NOT Gate, or Inverter The inverter is a little different from AND and OR gates in that it always has exactly one input as well as one output. Whatever logical state is applied to the input, the opposite state will appear at the output. The NOT function is denoted by a horizontal bar over the value to be inverted, as shown in the figure to he left. In some cases a single quote mark (') may also be used for this purpose: 0' = 1 and 1' = 0. NOT gate is also known as Inverter. It has one input A and one output Y.

3 Logic diagram NAND GATE The NAND gate implements the NAND function, which is exactly inverted from the AND function you already examined. With the gate shown to the left, both inputs must have logic 1 signals applied to them in order for the output to be a logic 0. With either input at logic 0, the output will be held to logic 1. The circle at the output of the NAND gate denotes the logical inversion Logic diagram

4 NOR GATE The NOR gate is an OR gate with the output inverted. Where the OR gate allows the output to be true (logic 1) if any one or more of its inputs are true, the NOR gate inverts this and forces the output to logic 0 when any input is true. In symbols, the NOR function is designated with a plus sign (+), with an overbar over the entire expression to indicate the inversion. In logical diagrams, the symbol to the left designates the NOR gate. As expected, this is an OR gate with a circle to designate the inversion. Logic diagram XOR GATE The Exclusive-OR, or XOR Gate The Exclusive-OR, or XOR function is an interesting and useful variation on the basic OR function. Verbally, it can be stated as, "Either A or B, but not both." The XOR gate produces a

5 logic 1 output only if its two inputs are different. If the inputs are the same, the output is a logic 0. The XOR symbol is a variation on the standard OR symbol. It consists of a plus (+) sign with a circle around it. The logic symbol, as shown here, is a variation on the standard OR symbol. THE DIGITAL LOGIC EXCLUSIVE-OR GATE Symbol B A Q Boolean Expression Q = A B A OR B but NOT BOTH gives Q The truth table above shows that the output of an Exclusive-OR gate ONLY goes HIGH when both of its two input terminals are at DIFFERENT logic levels with respect to each other. If these two inputs, A and B are both at logic level 1 or both at logic level 0 the output is a 0 making the gate an odd but not the even gate. This ability of the Exclusive-OR gate to compare two logic levels and produce an output value dependent upon the input condition is very useful in computational logic circuits as it gives us the following Boolean expression of: Q = (A B) = A.B + A.B

6 THE DIGITAL LOGIC EX-NOR GATE Symbol B A Q input Ex-NOR Gate Boolean Expression Q = A B Read if A AND B the SAME gives Q The logic function implemented by a 2-input Ex-NOR gate is given as when both A AND B are the SAME will give an output at Q. In general, an Exclusive-NOR gate will give an output value of logic 1 ONLY when there are an EVEN number of 1 s on the inputs to the gate (the inverse of the Ex-OR gate) except when all its inputs are LOW. Then an Ex-NOR function with more than two inputs is called an even function or modulo-2- sum (Mod-2-SUM), not an Ex-NOR. This description can be expanded to apply to any number of individual inputs as shown below for a 3-input Exclusive-NOR gate. GATE CONVERSION (UNIVERSAL GATES TO BASIC GATES) This is a continuation of previous post, in this post, we will see the NOR gate as a univarsal gate and create different gates using NOR gate. As we know that NAND and NOR Gates are called Universal Gates since they can cerate any of the Logic Gate Lets see to how to make all other logic gates by using the NOR Gate 1. NOR gate to NOT Gate conversion Refer the following diagram Digital : Image NOR to NOT

7 NOR to NOT Conversion Here the same input is applied to the both inputs of a NOR Gate According to NOR Gate If A and B are two inputs than output equation will be (A+B) For this case : = (X+X) = X = Inverted Input 2. NOR Gate to AND Gate Convertion Refer following diagram for NOR to AND Gate conversion Digital : Image NOR to AND Conversion NOR to AND Conversion According to diagram s1 = (X+X) = X s2 = (Y+Y) = Y s3= (s1+s2) = (X +Y ) => (X ).(Y )

8 => X.Y => AND Gate 3. NOR Gate to OR Gate Convertion Refer the following Diagram Digital : Image NOR to OR Convertion NOR to OR For this case X and Y are the two inputs to a NOR gate and the output of the First NOR gate goes again to an another NOR gate s inputs. => s1 = (X+Y) => s2 = (s1+s1) = s1 => s2 = ((X+Y) ) => X+Y => OR Gate 4. NOR Gate to NAND Gate Convertion Refer the following Diagram Digital : Image NOR to NAND NOR to NAND Conversion

