GateLevel Minimization


 Duane Lloyd
 2 years ago
 Views:
Transcription
1 Chapter 3 GateLevel Minimization 3 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language 32
2 Why Logic Minimization?! Minimize the number of gates used! Reduce gate count = reduce cost! Minimize total delay (critical path delay)! Reduce delay = improve performance! Satisfy design constrains! Maximum fanins and fanouts,! Remove undesired circuit behavior! Hazard, race, 33 The Map Method! The map method is also known as the Karnaugh map or Kmap! Provide a straightforward procedure for minimizing Boolean functions! The simplified expressions are always in one of the two standard forms:! Sum of Products (SOP)! Product of Sums (POS) 34 2
3 TwoVariable Map (/2)! Twovariable function has four minterms! Four squares in the map for those minterms! The corresponding minterm of each square is determined by the bit status shown outside 35 TwoVariable Map (2/2) y x x + y = x(y+y ) + y(x+x ) = xy (m 3 ) + xy (m 2 ) + x y (m ) = m + m 2 + m
4 ThreeVariable Map (/2) Gray Code 37 ThreeVariable Map (2/2) F( x, y, z) = (3,4,6,7) = yz + xz' F ( x, y, z) = (,2,4,5,6) = z' + xy ' xz (all y covered) yz (all x covered) z (x, y covered) xy (all z covered) 38 4
5 FourVariable Map (/2) Gray Code Gray Code 39 FourVariable Map (2/2) F = A B C + B CD + A BCD + AB C = = B D + B C + A CD (,,2,6,8,9,) A CD B D B C 35
6 FiveVariable Map (/2) * Maps with six or more variables need too many squares and are impractical to use. 3 FiveVariable Map (2/2) F(A,B,C,D,E) = (,2,4,6,9,3,2,23,25,29,3) = A B E + BD E + ACE BD E (same position) 32 6
7 Prime Implicants! Implicant (cube) : A group of minterms that form a cube! Prime implicant : Combine maximum possible number of adjacent squares in the map cd a'b'c'd' ab a'b'c prime implicant prime implicant ac' ab'c' abc' a'cd' prime implicant 33 Essential Prime Implicants! If a minterm is covered by only one prime implicant, that prime implicant is essential and must be included ab cd a'c' acd Note: 's in red color are covered by only one prime implicant. All other 's are covered by at least two prime implicants a'b'd' 34 7
8 Systematic Simplification! Identify all prime implicants on the kmap! Select all essential prime implicants! Select a minimum subset of the remaining prime implicants that cover all s! Ex: F( A, B, C, D) = (,2,3,5,7,8,9,,,3,5) F = BD + B' D' CD + AD CD + AB' + B' C + AD B' C + AB' 35 Product of Sums Simplification! The complement of a function is represented in the map by the squares not marked by s! Choose " sum of products (minterms)! Choose " product of sums (Maxterms) F( A, B, C, D) = (,,2,5,8,9,) =B D +B C +A C D =(A +B )(C +D )(B +D) 36 8
9 Two Gate Implementations! Sometimes productofsums representations may have smaller implementations 7 literals, 4 gates 6 literals, 4 gates 37 Don t Care Conditions! X = don't care (can be or )! Don t cares can be included to form a larger cube, but not necessary to be completely covered! Ex: F( w, x, y, z) = (,3,7,,5) d( w, x, y, z) = (,2,5) larger cube with don t cares 38 9
10 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language 39 NAND and NOR Implementation! Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and OR gate! NAND and NOR gates are much easier to fabricate! NAND or NOR gates are both universal gates! Any digital system can be implemented with only NAND gates or NOR gates 32
11 Alternative Graphic Symbols! To facilitate the conversion to NAND or NOR logic, it is convenient to define alternative graphic symbols! Bubble means complement obtained by DeMorgan s theorem 32 TwoLevel Implementation (NAND)! It s easy to implement a Boolean function with only NAND gates if converted from a sum of products form! Ex: F = AB+CD = ((AB) (CD) ). add two bubbles at the ends 3. allnand circuit has produced 2. convert to NAND gate using DeMorgan s theorem 322
12 Procedures: Example 3. Simplify the function in sum of products 2. Draw NAND gates for the first level 3. Draw a single ANDinvert or invertor in the second level 4. Add an inverter at the first level for the term with a single literal F( x, y, z) = (,2,3,4,5,7 ) 323 TwoLevel Implementation (NOR)! It s easy to implement a Boolean function with only NOR gates if converted from a product of sums form! Ex: F=(A+B)(C+D)E. add two bubbles at the ends 2. complement this input to add the third bubble (if required) 3. convert to NOR gate using DeMorgan s theorem
