TOUGHNESS FACTOR OF POLYPROPYLENE FIBER REINFORCED CONCRETE IN AGGRESSIVE ENVIRONMENT

Size: px
Start display at page:

Download "TOUGHNESS FACTOR OF POLYPROPYLENE FIBER REINFORCED CONCRETE IN AGGRESSIVE ENVIRONMENT"

Transcription

1 PAPER REF: 2811 TOUGHNESS FACTOR OF POLYPROPYLENE FIBER REINFORCED CONCRETE IN AGGRESSIVE ENVIRONMENT Raimundo E. Vasconcelos 1(*), Syme S. Queiroz 2, Itamar Ferreira 3, Marco A. Carnio 4, André Y. Uehara 5 1,2 Department of Civil Building, Federal Institute of Pará (IFPA), Belém City, Pará State, Brazil. 1,2,3 School of Mechanical Eng., University of Campinas (Unicamp), Campinas City, São Paulo State, Brazil. 4 School of Civil Eng., PUC-Campinas, Campinas City, São Paulo State, Brazil. 5 Department of Materials, Federal Institute of São Paulo (IFSP), São Paulo City, São Paulo State, Brazil (*) expedito@fem.unicamp.br ABSTRACT This study aims to determine and present the results of an experimental study of Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC), in levels of 0.33% - 3kg/m 3, 0.50% - 4.5kg/m 3, and 0.66% - 6kg/m 3, using cement CP V ARI, at ages 28 and 88 days after specimens molding. The specimens were exposed for 60 days in aggressive environment (in solution of water and 3% of sodium chloride), after 28 days. The bending toughness tests were performed in prismatic specimens of 150x150x500mm. We used the standards ASTM C1609/C1609M-10 and JSCE-FS4/1994. The toughness factor values of the specimens in aggressive environment were the same to those obtained in normal environment (in air). Keywords: Toughness in bending, concrete reinforced with polypropylene fibers. INTRODUCTION A very important property of materials is the fracture toughness. Through this property is possible to select materials, design parts and assess industrial systems in operation accused the presence of cracks (Torrico, 2006). The addition of fibers to concrete is used primarily to minimize the appearance of cracks caused by the shrinkage of the plastic concrete, caused by ambient temperature and heat of hydration of cement. The fibers when incorporated into the concrete are responsible for the transformation of fragile material characteristics to a pseudo-ductile material. Bayasi and Mcintyre (2002) investigated by experimental research the quantification of the effect of polypropylene fibers and silica fume into the concrete shrinking plastic. The fibers have the ability to reduce the opening of the cracks by promoting retention of water and still allow concrete reinforced with fibers to withstand high tensile stresses, with high capacity for deformation in the post-cracking. Li (2011) emphasizes that the type of fibers can be seen with different criteria. From the standpoint of size, the fibers can be classified as micro and macro. The diameter of macrofibra is in the range of 0.2 to 1 millimeter and microfibers are in a range of a few tens of micrometers. Basically, microfibers are effective in containing microcracks. In Brazil, research is undertaken on the application of fibers with prominent researchers Agopyan (1991), Armelin (1992), Figueiredo (1997), Nunes (1998), Guimarães (2003), Carnio (2009), among others. The work exhibited is only artificial fibers and will be presented information on synthetic fibers and polypropylene results and discussion of concrete reinforced with polypropylene fibers. 1. SYNTHETIC FIBERS Synthetic fibers play an important role in the field of construction, both in financial terms, relatively low cost compared to other types of fibers, both in their mechanical strength. According to Bentur and Mindess (2005) Synthetic fibers (polymers) have become more attractive for reinforcement of mortars and concrete, with a diversity of services where they are applied materials and products made from polymers. The definition of Callister and Rethwisch (2010) polymers consisting of a large number of molecular chain, where each of these chains can bend, twist and curl, leading to extensive twist of the molecules of neighboring ICEM15 1