9 According to diagram s1 = (X+X) = X s2 = (Y+Y) = Y s3 = (s1+s2) = (X +Y ) => (X ).(Y ) => X.Y s4 = (s3 + s3) => s3 => (X.Y) => NAND Gate Questions and Answer Hints Explain Basic Gates (Ans Hint : AND, OR, NOT) Explain Universal Gates (Ans : NAND, NOR, XOR, XNOR) What is Logical Operators (Explain the Logical Gates and the output with truth table and expressions) What is Gate Conversion? and Explain with example.(write the answer how to convert basic gates to universal gates_

Introduction. Logic. Most Difficult Reading Topics. Basic Logic Gates Truth Tables Logical Functions. COMP370 Introduction to Computer Architecture

Introduction. Logic. Most Difficult Reading Topics. Basic Logic Gates Truth Tables Logical Functions. COMP370 Introduction to Computer Architecture Introduction LOGIC GATES COMP370 Introduction to Computer Architecture Basic Logic Gates Truth Tables Logical Functions Truth Tables Logical Expression Graphical l Form Most Difficult Reading Topics Logic

More information

Digital Logic cct. Lec. (6)

Digital Logic cct. Lec. (6) THE NAND GATE The NAND gate is a popular logic element because it can be used as a universal gate: that is, NAND gates can be used in combination to perform the AND, OR, and inverter operations. The term

More information

Secondary Logic Functions: NAND/NOR/XOR/XNOR/Buffer

Secondary Logic Functions: NAND/NOR/XOR/XNOR/Buffer OpenStax-CNX module: m46620 1 Secondary Logic Functions: NAND/NOR/XOR/XNOR/Buffer George Self This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract

More information

Review of Gates in Digital Electronics

Review of Gates in Digital Electronics pp. 22-26 Krishi Sanskriti Publications http://www.krishisanskriti.org/areee.html Review of Gates in Digital Electronics Divya Aggarwal Student, Department of Physics, University of Delhi Abstract: Digital

More information

EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES

EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES DEPARTMENT OF ELECTRICAL AND ELECTROINC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 304 : Digital Electronics Laboratory EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION

More information

ELG3331: Lab 3 Digital Logic Circuits

ELG3331: Lab 3 Digital Logic Circuits ELG3331: Lab 3 Digital Logic Circuits What does Digital Means? Digital describes any system based on discontinuous data or events. Typically digital is computer data or electronic sampling of an analog

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

2011, The McGraw-Hill Companies, Inc. Chapter 4

2011, The McGraw-Hill Companies, Inc. Chapter 4 Chapter 4 4.1 The Binary Concept Binary refers to the idea that many things can be thought of as existing in only one of two states. The binary states are 1 and 0 The 1 and 0 can represent: ON or OFF Open

More information

NOT AND OR XOR NAND NOR

NOT AND OR XOR NAND NOR NOT AND OR XOR NAND NOR Expression 1: It is raining today Expression 2: Today is my birthday X Meaning True False It is raining today It is not raining Binary representation of the above: X Meaning 1 It

More information

Points Addressed in this Lecture

Points Addressed in this Lecture Points Addressed in this Lecture Lecture 3: Basic Logic Gates & Boolean Expressions Professor Peter Cheung Department of EEE, Imperial College London (Floyd 3.1-3.5, 4.1) (Tocci 3.1-3.9) What are the basic

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and omputer Engineering Lecture 11 NND and XOR Implementations Overview Developing NND circuits from K-maps Two-level implementations onvert from ND/OR to NND (again!) Multi-level

More information

ENGI 241 Experiment 5 Basic Logic Gates

ENGI 241 Experiment 5 Basic Logic Gates ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

More information

Interpreting Logic Gates

Interpreting Logic Gates Logic gates are the mechanism used to convert Boolean logic into the circuitry the computer needs to solve such problems. We have learned about three(3) different gates. The AND Gate takes two or more

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

14:332:231 DIGITAL LOGIC DESIGN. Multiplexers (Data Selectors)