13 Multilevel NAND Circuits F=A(CD+B)+BC! Procedures:. Convert all AND gates to NAND gates with ANDinvert symbols 2. Convert all OR gates to NAND gates with invertor symbols 3. Check all bubbles and insert an inverter for the bubble that are not compensated by another bubble 325 Multilevel NOR Circuits! For NOR gates, AND " invertand, OR " ORinvert! Other procedures are the same as those for NAND F=(AB +A B)(C+D ) complemented complemented
14 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language 327 Wired Logic! Wired logic: direct wire connection that results in a specific logic function! WiredAND! WiredOR! Some NAND and NOR implementations (not all) have such a property
15 Nondegenerate Forms! There are 6 possible combinations of twolevel forms! Eight of these combinations will degenerate to a single operation! The other eight nondegenerate forms produce an implementation in SOP or POS ANDOR NANDNAND NOROR ORNAND The two forms at the same line are dual to each other ORAND NORNOR NANDAND ANDNOR 329 ANDORINVERT Implementation! NANDAND and ANDNOR are equivalent and both perform the ANDORINVERT (AOI ) function! Require sumofproducts form in nature! When starting from productofsums form, complement it using DeMorgan s theorem to obtain sumofproducts form! Ex: F = (AB + CD + E) 33 5
16 ORANDINVERT Implementation! ORNAND and NOROR are equivalent and both perform the ORANDINVERT (OAI ) function! Require productofsums form in nature! When starting from sumofproducts form, complement it using DeMorgan s theorem to obtain productofsums form! Ex: F = [(A+B)(C+D)E] 33 Implement with TwoLevel Forms
17 Example 3 choose! F = x y z + xyz (choose in Kmap) = (x y + xy + z) (choose in Kmap) choose 333 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language
18 ExclusiveOR (XOR) Function! XOR is often denoted by the symbol! Logic operation of XOR! X Y = XY + X Y! Equal to if only x is equal to or if only y is equal to, but not when both are equal to! It s complement, exclusivenor (XNOR), is often denoted by the symbol! Logic operation! X Y = XY + X Y! It is equal to if both x and y are equal to or if both are equal to! Seldom used in general Boolean functions! Particularly useful in arithmetic operations and error detection and correction circuits 335 ExclusiveOR Implementations
19 Odd Function! The multiplevariable XOR operation is defined as an odd function! TRUE when no. of in inputs is odd F C B A 338 Even Function! The multiplevariable XNOR operation is defined as an even function! TRUE when no. of in inputs is even F C B A
20 FourVariable XOR Function 339 Parity Generation and Checking! An extra parity bit is often added and checked at the receiving end for error! The circuit that generates the parity bit in the transmitter is called a parity generator! The circuit that checks the parity in the receiver is called a parity checker! ExclusiveOR functions are very useful to construct such circuits 34 2
21 Parity Generator! For even parity:! The total number of (including P) is even! The number of at inputs is odd! Generated with an XOR gate (odd function)! P = x y z (for 3bit message)! Similarly, odd parity can be generated with an XNOR gate 34 Parity Checker! For even parity, the total number of in the message is even! An error occurs when the received number of is odd! An XOR gate (odd function) can detect such an error! Has n+ inputs
22 Outline! Karnaugh Map Method! NAND and NOR Implementations! Other TwoLevel Implementations! ExclusiveOR Function! Hardware Description Language 343 Hardware Description Language! Have highlevel language constructs to describe the functionality and connectivity of the circuit! Can describe a design at some levels of abstraction! Behavioral, RTL, Gatelevel, Switch! Can describe functionality as well as timing! Can model the concurrent actions in real hardware! Can be used to document the complete system design tasks! testing, simulation related activities! Comprehensive and easy to learn! Two popular languages: Verilog & VHDL! Will be taught in another course