2 Porto/Portugal, July 2012 chains. Still, Callister (2010) confirms that these random interweaving spirals and are responsible for important mechanical properties of polymers. Unlike natural fibers directly obtained from nature, derived from vegetable, animal or mineral oils, synthetic fibers are obtained from the processing of natural polymers or by modification of synthetic polymers. Examples of synthetic polymeric fibers mentioned by Carnio (2009) are fibers of polypropylene, polyester, polyethylene and polyamide. The synthetic polypropylene fibers are sorted by Bentur and Mindess, 2005 into two types according to their geometry: monofilament and fibrillated. The Figure.1 shows the fibrillated polypropylene fibers used in this study. Fig.1 - polypropylene fibers of fibrillated type According Bayasi and Zeng (1993) the concrete with polypropylene fibrillated fibers have wide application in industrial flooring and construction elements of the wall and slab. These applications are driven by improvements in the properties of cracks and ductility and impact resistance Fiber reinforced concrete) Soranakom and Mobasher (2009) report that fiber reinforced concrete (FRC) can be considered a quasibrittle material composed of concrete, and fibers. The fibers which are randomly distributed in the concrete matrix containing as fissures. The main areas of applications of FRC are industrial flooring, coatings tunnels, precast elements, among others. According to Naaman (2007), fibers when used in concrete structures provide a contribution in improving the properties, among which is the ability of tensile, shear, bending and ductility. Jiang and Banthia (2010) studied the influence of tensile toughness in bending the specimens with different dimensions with concrete reinforced with polypropylene fibers, with three dose rates of 3, 4.5 and 6kg/m3. The dimensions of the specimens were tested correspond to the dimensions of 100x100x350mm and 150x150x500mm respectively used and the test procedure from the standard ASTM C1609/C1609M-10. The sizes of the specimens results indicated differentiates and tenacity. The specimens with the highest resistance smaller than the largest dimensions in proportion to the increased dosage of fibers. 3. MATERIALS AND METHODS The materials and procedures were based on studies and compared to Jiang and Banthia (2010). It will therefore be described in the materials and procedures of the tests to assess the structural stability of each sample. The literature review guided and defined strategies for choosing the binomial "tests and materials," which allowed the incorporation of polypropylene fibers. The study was a test of toughness, tensile bending specimens concrete reinforced with polypropylene fibers. 3.1 Materials used The purpose of the study is to examine the potential of the materials used to construct the reference concrete and the concrete reinforced with fibers of polypropylene which are described below, in order to characterize each component. 2

3 The sequence of procedures adopted in the production of concrete reference to obtain the trace reflects 1:1.85:2.77:0.55, following this order of the materials used per cubic meter dash in: cement, 385 kg sand, 713 kg, gravel, kg water, 212 liters; additive (0.16%), liters. In preparing the composite concrete reinforced with fibers of polypropylene as the work suggested Jiang and Banthia (2010), content and dosage shown in Table 1. Table.1 - fiber contents (%) and rates (kg / m³) Composite Fiber contents (%) - Dosage (kg/m 3 ) CRFP Two specimens were made for each type of prismatic fiber content dimensions 150x150x500mm in steel molds. After molding the specimens were kept in a moist chamber for 28 days, and then transferred to a laboratory environment with an average temperature of 25 C, to remain for another 60 days in half normal (air) and aggressive (in aqueous solution of 3% by weight sodium chloride). 3.2 Testing of tensile toughness in flexion The study was conducted following the recommendations in the implementation of 1609/C1609M-10 controlled loading and JSCE-SF with the aim of determining the flexural toughness factor. The following is transcribed the test procedures: 1) In each specimens is marked on the upper face of the measures corresponding to the points of load application; 2) After positioning the specimens in the press is the adjustment of the support yoke, which is coupled on the side of the specimens aligned to the knife, predetermined markings, shown in Fig. 2. Fig.2 - YOKE Device for fixing the LVDT specimens digits. 3) Following the LVDT supported YOKE the system is reset and the data logger is calibrated, and ending the following test procedures the specimens is subjected to loads causing vertical displacements at the center of the specimens. The flexural toughness factor is calculated by Equation (1) and will be given with three significant In which: FT = flexural toughness factor in MPa; T b = flexural toughness in N.mm; tb = tb vertical displacement equal to L/150, mm; L = distance between the pivoting specimens, in mm; b = average width of the specimens section, mm; d = average height of the specimens, in the section of rupture, in mm. ICEM15 3