14:332:231 DIGITAL LOGIC DESIGN. Multiplexers (Data Selectors) 4:: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall Lecture #: Multiplexers, Exclusive OR Gates, and Parity Circuits Multiplexers (Data Selectors) A multiplexer

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits

More information

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

More information

Gates, Circuits and Boolean Functions

Gates, Circuits and Boolean Functions Lecture 2 Gates, Circuits and Boolean Functions DOC 112: Hardware Lecture 2 Slide 1 In this lecture we will: Introduce an electronic representation of Boolean operators called digital gates. Define a schematic

More information

Exclusive OR/Exclusive NOR (XOR/XNOR)

Exclusive OR/Exclusive NOR (XOR/XNOR) Exclusive OR/Exclusive NOR (XOR/XNOR) XOR and XNOR are useful logic functions. Both have two or more inputs. The truth table for two inputs is shown at right. a XOR b = 1 if and only if (iff) a b. a XNOR

More information

The NOT Gate The NOT gate outputs a logical 0 if its input is a logical 1 and outputs a 1 if its input is a 0. The symbol is given.

The NOT Gate The NOT gate outputs a logical 0 if its input is a logical 1 and outputs a 1 if its input is a 0. The symbol is given. Gates and Flip-Flops Pádraig Ó Conbhuí 08531749 SF WED Abstract This experiment was carried out to construct (with the exception of the AND and NOT gates) and investigate the outputs of AND, NAND, OR,

More information

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation

Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

More information

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction

Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and

More information

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 3

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 3 UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 3 This work covers part of outcome 2 of the Edexcel standard module. The material is

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

More information

Module 3 Digital Gates and Combinational Logic

Module 3 Digital Gates and Combinational Logic Introduction to Digital Electronics, Module 3: Digital Gates and Combinational Logic 1 Module 3 Digital Gates and Combinational Logic INTRODUCTION: The principles behind digital electronics were developed

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Digital describes any system based on discontinuous data or events. Typically digital is computer data or electronic sampling of an analog signal. Computers are digital machines

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd hapter 5 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. ll Rights Reserved Summary ombinational Logic ircuits In Sum-of-Products (SOP)

More information

Digital Logic Design

Digital Logic Design Digital Logic Design ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Determining output level from a diagram Implementing Circuits From Boolean

More information

Logic Design. A Review

Logic Design. A Review Logic Design A Review Boolean Algebra Two Values: zero and one Three Basic Functions: And, Or, Not Any Boolean Function Can be Constructed from These Three And 0 Or 0 Not 0 0 0 0 0 0 0 0 Algebraic Laws

More information

Number System. Lesson: Number System. Lesson Developer: Dr. Nirmmi Singh. College/ Department: S.G.T.B Khalsa College, University of.

Number System. Lesson: Number System. Lesson Developer: Dr. Nirmmi Singh. College/ Department: S.G.T.B Khalsa College, University of. Lesson: Number System Lesson Developer: Dr. Nirmmi Singh College/ Department: S.G.T.B Khalsa College, University of Delhi 1 NUMBER SYSTEM Table of contents Chapter 1: Number System 1.1 Learning outcomes

More information

CS61c: Representations of Combinational Logic Circuits

CS61c: Representations of Combinational Logic Circuits CS61c: Representations of Combinational Logic Circuits J. Wawrzynek October 12, 2007 1 Introduction In the previous lecture we looked at the internal details of registers. We found that every register,

More information

COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

More information

Computer Programming Notes - Week 1

Computer Programming Notes - Week 1 Computer Programming Notes - Week 1 January 8, 2016 1 Logical Gates There are several basic logical gates that we will use. Each of them (except the NOT gate) take two boolean inputs and produce one boolean

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576

exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 exclusive-or and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking

More information

CMPS 10 Winter Homework Assignment 5

CMPS 10 Winter Homework Assignment 5 CMPS 10 Winter 2011- Homework Assignment 5 Problems: Chapter 4 (p.184): 1abc, 3abcd, 4ab, 5abc, 6, 7, 9abcd, 15abcd, 17, 18, 19, 20 1. Given our discussion of positional numbering systems in Section 4.2.1,

More information

Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra

Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra 2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

LAB 2: BOOLEAN THEOREMS

LAB 2: BOOLEAN THEOREMS LAB 2: BOOLEAN THEOREMS OBJECTIVES 1. To implement DeMorgan's theorems in circuit simplification. 2. To design a combinational logic circuit with simplest logic gates representation using Karnaugh Mapping

