THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry

Size: px
Start display at page:

Download "THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry"

Transcription

1 THE WAY TO SOMEWHERE Sub-topics 1 Diffusion Diffusion processes in industry

2 RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation (gaseous, liquid or solid), are constantly in motion diffusion Diffusion refers to the net flux of any species, such as ions, atoms, electrons, holes, and molecules. Flux = (conductivity) x (driving force) In the case of atomic or molecular diffusion, the conductivity is referred to as the diffusivity or the diffusion constant D The driving force for many types of diffusion is the existence of a concentration gradient. this diffusion constant (D) reflects the mobility of the diffusing species in the given environment The term gradient describes the variation of a given property as a function of distance 2

3 NON-SPONTANEOUS PROCESSES 1. For process to be started, the atoms should have sufficient energy to overcome an activation energy barrier. Q=activation energy 2. State 1 Involves reduction in energy Or Energy change is negative State 2 3

4 DIFFUSION As T of the system is increased, more and more molecules will attain the activation energy level. In statistical mechanics, Maxwell Boltzmann statistics describes the distribution of material particles over various energy states and probabilities to find a particle in definite state: Probability ~ exp(- E/RT) R Boltzmanconstant = 1.38 x10-23 J/atom K 4

5 WHAT IS DIFFUSION? 5

6 SELF-DIFFUSION C C A D B t A B D 6

7 VACANCY OR SUBSTITUTIONAL DIFFUSION Why, in general, is the activation energy for self diffusion higher for materials of high melting point? Atoms move into the vacancies places. More vacancies are created at higher temperature. Diffusion rate is higher at high temperatures. 7

8 ATOMIC DIFFUSION IN SOLIDS Diffusion is a process by which a matter is transported through another matter. Examples: 9 Movement of smoke particles in air : Very fast. 9 Movement of dye in water : Relatively slow. 9 Solid state reactions : Very restricted movement due to bonding. Diffusion processes may be divided into two types: (a) steady state and (b) non-steady state. 8

9 HOW FAST DOES DIFFUSION OCCUR? Cu flux Ni flux Concentration of Cu [kg/m 3 ] Concentration of Ni [kg/m 3 ] flux in x-dir. [kg/m 2 -s] Position, x Concentration Profile, C(x): [kg/m 3 ] J x = D dc dx The rate at which atoms, ions, particles or other species diffuse in a material Diffusion coefficient [m 2 /s] concentration gradient [kg/m 4 ] The flux is defined as the number of atoms passing through a plane of unit area per unit time 9

10 STEADY-STATE DIFFUSION o Diffusion is a time dependent process and the rate of mass transfer is the diffusion flux (J). o In a steady-state condition the concentration gradient is constant. Steady state diffusion takes place at a constant rate - that is, once the process starts the number of atoms crossing a given interface (the flux) is constant with time. This means that throughout the system dc/dx= constant and dc/dt= 0. Fick s First law: Net flow of atoms Per unit area per Unit time = J atoms/cm 2 s The diffusive flux is proportional to the existing concentration gradient. 10

11 STEADY STATE DIFFUSION PROCESS A practical example of steady-state diffusion the purification of hydrogen gas. One side of a thin sheet of palladium metal is exposed to the impure gas composed of hydrogen and other gaseous species such as nitrogen, oxygen, and water vapor. The hydrogen selectively diffuses through the sheet to the opposite side, which is maintained at a constant and lower hydrogen pressure. 11

12 PROBLEM - CONCENTRATION GRADIENT Problem: A plate of iron is exposed to a carburizing (carbon-rich) atmosphere on one side and a decarburizing (carbon-deficient) atmosphere on the other side at 700C. If a condition of steady state is achieved, calculate the diffusion flux of carbon through the plate if the concentrations of carbon at positions of 5 and 10 mm beneath the carburizing surface are 1.2 and 0.8 kg/m 3, respectively. 12 Assume a diffusion coefficient of 3 x m2/s at this temperature.