23 Why Use an HDL?! Hard to design directly for complex systems! Formal description using HDL! Verify the specification through simulation or verification! Easy to change! Enable automatic synthesis! Allow architectural tradeoffs with short turnaround! Reduce time for design capture! Encourage focus on functionality! Shorten the design verification loop *HDL = Hardware Description Language
Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization 25 Map Manipulation 補 充 資 料 :QuineMcCluskey
More information3.2 Simplify the following Boolean functions, using threevariable maps: (ay F(x, y, z) = L(o, 1,5,7)
Answers to problems marked with ~,appear at the end of the book. 3.1'~ Simplify the following Boolean functions, using threevariable maps: (a) F(x, y, z) = L(o, 2,6,7) (b) F(x, y, z) = L(o, 1,2,3,7) 3.2
More informationENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 112 Intro to Electrical and omputer Engineering Lecture 11 NND and XOR Implementations Overview Developing NND circuits from Kmaps Twolevel implementations onvert from ND/OR to NND (again!) Multilevel
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline MultiLevel Gate Circuits NAND and NOR Gates Design of TwoLevel Circuits Using NAND and NOR Gates
More informationKarnaugh Maps. Circuitwise, this leads to a minimal twolevel implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
More informationBOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate Circuits
More information4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationELEC2200 Digital Circuits and Systems Fall 2016 Instructor: Levent Yobas
Lecture 3b 1 ELEC2200 Digital Circuits and Systems Fall 2016 Instructor: Levent Yobas Lecture 3b Gate Level Implementation Lecture 3b 2 Lecture Overview Implementations Using ANDOR, OR AND Using NANDNAND,
More informationChapter 4 Boolean Algebra and Logic Simplification
ETEC 23 Programmable Logic Devices Chapter 4 Boolean Algebra and Logic Simplification Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Boolean
More informationCSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.32.5) Standard Forms ProductofSums (PoS) SumofProducts (SoP) converting between Minterms
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 5: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 5: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London (Floyd 4.54.) (Tocci 4.4.5) Standard form of Boolean Expressions
More information4.203 Write the truth table for each of the following logic functions:
3e4.5 4.201 According to DeMorgan s theorem, the complement of X + Y Z is X Y +Z. Yet both functions are 1 for XYZ = 110. How can both a function and its complement be 1 for the same input combination?
More informationComputer Organization I. Lecture 8: Boolean Algebra and Circuit Optimization
Computer Organization I Lecture 8: Boolean Algebra and Circuit Optimization Overview The simplification from SOM to SOP and their circuit implementation Basics of Logic Circuit Optimization: Cost Criteria
More informationUnit 3 Boolean Algebra (Continued)
Unit 3 Boolean Algebra (Continued) 1. ExclusiveOR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication
More informationChapter 3: Combinational Logic Design
Chapter 3: Combinational Logic Design 1 Introduction We have learned all the prerequisite material: Truth tables and Boolean expressions describe functions Expressions can be converted into hardware circuits
More information2 1 Implementation using NAND gates: We can write the XOR logical expression A B + A B using double negation as
Chapter 2 Digital Logic asics 2 Implementation using NND gates: We can write the XOR logical expression + using double negation as + = + = From this logical expression, we can derive the following NND
More informationConversion between number systems:
Conversion between number systems: Radixr to decimal. Decimal to binary. Decimal to Radixr Binary to Octal Binary to Hex Binary arithmetic operations. Negative number representations. Switching Algebra
More informationENEE 244 (01**). Spring 2006. Homework 4. Due back in class on Friday, April 7.