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits

ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit

More information

Basics of Digital Logic Design

Basics of Digital Logic Design CSE 675.2: Introduction to Computer Architecture Basics of Digital Logic Design Presentation D Study: B., B2, B.3 Slides by Gojko Babi From transistors to chips Chips from the bottom up: Basic building

More information

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates

Chapter 4. Gates and Circuits. Chapter Goals. Chapter Goals. Computers and Electricity. Computers and Electricity. Gates Chapter Goals Chapter 4 Gates and Circuits Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra

CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra Logic Gates Logic gatesare simple digital circuits that take one or more binary inputs and produce

More information

The equation for the 3-input XOR gate is derived as follows

The equation for the 3-input XOR gate is derived as follows The equation for the 3-input XOR gate is derived as follows The last four product terms in the above derivation are the four 1-minterms in the 3-input XOR truth table. For 3 or more inputs, the XOR gate

More information

Logic Gates & Operational Characteristics

Logic Gates & Operational Characteristics Logic Gates & Operational Characteristics NOR Gate as a Universal Gate The NOR gate is also used as a Universal Gate as the NOR Gate can be used in a combination to perform the function of a AND, OR and

More information

(Refer Slide Time 6:09)

(Refer Slide Time 6:09) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture 3 Combinational Logic Basics We defined digital signal as a signal which

More information

WEEK 2.2 CANONICAL FORMS

WEEK 2.2 CANONICAL FORMS WEEK 2.2 CANONICAL FORMS 1 Canonical Sum-of-Products (SOP) Given a truth table, we can ALWAYS write a logic expression for the function by taking the OR of the minterms for which the function is a 1. This

More information

EE 110 Practice Problems for Exam 2: Solutions, Fall 2008

EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 EE 110 Practice Problems for Exam 2: Solutions, Fall 2008 1. Circle T (true) or F (false) for each of these Boolean equations. (a). T FO An 8-to-1 multiplexer requires 2 select lines. (An 8-to-1 multiplexer

More information

EKT 121/4 ELEKTRONIK DIGIT 1

EKT 121/4 ELEKTRONIK DIGIT 1 EKT 121/4 ELEKTRONIK DIGIT 1 Kolej Universiti Kejuruteraan Utara Malaysia Logic Gates & Boolean Algebra Logic Gates & Boolean Algebra Basic Logic Gate Combination Logic Gate Universality of NAND and NOR

More information

Introduction to Logic Design with VHDL

Introduction to Logic Design with VHDL EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS 2000/2001 WINTER SESSION, TERM 1 Introduction to Logic Design with VHDL This chapter reviews the design of combinational and sequential logic and

More information

1. Realization of gates using Universal gates

1. Realization of gates using Universal gates 1. Realization of gates using Universal gates Aim: To realize all logic gates using NAND and NOR gates. Apparatus: S. No Description of Item Quantity 1. IC 7400 01 2. IC 7402 01 3. Digital Trainer Kit

More information

Computer Systems Lab 1. Basic Logic Gates

Computer Systems Lab 1. Basic Logic Gates Computer Systems Lab Basic Logic Gates Object To investigate the properties of the various types of logic gates, and construct some useful combinations of these gates. Parts () 700 Quad -input NAND gate

More information

Combinational Circuits (Part II) Notes

Combinational Circuits (Part II) Notes Combinational Circuits (Part II) Notes This part of combinational circuits consists of the class of circuits based on data transmission and code converters. These circuits are multiplexers, de multiplexers,

More information

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS

Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Lesson 5 BOOLEAN EXPRESSION, TRUTH TABLE and product of the sums (POSs) [MAXTERMS] 2 Outline POS two variables cases POS for three variable

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

Logic Revision. AQA AS-Level Computing COMP2. 98 minutes. 95 marks. Page 1 of 40

Logic Revision. AQA AS-Level Computing COMP2. 98 minutes. 95 marks. Page 1 of 40 Logic Revision AQA AS-Level Computing COMP2 2014 98 minutes 95 marks Page 1 of 40 Q1. The figure below shows a logic circuit. (a) Complete the truth table below for the logic circuit shown in the above