13 CONCENTRATION GRADIENT The concentration gradient shows how the composition of the material varies with distance: c is the difference in concentration over the distance x atoms/m 2 s Kg/m2 s Kg/m 3 13

14 PROBLEM - SEMICONDUCTOR DOPING One way to manufacture transistors, which amplify electrical signals, is to diffuse impurity atoms into a semiconductor material such as silicon (Si). Problem: Suppose a silicon wafer 0.1 cm thick, which originally contains one phosphorus atom for every 10 million Si atoms, is treated so that there are 400 P- atoms for every 10 million Si atoms. Calculate the concentration gradient (a) in atomic percent/cm and (b) in atoms/(cm 3 x cm) The lattice parameter of silicon is A. 14

15 DIFFUSIVITY Diffusivity depends on 9 Type of diffusion : Whether the diffusion is interstitial or substitutional. 9 Temperature: As the temperature increases diffusivity increases. 9 Type of crystal structure: BCC crystal has lower APF than FCC and hence has higher diffusivity. 9 Type of crystal imperfection: More open structures (grain boundaries) increases diffusion. 9 The concentration of diffusing species: Higher concentrations of diffusing solute atoms will affect diffusivity. 15

16 DIFFUSION COEFFICIENT 16

17 EFFECT OF TEMPERATURE ON DIFFUSION A large activation energy results in a relatively small diffusion coefficient. Temperature has a most profound influence on the coefficients and diffusion rates. When the temperature increases, the diffusion coefficient D increases and, therefore, the flux of atoms increases as well. At higher temperatures, the thermal energy supplied to the diffusing atoms permits the atoms to overcome the activation energy barrier and more easily move to new sites in the atomic arrangements. 17 At low temperatures often below about 0.4 times the absolute melting temperature diffusion is very slow and may not be significant.

18 IMPURITY DIFFUSION INTO SILICON WAFER the activation energies in ionic materials are high and the rates of diffusion are low SiO 2 Impurities are made to diffuse into silicon wafer to change its electrical characteristics. Used in integrated circuits. Silicon wafer is exposed to vapour of impurity at 1100C in a quartz tube furnace. The concentration of impurity at any point depends on depth and time of exposure. Doping Silicon with P 1. Deposit P rich layers on surface. silicon 2. Heat it. 3. Result: Doped semiconductor regions. silicon 18

19 DESIGN PROBLEM: INTEGRATED CIRCUIT INTERCONNECTS Top layers that serve as the wire for this device (interconnect). Diffusion-layer doped silicon that have been coated with an interlayer dielectric. What material can be used for interconnects? 19

20 DESIGN OF AN IRON MEMBRANE A cylinder 3 cm in diameter and 10 cm long contains a gas that includes 0.5 x10 20 N atoms per cm 3 and 0.5 x10 20 H atoms per cm 3 on one side of an iron membrane. Gas is continuously introduced to the pipe to assure a constant concentration of nitrogen and hydrogen. The gas on the other side of the membrane includes a constant N atoms per cm3 and 1 x H atoms per cm 3. The entire system is to operate at 700 C (at this T iron has the BCC structure). Design an iron membrane that will allow no more than 1% of the nitrogen to be lost through the membrane each hour, while allowing 90% of the hydrogen to pass through the membrane per hour. 20

21 TYPES OF DIFFUSION In volume diffusion, the atoms move through the crystal from one regular or interstitial site to another. Because of the surrounding atoms, the activation energy is large and the rate of diffusion is relatively slow. Atoms can also diffuse along boundaries, interfaces, and surfaces in the material. Atoms diffuse easily by grain boundary diffusion, because the atom packing is disordered and less dense in the grain boundaries. Because atoms can more easily squeeze their way through the grain boundary, the activation energy is low. Surface diffusion is easier still because there is even less constraint on the diffusing atoms at the surface. 21

22 TUNGSTEN -THORIUM DIFFUSION COUPLE Consider a diffusion couple between pure tungsten and a tungsten alloy containing 1 at% thorium. After several minutes of exposure at 2000 C, a transition zone of 0.01 cm thickness is established. What is the flux of thorium atoms at this time if diffusion is due to (a) volume diffusion, (b) grain boundary diffusion, and (c) surface diffusion? The lattice parameter of BCC tungsten is Å. 22

23 NONSTEADY-STATE DIFFUSION Concentration of solute atoms at any point in metal changes with time in this case. Change of concentration of solute atoms with change in time in different planes Fick s Second Law Ficks second law: Rate of compositional change is equal to diffusivity times the rate of change of concentration gradient. 23

24 NON-STEADY STATE DIFFUSION Copper diffuses into a bar of aluminum. Surface conc., Cs of Cu atoms bar pre-existing conc., Co of copper atoms Cs C(x,t) Co to t 1 t 2 t 3 position, x 24 15