4 Toughness factor (MPa) Porto/Portugal, July 2012 RESULTS Toughness tests were performed on universal testing machine EMIC mechanics, model DL-30000F. According to ASTM C1609/C1609M-10, the tenacity can be measured by the factor of toughness. The following Table 2 and Fig. 3 show the results recorded in toughness test. Table.2 - Factor average toughness (MPa) Factor toughness (MPa) Type of concrete 28 days 60 days on display through Normal Aggressive CRFS 3kg/m 3 1,03 1,53 1,54 CRFS 4,5kg/m 3 1,22 1,18 1,20 CRFS 6kg/m 3 1,03 1,21 1,20 2,0 1,8 1,6 28 days in humid chamber 60 days in normal environment 60 days in aggressive environment 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 SFRC 3kg/m³ SFRC 4.5kg/m³ SFRC 6kg/m³ Type of concrete Fig. 3 - Toughness factor results for the Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC) Fig. 3 illustrates the results for tests on concrete reinforced with polypropylene fibers using three levels of broken fibers at different ages and means. You can see that the samples related to the age of 60 days exposed in normal and aggressive media at a dose of 3 kg/m³ obtained higher values, only 28 days in a moist chamber there was a drop in the results. However, dosages of 4.5 and 6 kg/m³ at the ages of 28 days exposed in a moist chamber and exposed to 60 days in normal and aggressive media kept leveling results, noting only that the results of the samples regarding the dosage of 6 kg/m³ to 28 days exposed in a moist chamber there were reductions in the results. 4

5 CONCLUSION This study shows that there are substantial differences on the mechanical properties of different urogynecology meshes. Further tests should be performed in order to analyze other mechanical properties, such as flexural properties. ACKNOWLEDGMENTS The authors thank UNICAMP (University of Campinas) and IFPA (Federal Institute of Education, Science and Technology). REFERENCES AMERICAN SOCIETY FOR TESTING AND MATERIALS. C1609/C1609M-10: standard method for flexural performance of fiber-reinforced concrete (using beam with third-point-loading). West Conshohocken, Pennsylvania, United States of America, p. BAYASI, Z.; MCINTYRE, M. Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. American Concrete Institute. Materials Journal, V. 99, Nº 4, July-August 2002, p BAYASI, Z.; ZENG, J. Properties of polypropylene fiber reinforced concrete. American Concrete Institute. Materials Journal, V. 90, Nº 6, November-December 1993, pp BENTUR, A.; MINDESS, S. Fiber reinforced cementitious composites. Elsevier Applied Science. New York, USA, CALLISTER, W. D.; RETHWISCH, D. G. Materials science and engineering: an introduction. 8 th Ed.; John Wiley and Sons, United States of America, CARNIO, M. A. Propagation of fatigue cracking of reinforced concrete with low fiber content. Faculty of Mechanical Engineering, University of Campinas, 2009, 145p. Thesis (Ph.D.). JAPAN SOCIETY OF CIVIL ENGINEERS. JSCE-SF4: method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete. Concrete Library International. Nº 3, Part III-2. June p JIANG, Z; BANTHIA, N. Size effects in flexural toughness of fiber reinforced concrete. ASTM: Journal of testing and evaluation. Vol. 38, Nº 3. January, p. 1-7 Li, Z. Advanced concrete technology. John Wiley e Son, Inc. New Jersey, NAAMAN, A. E. High performance fiber reinforced cement composites: classification and applications. International Workshop. Cement Based Materials and Civil Infrastructure. University of Engineering and Technology. Karachi, Pakistan. December, p SORANAKOM, C; MOBASHER, B. Flexural design of fiber-reinforced concrete. American Concrete Institute. Materials Journal. September-October V. 106, Nº 5, p TORRICO, I. F. A. Fracture toughness under conditions elasto-plastic specimens with non-standard API 5L steels: experimental and numerical analysis. Campinas: School of Mechanical Engineering, University of Campinas, 2006, 160p. Thesis (Ph.D.). ICEM15 5

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 93-103, Article ID: IJCIET_07_01_008 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Technology, Tehran Polytechnic, Iran. Technology, Tehran Polytechnic,Iran. Guimarães, Portugal