ENEE 244 (**). Spring 26 Homework 4 Due back in class on Friday, April 7.. Implement the following Boolean expression with exclusiveor and AND gates only: F = AB'CD' + A'BCD' + AB'C'D + A'BC'D. F = AB
More informationThe equation for the 3input XOR gate is derived as follows
The equation for the 3input XOR gate is derived as follows The last four product terms in the above derivation are the four 1minterms in the 3input XOR truth table. For 3 or more inputs, the XOR gate
More informationDigital Logic Design
Digital Logic Design ENGG1015 1 st Semester, 2010 Dr. Kenneth Wong Dr. Hayden So Department of Electrical and Electronic Engineering Determining output level from a diagram Implementing Circuits From Boolean
More informationAnalog & Digital Electronics Course No: PH218
Analog & Digital Electronics Course No: PH218 Lec29: Combinational Logic Modules Course Instructor: Dr. A. P. VAJPEYI Department of Physics, Indian Institute of Technology Guwahati, India 1 Combinational
More informationCS61c: Representations of Combinational Logic Circuits
CS61c: Representations of Combinational Logic Circuits J. Wawrzynek October 12, 2007 1 Introduction In the previous lecture we looked at the internal details of registers. We found that every register,
More informationIntroduction. Digital Logic Design 1. Simplifying Logic Circuits. SumofProducts Form. Algebraic Simplification
2007 Introduction BK TP.HCM Tran Ngoc Thinh HCMC University of Technology http://www.cse.hcmut.edu.vn/~tnthinh Basic logic gate functions will be combined in combinational logic circuits. Simplification
More informationUnited States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationWEEK 2.2 CANONICAL FORMS
WEEK 2.2 CANONICAL FORMS 1 Canonical SumofProducts (SOP) Given a truth table, we can ALWAYS write a logic expression for the function by taking the OR of the minterms for which the function is a 1. This
More informationCSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
More informationBoolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
More informationKarnaugh Map. Alternative way to Boolean Function Simplification. Karnaugh Map. Description of Kmap & Terminology
Alternative way to Boolean Function Simplification Karnaugh Map CIT 595 Spring 2010 Simplification of Boolean functions leads to simpler (and usually faster) digital circuits Simplifying Boolean functions
More informationDEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Lab Manual Digital Electronics Laboratory (EC39) BACHELOR OF TECHNOLOGY Subject Code: EC 39 Subject Name: Digital Electronics Laboratory Teaching
More informationBoolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris HuiRu Jiang Spring 2010
Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions ExclusiveOR and ExclusiveNOR operations The consensus theorem Summary of algebraic simplification Proving validity of an
More informationTwolevel logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Twolevel logic using NND gates Replace minterm ND gates with NND gates Place
More informationCH3 Boolean Algebra (cont d)
CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. ExclusiveOR and Equivalence operations
More informationExclusive OR/Exclusive NOR (XOR/XNOR)
Exclusive OR/Exclusive NOR (XOR/XNOR) XOR and XNOR are useful logic functions. Both have two or more inputs. The truth table for two inputs is shown at right. a XOR b = 1 if and only if (iff) a b. a XNOR
More informationRita Lovassy. Digital Technics
Rita Lovassy Digital Technics Kandó Kálmán Faculty of Electrical Engineering Óbuda University Budapest, 2013 Preface Digital circuits address the growing need for computer networking communications in
More informationexclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576
exclusiveor and Binary Adder R eouven Elbaz reouven@uwaterloo.ca Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
More informationENEE244 (sec ) Spring Time alloted: 50 minutes. Student ID: Maximum score: 50 points
ENEE244 (sec 4) Spring 26 Midterm Examination II Pages: 7 printed sides Name: Answer key Time alloted: 5 minutes. Student ID: Maximum score: 5 points University rules dictate strict penalties for any
More information3.1 Combinational Circuits
EED2003 Digital Design Presentation 3: Combinational Logic Design Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Notes byjaeyoung Choi Fall 2000 3.1 Combinational Circuits logic
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationLogic Design 2013/9/5. Introduction. Logic circuits operate on digital signals
Introduction Logic Design Chapter 2: Introduction to Logic Circuits Logic circuits operate on digital signals Unlike continuous analog signals that have an infinite number of possible values, digital signals
More information1. Digital Logic Circuits
1 Digital Logic ircuits 1. Digital Logic ircuits Many scientific, industrial and commercial advances have been made possible by the advent of computers. Digital Logic ircuits form the basis of any digital
More informationWorking with combinational logic
Working with combinational logic Simplification twolevel simplification exploiting don t cares algorithm for simplification Logic realization twolevel logic and canonical forms realized with NNs and
More informationChapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS
Chapter 4 BOOLEAN ALGEBRA AND THEOREMS, MIN TERMS AND MAX TERMS Lesson 5 BOOLEAN EXPRESSION, TRUTH TABLE and product of the sums (POSs) [MAXTERMS] 2 Outline POS two variables cases POS for three variable
More informationCSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE/NAME YEAR/ SEMESTER : EC6302/ DIGITAL ELECTRONICS : II
More informationDESIGN OF GATE NETWORKS
DESIGN OF GATE NETWORKS DESIGN OF TWOLEVEL NETWORKS: andor and orand NETWORKS MINIMAL TWOLEVEL NETWORKS KARNAUGH MAPS MINIMIZATION PROCEDURE AND TOOLS LIMITATIONS OF TWOLEVEL NETWORKS DESIGN OF TWOLEVEL
More informationLecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles or any text in boolean algebra Introduction We could design at the level of irsim
More informationLogic Design. A Review
Logic Design A Review Boolean Algebra Two Values: zero and one Three Basic Functions: And, Or, Not Any Boolean Function Can be Constructed from These Three And 0 Or 0 Not 0 0 0 0 0 0 0 0 Algebraic Laws
More informationPurdue IMPACT 2016 Edition by D. G. Meyer. Introduction to Digital System Design. Module 2 Combinational Logic Circuits
Purdue IMPACT 26 Edition by D. G. Meyer Introduction to Digital System Design Module 2 Combinational Logic Circuits Glossary of Common Terms DISCRETE LOGIC a circuit constructed using smallscale integrated
More informationEXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION TECHNIQUES
DEPARTMENT OF ELECTRICAL AND ELECTROINC ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY EEE 304 : Digital Electronics Laboratory EXPERIMENT NO.1:INTRODUCTION TO BASIC GATES AND LOGIC SIMPLIFICATION
More informationELEC 2210  EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC  EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL00 Bit
More informationinputs output Complementary CMOS Comlementary CMOS Logic Gates: nmos pulldown network pmos pullup network Static CMOS
Complementary CMOS Comlementary CMOS Logic Gates: nmos pulldown network pmos pullup network Static CMOS inputs pmos pullup network nmos pulldown network output Pullup O Pullup ON Pulldown O Z (float)
More informationEC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PARTA 1. What do you mean by literal? 2. What is logic gate? 3.
EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PARTA 1. What do you mean by literal? 2. What is logic gate? 3. What is demultiplexer? How does it differ from a decoder?
More informationBasics of Digital Systems. Boolean algebra Truth tables Karnaugh maps
Basics of Digital Systems Boolean algebra Truth tables Karnaugh maps Boolean Algebra In digital systems we deal with the binary number system. This means that the value of an element can be either 0 or
More informationCDA 3101: Introduction to Computer Hardware and Organization. Supplementary Notes
CDA 3: Introduction to Computer Hardware and Organization Supplementary Notes Charles N. Winton Department of Computer and Information Sciences University of North Florida Jacksonville, FL 322242645 Levels
More informationChapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
More informationKarnaugh Maps (K Maps) K Maps with 3 and 4 Variables
Karnaugh Maps (K Maps) Karnugh map is a graphical representation of a truth table The map contains one cell for each possible minterm adjacent cells differ in onl one literal, i.e., or Two variables, F
More informationChapter 4. Combinational Logic
Chapter 4 Combinational Logic Combinational Circuits Logic circuits for digital systems may be combinational or sequential. Combinational logic circuits consist of logic gates outputs = present combination
More informationDigital Fundamentals
Digital Fundamentals Tenth Edition Floyd hapter 5 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. ll Rights Reserved Summary ombinational Logic ircuits In SumofProducts (SOP)
More informationDigital Logic Design. Basics Combinational Circuits Sequential Circuits. PuJen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits PuJen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
More informationDigital Principles and System Design
PARTA Questions 1. Convert (10101100)2 into octal. 2. What is the important property of XS3 code? 3. What is the drawback of a serial adder compared to parallel adder? 4. Represent (10)10 in sign2 s
More informationA Course Material on DIGITAL PRINCIPLES AND SYSTEM DESIGN
A Course Material on By MS.G.MANJULA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM 638 56 QUALITY CERTIFICATE This is to certify
More informationDESCRIPTION AND ANALYSIS OF GATE NETWORKS
DESCRIPTION AND ANALYSIS OF GATE NETWORKS 1 GATE NETWORKS SETS OF GATES: (AND OR NOT), NAND NOR XOR ANALYSIS AND DESCRIPTION OF GATE NETWORKS 2 Combinational system Combinational module Combinational module
More informationDigital Logic cct. Lec. (6)
THE NAND GATE The NAND gate is a popular logic element because it can be used as a universal gate: that is, NAND gates can be used in combination to perform the AND, OR, and inverter operations. The term
More informationWorking with combinational logic. Design example: 2x2bit multiplier
Working with combinational logic Simplification twolevel simplification exploiting don t cares algorithm for simplification Logic realization twolevel logic and canonical forms realized with NNs and
More informationl What have discussed up until now & why: l C Programming language l More lowlevel then Java. l Better idea about what s really going on.