25 SOLUTION One practically important solution is for a semi-infinite solid in which the surface concentration is held constant. Frequently, the source of the diffusing species is a gas phase, the partial pressure of which is maintained at a constant value. Furthermore, the following assumptions are made: 1.Before diffusion, any of the diffusing solute atoms in the solid are uniformly distributed with concentration of C x at the surface is zero and increases with distance into the solid. 3. The time is taken to be zero before the diffusion process begins. 25

26 FICK S SECOND LAW SOLUTION 26

27 TABULATION OF ERROR FUNCTION VALUES Z 27

28 CARBURIZING Diffusing carbon atoms Low carbon Steel part Carbon Gradients In Carburized metals Result: --hard to deform: C atoms "lock" planes from shearing. --hard to crack: C atoms put the surface in compression. 28

29 INDUSTRIAL APPLICATIONS OF DIFFUSION CASE HARDENING Sliding and rotating parts needs to have hard surfaces. These parts are usually machined with low carbon steel as they are easy to machine. Their surface is then hardened by carburizing: Steel parts are placed at elevated temperature (927C) in an atmosphere of hydrocarbon gas (CH4). Carbon diffuses into iron surface and fills interstitial space to make it harder. Photograph of a steel gear that has been case hardened. The outer surface layer was hardened by a hightemperature heat treatment during 29 which carbon from the surrounding atmosphere diffused into the surface.

30 EFFECT OF TEMPERATURE ON DIFFUSION- EXAMPLE If diffusivity at two temperatures are determined, two equations can be solved for Q and D0 30

31 TIME COMPUTATION 31

32 DIFFUSIVITY DATA FOR SOME METALS 32

33 PROBLEM: TIME FOR DIFFUSION Carburizing: the steel piece is exposed, at an elevated temperature, to an atmosphere rich in a hydrocarbon gas, such as methane (CH4 ). Consider an alloy that initially has a uniform carbon concentration of 0.25 wt% and is to be treated at 950 C. If the concentration of carbon at the surface is suddenly brought to and maintained at 1.20 wt%, how long will it take to achieve a carbon content of 0.80 wt% at a position 0.5 mm below the surface? The diffusion coefficient for carbon in iron at this temperature is 1.6 x m 2 /s. 33

34 DESIGN PROBLEM The wear resistance of a steel gear is to be improved by hardening its surface. This is to be accomplished by increasing the carbon content within an outer surface layer as a result of carbon diffusion into the steel; the carbon is to be supplied from an external carbon-rich gaseous atmosphere at an elevated and constant temperature. The initial carbon content of the steel is 0.20 wt%, whereas the surface concentration is to be maintained at 1.00 wt%. In order for this treatment to be effective, a carbon content of 0.60 wt% must be established at a position 0.75 mm below the surface. Specify an appropriate heat treatment in terms of temperature and time for temperatures between 900C and 1050 C. Use data in Table for the diffusion of carbon in γ-iron. The gas const = 8.31 J/mol K 34

35 DESIGN OF A MORE ECONOMICAL HEAT TREATMENT 10 h are required to successfully carburize a batch of 500 steel gears at 900 C, where the iron has the FCC structure. We find that it costs $1000 per hour to operate the carburizing furnace at 900 C and $1500 per hour to operate the furnace at 1000 C. Is it economical to increase the carburizing temperature to 1000 C? What other factors must be considered? 35

36 SUMMARY: STRUCTURE & DIFFUSION Diffusion FASTER for... open crystal structures lower melting T materials materials w/secondary bonding smaller diffusing atoms Diffusion SLOWER for... close-packed structures higher melting T materials materials w/covalent bonding larger diffusing atoms lower density materials higher density materials 36 20

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

MAE 20 Winter 2011 Assignment 3 solutions

MAE 20 Winter 2011 Assignment 3 solutions MAE 20 Winter 2011 Assignment 3 solutions 4.3 Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 C (773 K) is 7.57 10 23 m -3. The

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:02 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Materials Science and Engineering Department MSE , Sample Test #1, Spring 2010

Materials Science and Engineering Department MSE , Sample Test #1, Spring 2010 Materials Science and Engineering Department MSE 200-001, Sample Test #1, Spring 2010 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Module - 01 Lecture - 23 The Diffusion Equation

Module - 01 Lecture - 23 The Diffusion Equation Electronic Materials Devices and Fabrication Layering: Thermal Oxidation Dr. S. Parasuraman Department of Metallurgical and Materials Engineering Indian Institute of Technology, Madras Module - 01 Lecture

More information

CHAPTER 6: DIFFUSION IN SOLIDS. Inter-diffusion. Simple Diffusion. Diffusion- Steady and Non-Steady State ISSUES TO ADDRESS...