Technology, Tehran Polytechnic, Iran. Technology, Tehran Polytechnic,Iran. Guimarães, Portugal Cementitious Composites Reinforced With Polypropylene, Nylon and Polyacrylonitile Fibres H.R. Pakravan 1, a, M. Jamshidi 2, b,m. Latifi 3, c, F.Pacheco-Torgal 4, d 1 Department of Textile Engineering,

More information

The Strength of Concrete

The Strength of Concrete Chapter The Strength of Concrete.1 The Importance of Strength.2 Strength Level Required KINDS OF STRENGTH. Compressive Strength.4 Flexural Strength.5 Tensile Strength.6 Shear, Torsion and Combined Stresses.7

More information

Vikrant S. Vairagade, Kavita S. Kene, Dr. N. V. Deshpande / International Journal of Engineering Research and Applications (IJERA)

Vikrant S. Vairagade, Kavita S. Kene, Dr. N. V. Deshpande / International Journal of Engineering Research and Applications (IJERA) Investigation on Compressive and Tensile Behavior of Fibrillated Fibers Reinforced Concrete Vikrant S. Vairagade*, Kavita S. Kene*, Dr. N. V. Deshpande** * (Research Scholar, Department of Civil Engineering,

More information

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Ming-Gin Lee 1,a, Yi-Shuo Huang 1,b 1 Department of Construction Engineering, Chaoyang University of Technology,Taichung

More information

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES K. Fukushima*, H. Cai**, M. Nakada*** and Y. Miyano*** * Graduate School, Kanazawa Institute of Technology

More information

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 315 320, Article ID: IJCIET_07_02_027 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures 1 P. Jyotsna Devi, 2 Dr. K. Srinivasa Rao 1,2 Dept. of Civil Engg, Andhra University, Visakhapatnam,

More information

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE SUDHEER JIROBE 1, BRIJBHUSHAN.S 2, MANEETH P D 3 1 M.Tech. Student, Department of Construction technology,

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX

A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX CD01-006 A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX H.R. Pakravan 1, M. Jamshidi 2, M. Latifi 3 1 M.Sc. student, Textile Engineering Department, Amirkabir University, Tehran,

More information

Assistant Professor of Civil Engineering, University of Texas at Arlington

Assistant Professor of Civil Engineering, University of Texas at Arlington FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington

More information

ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS

ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS Murugesan M 1, Dashrath Rajpurohit 2 1 Assistant General Manager, Civil & Structural, Larsen & Toubro Technology Services, Tamilnadu,

More information

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS Assist. Prof. Dr. S. KamilAkın 1, Assist. Prof. Dr. Nail Kara 1, 1 Department of Civil Engineering,

More information

Durability performance of fiber reinforced shotcrete in aggressive environment.

Durability performance of fiber reinforced shotcrete in aggressive environment. Durability performance of fiber reinforced shotcrete in aggressive environment. J. P. Kaufmann Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete/Construction

More information

Shrinkage and Creep Properties of High-Strength Concrete Up To 120 MPa

Shrinkage and Creep Properties of High-Strength Concrete Up To 120 MPa Seventh International Congress on Advances in Civil Engineering, October11-13, 26 Yildiz TechnicalUniversity, Istanbul, Turkey Shrinkage and Creep Properties of High-Strength Concrete Up To 12 MPa H. C.

More information

Design of Fibre Reinforced Concrete Beams and Slabs

Design of Fibre Reinforced Concrete Beams and Slabs Design of Fibre Reinforced Concrete Beams and Slabs Master of Science Thesis in the Master s Programme Structural Engineering and Building Performance Design AMMAR ABID, KENNETH B. FRANZÉN Department of

More information

Effect of basalt aggregates and plasticizer on the compressive strength of concrete

Effect of basalt aggregates and plasticizer on the compressive strength of concrete International Journal of Engineering & Technology, 4 (4) (2015) 520-525 www.sciencepubco.com/index.php/ijet Science Publishing Corporation doi: 10.14419/ijet.v4i4.4932 Research Paper Effect of basalt aggregates