More information

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals

Logic Design 2013/9/5. Introduction. Logic circuits operate on digital signals Introduction Logic Design Chapter 2: Introduction to Logic Circuits Logic circuits operate on digital signals Unlike continuous analog signals that have an infinite number of possible values, digital signals

More information

Unit 2: Number Systems, Codes and Logic Functions

Unit 2: Number Systems, Codes and Logic Functions Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations

More information

CHAPTER FOUR. 4.1 Logic Gate Basics. Logic Functions and Gates

CHAPTER FOUR. 4.1 Logic Gate Basics. Logic Functions and Gates HPTER FOUR Logic Functions and Gates Representing numbers using transistors is one thing, but getting the computer to do something with those numbers is an entirely different matter. Digital circuitry

More information

4.203 Write the truth table for each of the following logic functions:

4.203 Write the truth table for each of the following logic functions: 3e4.5 4.201 According to DeMorgan s theorem, the complement of X + Y Z is X Y +Z. Yet both functions are 1 for XYZ = 110. How can both a function and its complement be 1 for the same input combination?

More information

EC312 Lesson 2: Computational Logic

EC312 Lesson 2: Computational Logic EC312 Lesson 2: Computational Logic Objectives: a) Identify the logic circuit gates and reproduce the truth tables for NOT, AND, NAND, OR, and NOR gates. b) Given a schematic of a logic circuit, determine

More information

CS/EE 260 Homework 5 Solutions Spring 2000

CS/EE 260 Homework 5 Solutions Spring 2000 CS/EE 6 Homework 5 Solutions Spring (MK -) Construct a -to- line multiplexer with three 4-to- line multiplexers The multiplexers should be interconnected and inputs labeled so that the selection codes

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Lab Manual Digital Electronics Laboratory (EC-39) BACHELOR OF TECHNOLOGY Subject Code: EC 39 Subject Name: Digital Electronics Laboratory Teaching

More information

Chapter 4 Boolean Algebra and Logic Simplification

Chapter 4 Boolean Algebra and Logic Simplification ETEC 23 Programmable Logic Devices Chapter 4 Boolean Algebra and Logic Simplification Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Boolean

More information

Digital Electronics Lab

Digital Electronics Lab LAB MANUAL Digital Electronics Lab (EE-224-F) Vikas Sharma (Lab In-charge) Dayal C. Sati (Faculty In-charge) DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING Page STUDENTS GUIDELINES There is Hr 4

More information

Digital Logic: Boolean Algebra and Gates

Digital Logic: Boolean Algebra and Gates Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 CMPE2 Summer 28 Basic Logic Gates CMPE2 Summer 28 Slides by ADB 2 Truth Table The most basic representation of a logic function Lists the output

More information

Digital Circuits Laboratory LAB no. 2. LOGIC GATES

Digital Circuits Laboratory LAB no. 2. LOGIC GATES Digital Circuits Labat. Introduction LOGIC GATES Combinational logic sstems, no matter how complicated the are, the are realized with logic gates. An elementar logic gate implements a two variables unction.

More information

Gate-Level Minimization

Gate-Level Minimization Chapter 3 Gate-Level Minimization 3- Outline! Karnaugh Map Method! NAND and NOR Implementations! Other Two-Level Implementations! Exclusive-OR Function! Hardware Description Language 3-2 Why Logic Minimization?!

More information

Chapter 02 Logic Design with MOSFETs

Chapter 02 Logic Design with MOSFETs Introduction to VLSI Circuits and Systems 路 論 Chapter 02 Logic Design with MOSFETs Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline The Fundamental MOSFETs Ideal

More information

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as

2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND

More information

Exclusive -OR-GATE, HALF ADDER, FULL ADDER

Exclusive -OR-GATE, HALF ADDER, FULL ADDER Experiment 2 Exclusive -OR-GATE, HALF ADDER, FULL ADDER Objective -To investigate the logical properties of the exclusive-or function. -To implement a number of different logic functions by means of exclusive-or

More information

Introduction. Digital Logic Design 1. Simplifying Logic Circuits. Sum-of-Products Form. Algebraic Simplification

Introduction. Digital Logic Design 1. Simplifying Logic Circuits. Sum-of-Products Form. Algebraic Simplification 2007 Introduction BK TP.HCM Tran Ngoc Thinh HCMC University of Technology http://www.cse.hcmut.edu.vn/~tnthinh Basic logic gate functions will be combined in combinational logic circuits. Simplification

More information

ENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.

ENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7. ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusive-or and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB

More information

2 Building Blocks. There is often the need to compare two binary values.

2 Building Blocks. There is often the need to compare two binary values. 2 Building Blocks 2.1 Comparators There is often the need to compare two binary values. This is done using a comparator. A comparator determines whether binary values A and B are: 1. A = B 2. A < B 3.

More information

Elementary Logic Gates

Elementary Logic Gates Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate

More information

Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Electronic Design Automation Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Synthesis: Part 3 I have talked about two-level

More information

Objectives: 1. Half Adder. 2. Full Adder. 3. Binary Adder. 4. Binary Subtractor. 5. Binary Adder-Subtractor. 1. Half Adder

Objectives: 1. Half Adder. 2. Full Adder. 3. Binary Adder. 4. Binary Subtractor. 5. Binary Adder-Subtractor. 1. Half Adder Objectives:. Half Adder. 2. Full Adder. 3. Bary Adder. 4. Bary ubtractor. 5. Bary Adder-ubtractor.. Half Adder Half Adder: is a combational circuit that performs the addition of two bits, this circuit

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-218 Lec-29: Combinational Logic Modules Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Combinational

More information

Digital Logic and Design (EEE-241) Lecture

Digital Logic and Design (EEE-241) Lecture Digital Logic and Design (EEE-241) Lecture Dr. M. G. Abbas Malik abbas.malik@ciitlahore.edu.pk edu Picture Source: http://www.vanoast.com/old-portfolio/digital-design-logo-one%5ba%5d.jpg Previous lecture

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

Lecture 8 Binary Numbers & Logic Operations The focus of the last lecture was on the microprocessor

Lecture 8 Binary Numbers & Logic Operations The focus of the last lecture was on the microprocessor Lecture 8 Binary Numbers & Logic Operations The focus of the last lecture was on the microprocessor During that lecture we learnt about the function of the central component of a computer, the microprocessor

More information

Chapter 5: Sequential Circuits (LATCHES)

Chapter 5: Sequential Circuits (LATCHES) Chapter 5: Sequential Circuits (LATCHES) Latches We focuses on sequential circuits, where we add memory to the hardware that we ve already seen Our schedule will be very similar to before: We first show

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Combinational Logic Tutorial sheet

Combinational Logic Tutorial sheet Combinational Logic Tutorial sheet 1) Redraw the following circuits into the respective ANSI symbols a. b. c. d. 2) Write the Boolean equation for each of the circuit diagrams in question 1. 3) Convert

More information

ECE Digital Logic Design. Laboratory Manual

ECE Digital Logic Design. Laboratory Manual ECE 1315 Digital Logic Design Laboratory Manual Guide to Assembling your Circuits Dr. Fernando Ríos-Gutiérrez Dr. Rocio Alba-Flores Dr. Chris Carroll Department of Electrical and Computer Engineering University

More information

2.0 Chapter Overview. 2.1 Boolean Algebra

2.0 Chapter Overview. 2.1 Boolean Algebra Thi d t t d ith F M k 4 2 Boolean Algebra hapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital logic

More information

Digital Logic Design 1. Truth Tables. Truth Tables. OR Operation With OR Gates

Digital Logic Design 1. Truth Tables. Truth Tables.  OR Operation With OR Gates 2007 oolean Constants and Variables K TP.HCM Tran Ngoc Thinh HCMC University of Technology http://www.cse.hcmut.edu.vn/~tnthinh oolean algebra is an important tool in describing, analyzing, designing,

More information

Module-3 SEQUENTIAL LOGIC CIRCUITS

Module-3 SEQUENTIAL LOGIC CIRCUITS Module-3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.

More information

Sequential Circuits Sequential circuits combinational circuits clocked sequential circuits gate delay

Sequential Circuits Sequential circuits combinational circuits clocked sequential circuits gate delay Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

More information

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

1.10 (a) Effects of logic gates AND, OR, NOT on binary signals in a processor

1.10 (a) Effects of logic gates AND, OR, NOT on binary signals in a processor Chapter 1.10 Logic Gates 1.10 (a) Effects of logic gates AND, OR, NOT on binary signals in a processor Microprocessors are the central hardware that runs computers. There are several components that make

More information