CHAPTER 6: DIFFUSION IN SOLIDS. Inter-diffusion. Simple Diffusion. Diffusion- Steady and Non-Steady State ISSUES TO ADDRESS... CHAPTER 6: DIFFUSION IN SOLIDS Diffusion- Steady and Non-Steady State ISSUES TO ADDRESS... Gear from case-hardened steel (C diffusion) Diffusion - Mass transport by atomic motion How does diffusion occur?

More information

Surface Treatments. Corrosion Protective coatings for harsh environments (catalytic converters, electrochemical cells )

Surface Treatments. Corrosion Protective coatings for harsh environments (catalytic converters, electrochemical cells ) Surface Treatments Applications Biomedical (biocompatible coatings on implants, drug coatings for sustained release ) Mechanical Tribological friction and wear (tool steels, implants ) Fatigue minimize

More information

Lecture #33. Integrated Circuit Fabrication

Lecture #33. Integrated Circuit Fabrication Lecture #33 OUTLINE IC Fabrication Technology Doping Oxidation Thin-film deposition Lithography Etch Reading (Rabaey et al.) Chapter 2.1-2.2 Lecture 33, Slide 1 Integrated Circuit Fabrication Goal: Mass

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS 4-1 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation

More information

Layer Deposition: Thermal Oxidation and CVD. Rupesh Gupta IIT Delhi Supervisor: Dr. Chacko Jacob

Layer Deposition: Thermal Oxidation and CVD. Rupesh Gupta IIT Delhi Supervisor: Dr. Chacko Jacob 1 Layer Deposition: Thermal Oxidation and CVD Rupesh Gupta IIT Delhi Supervisor: Dr. Chacko Jacob 2 OUTLINE Thermal Oxidation and Model o Factors Affecting Kinetics o Future Trends: Oxidation o CVD and

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Lecture 3: Introduction to Diffusion

Lecture 3: Introduction to Diffusion Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 3: Introduction to Diffusion Mass transport in

More information

Structure of Metals 110

Structure of Metals 110 Structure of Metals 110 Welcome to the Tooling University. This course is designed to be used in conjunction with the online version of this class. The online version can be found at http://www.toolingu.com.

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engg Indian Institute of Technology, Roorkee

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engg Indian Institute of Technology, Roorkee Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engg Indian Institute of Technology, Roorkee Module - 2 Physics of Welding Arc Lecture - 4 Arc Forces So, in this presentation

More information

Imperfections in atomic arrangements

Imperfections in atomic arrangements MME131: Lecture 8 Imperfections in atomic arrangements Part 1: 0D Defects A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Occurrence and importance of crystal defects Classification

More information

Temperature and Heat

Temperature and Heat Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

More information

Next, solid silicon is separated from other solid impurities by treatment with hydrogen chloride at 350 C to form gaseous trichlorosilane (SiCl 3 H):

Next, solid silicon is separated from other solid impurities by treatment with hydrogen chloride at 350 C to form gaseous trichlorosilane (SiCl 3 H): University Chemistry Quiz 5 2014/12/25 1. (5%) What is the coordination number of each sphere in (a) a simple cubic cell, (b) a body-centered cubic cell, and (c) a face-centered cubic cell? Assume the

More information

Chapter 4. Forms of corrosion

Chapter 4. Forms of corrosion Chapter 4 Forms of corrosion Uniform corrosion In such type of corrosion there is a uniform decrease in the volume of the metal due to direct contact with the surrounding environment. Examples Dissolvation

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014

Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014 Physics 610/Chemistry 678 Semiconductor Processing and Characterization Quiz I July 18, 2014 Part I: Short-answer questions on basic principles. (5 points each) 1. Briefly describe the CZ method and the

More information

Question 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm

Question 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm 14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Exampro GCSE Chemistry

Exampro GCSE Chemistry Exampro GCSE Chemistry C Chapter higher Name: Class: Author: Date: Time: 56 Marks: 56 Comments: Page of 8 Q. The hip joint sometimes has to be replaced. Early replacement hip joints were made from stainless

More information

3. Apply phase rule to the two phase field of a binary isomorphous diagram. What conclusion can be drawn?

3. Apply phase rule to the two phase field of a binary isomorphous diagram. What conclusion can be drawn? ecture 18-22: Solidification of binary alloys: Solidification of binary alloys: limits of solubility, isomorphous system, lever rule, constitutional super cooling, effect of non equilibrium cooling, eutectic,

More information

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Ni-base superalloys.