More information

SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST

SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST SP-276 5 FRC PERFORMANCE COMPARISON: UNIAXIAL DIRECT TENSILE TEST, THIRD-POINT BENDING TEST, AND ROUND PANEL TEST Shih-Ho Chao, Jae-Sung Cho, Netra B. Karki, Dipti R. Sahoo, and Nur Yazdani Synopsis: The

More information

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 25-35 Article ID: IJCIET_06_10_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 AN INVESTIGATION ON THE SHRINKAGE CHARACTERISTICS OF GGBFS BASED SLURRY INFILTRATED HYBRID FIBRE REINFORCED CONCRETE PRUTHVIRAJ B S 1, SHREEPAD DESAI 2, Dr. PRAKASH K B

More information

CONCREBOL 2015. 2.3 There is no restriction regarding the number of participants in each team.

CONCREBOL 2015. 2.3 There is no restriction regarding the number of participants in each team. 12 nd CONTEST REGULATION 1/11 CONCREBOL 2015 1 OBJECTIVE 1.1 This contest intends to test the competitors ability in developing construction methods and the production of lightweight homogeneous concrete

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

LARGE SCALE TENSILE TESTS OF HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES

LARGE SCALE TENSILE TESTS OF HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES LARGE SCALE TENSILE TESTS OF HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES Shih-Ho Chao (1), Wen-Cheng Liao (2), Thanasak Wongtanakitcharoen (3), and Antoine E. Naaman (4) (1) Post-Doctoral Research

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

Shotcrete Quality Control and Testing for an Underground Mine in Canada

Shotcrete Quality Control and Testing for an Underground Mine in Canada Shotcrete Quality Control and Testing for an Underground Mine in Canada By Dudley R. (Rusty) Morgan and Mazin Ezzet AMEC Earth & Environmental, a division of AMEC Americas Limited SHOTCRETE FOR AFRICA

More information

Example Specification for Concrete using Current Building Code Requirements

Example Specification for Concrete using Current Building Code Requirements Example Specification for Concrete using Current Building Code Requirements DISCLAIMER: This specification is an example that accompanies a seminar titled The P2P Initiative: Performance-based Specs for

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

PROPERTIES OF SPRAYED CONCRETE WITH RECYCLED TYRE POLYMER FIBRES

PROPERTIES OF SPRAYED CONCRETE WITH RECYCLED TYRE POLYMER FIBRES PROPERTIES OF SPRAYED CONCRETE WITH RECYCLED TYRE POLYMER FIBRES Ana Baricevic 1, Dubravka Bjegovic 1, Martina Pezer 1, Nina Štirmer 1 1 University of Zagreb, Faculty of Civil Engineering, Department of

More information

Nur Yazdani, Ph.D., P.E. Professor. Lisa Spainhour, Ph.D. Associate Professor. Saif Haroon Research Assistant. FDOT Contract No. BC-386.

Nur Yazdani, Ph.D., P.E. Professor. Lisa Spainhour, Ph.D. Associate Professor. Saif Haroon Research Assistant. FDOT Contract No. BC-386. Florida A & M University - Florida State University College of Engineering Department of Civil & Environmental Engineering APPLICATION OF FIBER REINFORCED CONCRETE IN THE END ZONES OF PRECAST PRESTRESSED

More information

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance

Testing and appraisal of Lucobit polymer effect as an additive on asphalt mixture performance Abstract Testing and appraisal of polymer effect as an additive on asphalt mixture performance Hamid Sabbagh mollahosseini*,golazin Yadollahi**, Ershad Amoosoltani*** *, ***Executive of Engineering and

More information

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

FLOORS REINFORCEMENT Shear Stud Connector for steel- concrete composite structures cold applied by pins

FLOORS REINFORCEMENT Shear Stud Connector for steel- concrete composite structures cold applied by pins www.tecnaria.com FLOORS REINFORCEMENT Shear Stud Connector for steel concrete composite structures cold applied by pins HIGHPERFORMANCE FLOORS COMPOSITE STEEL AND CONCRETE STRUCTURES: STATIC AND ECONOMIC