CS211 Computer Architecture l Topics Digital Logic l Transistors (Design & Types) l Logic Gates l Combinational Circuits l KMaps Class Checkpoint l What have discussed up until now & why: l C Programming
More informationNAND and NOR Implementation
University of Wisconsin  Madison EE/omp ci 352 Digital ystems Fundamentals harles R. Kime ection 2 Fall 200 hapter 2 ombinational Logic ircuits Part 7 harles Kime & Thomas Kaminski NND and NOR Implementation
More informationLogic Design. Dr. Yosry A. Azzam
Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra
More informationSwitching Circuits & Logic Design
Switching ircuits & Logic esign JieHong Roland Jiang 江介宏 epartment of Electrical Engineering National Taiwan University Fall 23 8 ombinational ircuit esign and Simulation Using Gates Melting locks, 93
More informationElementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
More informationL2: Combinational Logic Design (Construction and Boolean Algebra)
L2: Combinational Logic Design (Construction and oolean lgebra) cknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Prof. Randy Katz (Unified
More informationChapter 4 Combinational Logic
1 Chapter 4 Combinational Logic Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output variables. 2 42. Analysis
More informationReading and construction of logic gates
Reading and construction of logic gates A Boolean function is an expression formed with binary variables, a binary variable can take a value of 1 or 0. Boolean function may be represented as an algebraic
More information2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 2 Boolean Algebra hapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital logic
More informationDigital Circuits. Electrical & Computer Engineering Department (ECED) Course Notes ECED2200. ECED2200 Digital Circuits Notes 2012 Dalhousie University
1 Digital Circuits Electrical & Computer Engineering Department (ECED) Course Notes ECED2200 2 Table of Contents Digital Circuits... 7 Logic Gates... 8 AND Gate... 8 OR Gate... 9 NOT Gate... 10 NOR Gate...
More informationBasic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
More informationSum of Products (SOP) Expressions
Sum of Products (SOP) Expressions The Sum of Products (SOP) form of Boolean expressions and equations contains a list of terms (called minterms) in which all variables are ANDed (products). These minterms
More informationCSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra
CSE 220: Systems Fundamentals I Unit 7: Logic Gates; Digital Logic Design: Boolean Equations and Algebra Logic Gates Logic gatesare simple digital circuits that take one or more binary inputs and produce
More informationUNIT  II LOGIC GATES AND GATES CLASSIFICATION
UNIT  II Logic Gates: Gates Classifications: Basic Gates (AND, OR, NOT), Universal Gates (NAND, NOR), Exclusive Gates (XOR, XNOR)(except circuit diagram) Logic Symbols, Logic Operators, Logical expression
More informationLAB 2: BOOLEAN THEOREMS
LAB 2: BOOLEAN THEOREMS OBJECTIVES 1. To implement DeMorgan's theorems in circuit simplification. 2. To design a combinational logic circuit with simplest logic gates representation using Karnaugh Mapping
More informationTUTORIAL 1: Overview of a Digital Logic
Questions 3 TUTORIAL : Overview of a Digital Logic. Fill in the terms for the definition. Term Definition i) Being continuous or having continuous values. ii) iii) iv) v) vi) A basic logic operation in
More informationUNIT I NUMBER SYSTEM AND BINARY CODES
1 UNIT I NUMBER SYSTEM AND BINARY CODES 1.0 Aims and Objectives 1.1 Introduction 1.2 Number System 1.2.1 Decimal Number System 1.2.2 Bistable Devices 1.2.3 Binary Number System 1.2.4 Octal number System