More information

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen.

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen. Q1. (a) The diagram represents an atom of nitrogen. Label the diagram. (3) (b) Ammonia has the formula NH 3. It is made from nitrogen and hydrogen. How many atoms are in an ammonia molecule?... (c) The

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Fatigue :Failure under fluctuating / cyclic stress

Fatigue :Failure under fluctuating / cyclic stress Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Crystal Structure and Growth

Crystal Structure and Growth Crystal Structure and Growth Source: USNA EE 452 Course on IC Technology EE-452 13-1 Atomic Order of a Crystal Structure EE-452 13-2 Amorphous Atomic Structure EE-452 13-3 Unit Cell in 3-D Structure Unit

More information

Structure of Matter (15%) (9 Items) Sample Test Prep Questions

Structure of Matter (15%) (9 Items) Sample Test Prep Questions Structure of Matter (15%) (9 Items) Sample Test Prep Questions 8 th Grade (3a) Structure of Matter Students know the structure of the atom and know it is composed of protons, neutrons and electrons. Summary:

More information

The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008

The University of Western Ontario Department of Physics and Astronomy P2800 Fall 2008 P2800 Fall 2008 Questions (Total - 20 points): 1. Of the noble gases Ne, Ar, Kr and Xe, which should be the most chemically reactive and why? (0.5 point) Xenon should be most reactive since its outermost

More information

ALLOY 800 / 800H / 800AT DATA SHEET

ALLOY 800 / 800H / 800AT DATA SHEET ALLOY 800 / 800H / 800AT DATA SHEET UNS N08800 / UNS N08801 / UNS N08811 GENERAL PROPERTIES ////////////////////////////////////////////////////// //// 800 (UNS N08800), 800H (UNS N08810) and 800AT (UNS

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

FIND: Characteristic length and Biot number. Validity of lumped capacitance approximation.

FIND: Characteristic length and Biot number. Validity of lumped capacitance approximation. Mech 302 Heat Transfer HW5 Solution 1. (Problem 5.5 in the Book except for part (e)) For each of the following cases, determine an appropriate characteristic length Lc and the corresponding Biot number

More information

Problem Set 7 Materials101 1.) You wish to develop a gold alloy (mostly gold) that can be precipitation strengthened to provide high strength - high conductivity electrical leads to integrated circuits

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Metallurgy and Material Science Indian Institute of Technology, Kharagpur Lecture - 8 Diffusion and Ion Implantation II (Refer

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Silicon dioxide, SiO2

Silicon dioxide, SiO2 Silicon dioxide, SiO2 Sand (silica) one of the most common minerals in the earth. Main component in common glass mixed with sodium carbonate and calcium oxide (lime) to make soda-lime glass for window

More information

12.1 How do sub-atomic particles help us to understand the structure of substances?

12.1 How do sub-atomic particles help us to understand the structure of substances? 12.1 How do sub-atomic particles help us to understand the structure of substances? Simple particle theory is developed in this unit to include atomic structure and bonding. The arrangement of electrons

More information

JIS G 4805 SEAMLESS PIPE HIGH CARBON CHROMIUM BEARING STEEL PIPE

JIS G 4805 SEAMLESS PIPE HIGH CARBON CHROMIUM BEARING STEEL PIPE JIS G 4805 SEAMLESS PIPE HIGH CARBON CHROMIUM BEARING STEEL PIPE 1. SCOPE This Japanese Industrial Standard specifies the high carbon chromium bearing steels (hereafter referred to as the "steels") to

More information

Powder Metallurgy. Training Objective

Powder Metallurgy. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will gain a knowledge and understanding of the basics of powder metallurgy. Types of particles are explained.

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

Met-2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE )

Met-2023: Concepts of Materials Science I Sample Questions & Answers,(2009) ( Met, PR, FC, MP, CNC, McE ) 1 Met-223: Concepts of Materials Science I Sample Questions & Answers,(29) ( Met, PR, FC, MP, CNC, McE ) Q-1.Define the following. (i) Point Defects (ii) Burgers Vector (iii) Slip and Slip system (iv)

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

WebAssign Problem 1: When the temperature of a coin is raised by 75 C, the coin s. , find the coefficient of linear expansion.