More information

THEORETICAL BEHAVIOR OF COMPOSITE CONSTRUCTION PRECAST REACTIVE POWDER RC GIRDER AND ORDINARY RC DECK SLAB

THEORETICAL BEHAVIOR OF COMPOSITE CONSTRUCTION PRECAST REACTIVE POWDER RC GIRDER AND ORDINARY RC DECK SLAB International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 12, Dec 215, pp. 8-21, Article ID: IJCIET_6_12_2 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=12

More information

STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE

STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE R. Kumutha and K. Vijai Department of Civil Engineering, Sethu Institute of Technology, Pulloor, Kariapatti, India E-Mail: kumuthar@yahoo.co.in,

More information

Optimum Curing Cycles for Precast Concrete

Optimum Curing Cycles for Precast Concrete Optimum Curing Cycles for Precast Concrete Dr Norwood Harrison, Technical Support Manager, Humes Mr Tom Howie, Manager Engineered Structures, Humes Prepared for the Concrete Pipe Association of Australasia,

More information

Dubai Municipality Standard DMS 1: Part 5: 2004

Dubai Municipality Standard DMS 1: Part 5: 2004 Specification for precast concrete blocks Part 5: Normal-weight concrete-polystyrene sandwich masonry blocks Issue Date Revision Revision Description Prepared by Approved by Authorized by 19/12/2004 Issue

More information

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 15-24 Article ID: IJCIET_06_10_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY BS 40 M6 MuCis mono SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY LE CE LE type: "expansive binder which allows the production of extremely fluid concrete

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with stone dust

Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with stone dust Analysis of M35 and M40 s of concrete by and methods of mix design on replacing fine aggregates with stone dust Satwinder Singh 1, Dr. Hemant Sood 2 1 M. E. Scholar, Civil Engineering, NITTTR, Chandigarh,

More information

Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers

Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers International Journal of Materials Engineering 12, 2(1): 7-11 DOI: 1.923/j.ijme.11.2 Strength and Workability Characteristics of Concrete by Using Different Super Plasticizers Venu Malagavelli *, Neelakanteswara

More information

Strength of Concrete

Strength of Concrete Strength of Concrete In concrete design and quality control, strength is the property generally specified. This is because, compared to most other properties, testing strength is relatively easy. Furthermore,

More information

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

More information

How To Make A Steel Beam

How To Make A Steel Beam Resistenza a taglio di travi in calcestruzzo fibrorinforzato Università degli Studi di Brescia giovanni.plizzari@unibs.it Milano June 17 th, 2015 Outlines Shear Action Factor affecting the shear strength

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Environmental Stress Crack Resistance of Polyethylene Pipe Materials

Environmental Stress Crack Resistance of Polyethylene Pipe Materials Environmental Stress Crack Resistance of Polyethylene Pipe Materials ROBERT B. TAMPA, Product Development and Service Engineer* Abstract Slow crack growth is a phenomenon that can occur in most plastics.

More information

Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC)

Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC) Materials Characterisation VI 283 Visualization of the healing process on reinforced concrete beams by application of Digital Image Correlation (DIC) E. Tsangouri 1, K. Van Tittelboom 2, D.Van Hemelrijck

More information

Requirements for the Use of PRESSS Moment-Resisting Frame Systems

Requirements for the Use of PRESSS Moment-Resisting Frame Systems Requirements for the Use of PRESSS Moment-Resisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois S.

More information

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 104-112, Article ID: IJCIET_07_01_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Applicability of Decorative Concrete Overlays as a Context Sensitive Solution for Vertical Infrastructure

Applicability of Decorative Concrete Overlays as a Context Sensitive Solution for Vertical Infrastructure Applicability of Decorative Concrete Overlays as a Context Sensitive Solution for Vertical Infrastructure Jason Riegler 1, Ryan DaPonte 2, Aleksandra Radlinska 3,and Leslie McCarthy 4 1 Graduate Researcher,

More information

Tex-421-A, Splitting Tensile Strength of Cylindrical Concrete Specimens

Tex-421-A, Splitting Tensile Strength of Cylindrical Concrete Specimens Contents: Section 1 Overview...2 Section 2 Apparatus...3 Section 3 Test Specimens...4 Section 4 Procedure...5 Texas Department of Transportation 1 08/99 06/08 Section 1 Overview Effective dates: August