More informationON THE USE OF ASHENHURST DECOMPOSITION CHART AS AN ALTERNATIVE TO ALGORITHMIC TECHNIQUES IN THE SYNTHESIS OF MULTIPLEXERBASED LOGIC CIRCUITS
Nigerian Journal of Technology, Vol. 18, No. 1, September, 1997 OSUAGWU 28 ON THE USE OF ASHENHURST DECOMPOSITION CHART AS AN ALTERNATIVE TO ALGORITHMIC TECHNIQUES IN THE SYNTHESIS OF MULTIPLEXERBASED
More informationSwitching Circuits & Logic Design
Switching Circuits & Logic Design JieHong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 23 2 oolean lgebra 2 Outline Introduction asic operations oolean expressions
More informationLecture Summary Module 2 Combinational Logic Circuits
Lecture Summary Module 2 Combinational Logic Circuits Learning Outcome: an ability to analyze and design combinational logic circuits Learning Objectives: 21. identify minterms (product terms) and maxterms
More informationDigital Circuits. Frequently Asked Questions
Digital Circuits Frequently Asked Questions Module 1: Digital & Analog Signals 1. What is a signal? Signals carry information and are defined as any physical quantity that varies with time, space, or any
More informationChapter 1: Number Systems and Conversion
Chapter : Number Systems and Conversion.6 Subtract in binary. Place a over each column from which it was necessary to borrow. (a) (b) (c).7 dd the following numbers in binary using 2 s complement to represent
More informationA Little Perspective Combinational Logic Circuits
A Little Perspective Combinational Logic Circuits COMP 251 Computer Organization and Architecture Fall 2009 Motivating Example Recall our machine s architecture: A Simple ALU Consider an ALU that can perform
More information28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using Kmap method.
Unit1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =
More informationAljabar Boolean, Penyederhanaan Logika dan Peta Karnaugh
Aljabar Boolean, Penyederhanaan Logika dan Peta Karnaugh ENDY SA ENDY SA Program Studi Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Prof. Dr. HAMKA Slide  6 1 Standard Forms of Boolean Expressions
More informationDigital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationChapter 4. Combinational Logic. Outline. ! Combinational Circuits. ! Analysis and Design Procedures. ! Binary Adders. ! Other Arithmetic Circuits
Chapter 4 Combinational Logic 4 Outline! Combinational Circuits! Analysis and Design Procedures! Binary Adders! Other Arithmetic Circuits! Decoders and Encoders! Multiplexers 42 Combinational v.s Sequential
More informationChapter 4. Simplification of Boolean Functions
4. Simlification of Boolean Functions 4 Chater 4. Simlification of Boolean Functions Boolean Cubes and Boolean Functions (a) n = (b) n = 2 (c) n = (d) n = 4 Figure : Boolean cubes [Gajski]. c ChengWen
More informationLogic gate implementation and circuit minimization
Logic gate implementation and circuit minimization Lila Kari The University of Western Ontario Logic gate implementation and circuit minimization CS2209, Applied Logic for Computer Science 1 / 48 Why binary?
More informationKarnaugh Maps (Kmap) Alternate representation of a truth table
Karnaugh Maps (Kmap) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
More informationIntroduction to Logic Circuits
April 5, 999 4:05 g02ch2 Sheet number Page number 7 black chapter 2 Introduction to Logic Circuits 2. d2 d4, d7 d5 7 April 5, 999 4:05 g02ch2 Sheet number 2 Page number 8 black 8 CHAPTER 2 Introduction
More informationReview of ECE 230 Material Prof. A. Mason, Michigan State University
Review of ECE 230 Material Prof. A. Mason, Michigan State University Preface This document was developed for students taking ECE 331 to review material covered in ECE 230. It will be assumed that ECE 331
More information