WebAssign Problem 1: When the temperature of a coin is raised by 75 C, the coin s. , find the coefficient of linear expansion. Week 10 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Introduction to Metallography

Introduction to Metallography Introduction to Metallography Metallography has been described as both a science and an art. Traditionally, metallography has been the study of the microscopic structure of metals and alloys using optical

More information

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice. CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Introduction to Structure and Properties Winter 2005 Final Exam March 17, 2005 TOTAL POINTS 37

Introduction to Structure and Properties Winter 2005 Final Exam March 17, 2005 TOTAL POINTS 37 Materials 101 Introduction to Structure and Properties Winter 005 Final Exam March 17, 005 Solutions TOTAL POINTS 37 Problem 1: Tensile Test and Plastic Deformation (10 Points) A copper rod is deformed

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition Physical Vapor Deposition (PVD) So far we have seen deposition techniques that physically transport material from a condensed phase source to a substrate. The material to be deposited

More information

The fabrication of a monolithic transistor includes the following steps.

The fabrication of a monolithic transistor includes the following steps. The fabrication of a monolithic transistor includes the following steps. 1. Epitaxial growth 2. Oxidation 3. Photolithography 4. Isolation diffusion 5. Base diffusion 6. Emitter diffusion 7. Contact mask

More information

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal? Crystal Growth How do single crystals differ from polycrystalline samples? Single crystal specimens maintain translational symmetry over macroscopic distances (crystal dimensions are typically 0.1 mm 10

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas

More information

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds Topic 3 National Chemistry Summary Notes Bonding, Structure and Properties of Substances LI 1 Covalent Bonds Most atoms do not exist as single atoms. They are mainly found combined with other atoms in

More information

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13.

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13. HONORS CHEMISTRY - CHAPTER 13 STATES OF MATTER OBJECTIVES AND NOTES - V15 NAME: DATE: PAGE: THE BIG IDEA: KINETIC THEORY Essential Questions 1. What factors determine the physical state of a substance?

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able

More information

5.6: Characteristic Physical Properties pg. 192

5.6: Characteristic Physical Properties pg. 192 5.6: Characteristic Physical Properties pg. 192 Key Concepts: 1. Physical properties are characteristics that can be determined without changing the composition of the substance. 3. Pure substances have

More information

Grade 8 Science Vocabulary

Grade 8 Science Vocabulary Grade 8 Science Vocabulary The Florida Comprehensive Assessment Test Specifications for Science provides a glossary of vocabulary words identified by Florida educators as essential to assessing the Science

More information

SILICON VLSI TECHNOLOGY

SILICON VLSI TECHNOLOGY SILICON VLSI TECHNOLOGY Fundamentals, Practice and Modeling CHAPTER 9b-- --PVD EX0250 E-Beam Heat Source Formulation (point source) The flux F p k that strikes Ap k is F p k = R evap / r2 ; = da p

More information

Section 3 Covalent and Metallic Bonds

Section 3 Covalent and Metallic Bonds Section 3 Covalent and Metallic Bonds Key Concept Covalent bonds form when atoms share electrons. Metallic bonds form by the attraction of metal ions and the electrons around them. What You Will Learn

More information

Heat Treating Copper Beryllium Parts

Heat Treating Copper Beryllium Parts Heat Treating Copper Beryllium Parts Heat treating is key to the versatility of the copper beryllium alloy system. Unlike other copper base alloys which acquire their strength through cold work alone,

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth. Introduction Development of high-quality silicon dioxide (SiO 2 ) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Solid Type of solid Type of particle

Solid Type of solid Type of particle QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

More information

Basic laws and electrical properties of metals (I) Electrical properties. Basic laws and electrical properties of metals (II)

Basic laws and electrical properties of metals (I) Electrical properties. Basic laws and electrical properties of metals (II) Electrical properties Electrical conduction How many moveable electrons are there in a material (carrier density)? How easily do they move (mobility)? Semiconductivity Electrons and holes Intrinsic and

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

The Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann Distribution The Maxwell-Boltzmann Distribution Gases are composed of atoms or molecules. These atoms or molecules do not really interact with each other except through collisions. In many cases, we may think of a

More information

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V.