More information

PROPERTIES AND MIX DESIGNATIONS 5-694.200

PROPERTIES AND MIX DESIGNATIONS 5-694.200 September 1, 2003 CONCRETE MANUAL 5-694.200 5-694.210 PROPERTIES OF CONCRETE PROPERTIES AND MIX DESIGNATIONS 5-694.200 Inspectors should familiarize themselves with the most important properties of concrete:

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office Hours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Classification

More information

Strengthening of Brick Masonry Walls against Earthquake Loading

Strengthening of Brick Masonry Walls against Earthquake Loading International Journal of Advanced Structures and Geotechnical Engineering ISSN 2319-5347, Vol. 01, No. 01, July 2012 Strengthening of Brick Masonry Walls against Earthquake ing KHAN SHAHZADA, MUHAMMAD

More information

1.5 Concrete (Part I)

1.5 Concrete (Part I) 1.5 Concrete (Part I) This section covers the following topics. Constituents of Concrete Properties of Hardened Concrete (Part I) 1.5.1 Constituents of Concrete Introduction Concrete is a composite material

More information

MILMAN & ASSOCIATES STRUCTURAL CONSULTING ENGINEERS/ PROJECT MANAGERS

MILMAN & ASSOCIATES STRUCTURAL CONSULTING ENGINEERS/ PROJECT MANAGERS MILMAN & ASSOCIATES STRUCTURAL CONSULTING ENGINEERS/ PROJECT MANAGERS May 29, 2013 Revision B Structural Guideline for Design and Installation Holes in Composite Floor Slab Terminal 3, Departure Level

More information

Explicit expressions for the crack length correction parameters for the DCB, ENF, and MMB tests on multidirectional laminates

Explicit expressions for the crack length correction parameters for the DCB, ENF, and MMB tests on multidirectional laminates 1/17 Explicit expressions for the crack length correction parameters for the DCB, ENF, and MMB tests on multidirectional laminates Stefano BENNAT, Paolo FSCARO & Paolo S. VALVO University of Pisa Department

More information

HIGH PERFORMANCE PRE-APPLIED SYSTEM FOR BLIND SIDE & BELOW GRADE WATERPROOFING APPLICATIONS

HIGH PERFORMANCE PRE-APPLIED SYSTEM FOR BLIND SIDE & BELOW GRADE WATERPROOFING APPLICATIONS BSW HIGH PERFORMANCE PRE-APPLIED SYSTEM FOR BLIND SIDE & BELOW GRADE WATERPROOFING APPLICATIONS BSW is a fully reinforced Pre-Applied system membrane designed for horizontal and vertical external blind-side

More information

How To Test Water Penetration On Concrete Block And Mortar

How To Test Water Penetration On Concrete Block And Mortar WATER PENETRATION TEST ON CONCRETE BLOCK MASONRY Vilató, Rolando Ramirez 1 1 PhD, Prof., Mackenzie Presbyterian University, School of Engineering, São Paulo, rolandovilato@yahoo.com This paper considers

More information

CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES

CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES CARBON/DYNEEMA INTRALAMINAR HYBRIDS: NEW STRATEGY TO INCREASE IMPACT RESISTANCE OR DECREASE MASS OF CARBON FIBER COMPOSITES J. G. H. Bouwmeester*,

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

In Place Rehabilitation of Pipes Using Polymer Composites

In Place Rehabilitation of Pipes Using Polymer Composites FHWA-NJ-2010-012 In Place Rehabilitation of Pipes Using Polymer Composites FINAL REPORT December 2010 Submitted by Perumalsamy Balaguru, Ph.D. Distinguished Professor Director of Graduate Program Department

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xvii xix xxvii 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 OBJECTIVES AND SCOPE OF

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE 3.0 Causes and control of cracking: 3.1 Plastic Shrinkage Cracking: It occurs within 1 to 8 hours after placing, when subjected to a very rapid loss of moisture caused by a combination of factors, which

More information

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system MATEC Web of Conferences 6, 06002 (2013) DOI: 10.1051/matecconf/20130606002 C Owned by the authors, published by EDP Sciences, 2013 Experimental assessment of concrete damage due to exposure to high temperature