Crystal Defects p. 2. Point Defects: Vacancies. Department of Materials Science and Engineering University of Virginia. Lecturer: Leonid V. Crystal Defects p. 1 A two-dimensional representation of a perfect single crystal with regular arrangement of atoms. But nothing is perfect, and structures of real materials can be better represented by

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

7.2.2 Changing State. 43 minutes. 56 marks. Page 1 of 17

7.2.2 Changing State. 43 minutes. 56 marks. Page 1 of 17 7.2.2 Changing State 43 minutes 56 marks Page 1 of 17 Q1. Air is a gas at room temperature. The chemical formulae below show some of the substances in the air. Ar CO 2 H 2 O N 2 Ne O 2 (a) Put these formulae

More information

4.2.4 Chemical Diffusion Coefficient

4.2.4 Chemical Diffusion Coefficient 4.2. CHEMICAL DRIVING FORCE 107 we see that the first term in this expression comes from the concentration driving force arising from the ideal entropy of mixing, and the second term arises from the non-ideality

More information

Lecture 1: Kinetics vs. Thermodynamics: different but related

Lecture 1: Kinetics vs. Thermodynamics: different but related Lecture 1: Kinetics vs. Thermodynamics: different but related Today s topics The basic concepts of Kinetics and Thermodynamics, and how to understand the difference and inter-relationship between the two

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

How the sensors work

How the sensors work How the sensors work Introduction There are six different sensor types integrated into SensorStick. Some are shown in Fig.. Humidity HIH-00-00 Accelerometer MMA76LR Pressure MPH65A6U Compass HMC58 Figure

More information

MAL 201E: Materials Science. COURSE MATERIALS (with text) GRADING 25.09.2012 COURSE SCHEDULE

MAL 201E: Materials Science. COURSE MATERIALS (with text) GRADING 25.09.2012 COURSE SCHEDULE MAL 201E: Materials Science Course Objective... Introduce fundamental concepts in Materials Science You will learn about: material structure how structure dictates properties how processing can change

More information

Making of a Chip Illustrations

Making of a Chip Illustrations Making of a Chip Illustrations 22nm 3D/Trigate Transistors Version January 2012 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual

More information

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi. Module No. # 02 Transistors Lecture No.

Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi. Module No. # 02 Transistors Lecture No. Electronics Prof. D.C. Dube Department of Physics Indian Institute of Technology, Delhi Module No. # 02 Transistors Lecture No. # 01 Transistors (Refer Slide Time: 00:40) The next unit is on transistors.

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

Laboratory exercise No. 4 Water vapor and liquid moisture transport

Laboratory exercise No. 4 Water vapor and liquid moisture transport Laboratory exercise No. 4 Water vapor and liquid moisture transport Water vapor transport in porous materials Due to the thermal conductivity of water and other unfavourable properties and effects in porous

More information

5 Some standard heat treatments

5 Some standard heat treatments Part VI. : Heat treatment Module 5 : Some standard heat treatments 5 Some standard heat treatments 5.1 Annealing Consider the TTT diagram as shown in Fig. 9 and the cooling curves imposed on the TTT diagram.

More information

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others? CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples Chemistry: 7. Ionic and Covalent Bonding Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC41 Understand how atoms of elements combine

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Chapter 2 Matter and Energy

Chapter 2 Matter and Energy 1 Chapter 2 Matter and Energy Matter Matter is the material that makes up all things is anything that has mass and occupies space is classified as either pure substances or mixtures Pure Substances A pure

More information

Introduction to Materials Science, Chapter 11, Thermal Processing of Metal Alloys. Chapter 11 Thermal Processing of Metal Alloys

Introduction to Materials Science, Chapter 11, Thermal Processing of Metal Alloys. Chapter 11 Thermal Processing of Metal Alloys Chapter 11 Thermal Processing of Metal Alloys Designer Alloys: Utilize heat treatments to design optimum microstructures and mechanical properties (strength, ductility, hardness.) Strength in steels correlates

More information

9.2 Network Covalent, Ionic, and Metallic Solids

9.2 Network Covalent, Ionic, and Metallic Solids 9.2 Network Covalent, Ionic, and Metallic Solids YOU ARE EXPECTED TO BE ABLE TO: Classify non-molecular solids as either network covalent solids, ionic solids, or metallic solids. Relate the physical properties

More information