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS

AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS AMPLITUDE AND FORCE PROFILING: STUDIES IN ULTRASONIC WELDING OF THERMOPLASTICS David A. Grewell Branson Ultrasonics Corporation ABSTRACT This paper reviews effects of amplitude and force control during

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE By H P Gupta & D K Gupta DIFFERENT TYPES OF DAMAGES 1.Minor cracks 0.5 to 5 mm wide in load or non-load bearing walls 2.Major

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

MaxCell Technical Manual Design Parameters

MaxCell Technical Manual Design Parameters MaxCell Technical Manual Design Parameters Breaking Strength by Product Style, lbs Product Style Standard MaxCell Fire Resistant MaxCell Test Method 4 Cell 2,750 2,200 ASTM D 5 Bellcore 5 5.. Cell 2,50

More information

Bending and Uniaxial Tensile Tests on Concrete Reinforced with Hybrid Steel Fibers

Bending and Uniaxial Tensile Tests on Concrete Reinforced with Hybrid Steel Fibers Bending and Uniaxial Tensile Tests on Concrete Reinforced with Hybrid Steel Fibers L. G. Sorelli 1 ; A. Meda 2 ; and G. A. Plizzari 3 Abstract: Based on the idea of taking simultaneous advantage of the

More information

Fire and Concrete Structures

Fire and Concrete Structures Fire and Concrete Structures Authors: David N. Bilow, P.E., S.E., Director, Engineered Structures, Portland Cement Association 5420 Old Orchard Road, Skokie, IL 60077,Phone 847-972-9064, email: dbilow@cement.org

More information

Ultra-High Strength Concrete Mixtures Using Local Materials

Ultra-High Strength Concrete Mixtures Using Local Materials UltraHigh Strength Concrete Mixtures Using Local Materials Srinivas Allena 1 and Craig M. Newtson 2 1 New Mexico State University, Civil Engineering Department, P.O. Box 30001, MSC 3CE, Las Cruces, NM

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF SECTION

MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF SECTION MICRO PLASTICS MOLDED NYLON 6/6 FASTENERS MECHANICAL TEST DATA - UNC - UNF Nylon 6/6 meets MIL-M20693B "A" Type 1, LP410A, and ASTM D789-66 Type 1, GDE 2 All test performed per ASTM specifications. Parts

More information

Life-365 Service Life Prediction Model Version 2.0

Life-365 Service Life Prediction Model Version 2.0 Originally printed in Concrete International and posted with permission from the American Concrete Institute (www.concrete.org). Life-365 Service Life Prediction Model Version 2.0 Widely used software

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Modern Codes for Design of Concrete Concrete Structures Presentation Outline

Modern Codes for Design of Concrete Concrete Structures Presentation Outline Modern Codes for Design of Concrete Structures James K. Wight F.E. Richart, Jr. Professor of Civil Eng. University of Michigan Presentation Outline Current Codes Where did they come from? What is their

More information

Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement

Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement Cement and Concrete Research 30 (2000) 651±659 Communication Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement Dragos-Marian Bontea, D.D.L. Chung*, G.C. Lee Composite

More information

Tensile Testing Laboratory

Tensile Testing Laboratory Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

More information

Tremco Fire Protection Systems Group Technical Bulletin

Tremco Fire Protection Systems Group Technical Bulletin Compartmentalization products and design play a key role in protecting lives and property from fire. Understanding the tools and techniques available for firestopping is of utmost importance to designers,

More information

Design and Construction of Cantilevered Reinforced Concrete Structures

Design and Construction of Cantilevered Reinforced Concrete Structures Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

More information

A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE

A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.16, No.1, June 2005, pp. 01-09 ISSN 1021-1012 A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE A. Ghaffar,

More information

LAYING BLOCK AND BRICK

LAYING BLOCK AND BRICK LAYING BLOCK AND BRICK Products highlighted in this section: SAKRETE Type N Mortar Mix SAKRETE Type S Mortar Mix Brick And Block Laying Basics The first step in building a brick or block wall is to construct

More information

Utilisation of Glass Reinforced Plastic Waste in Concrete and Cement Composites

Utilisation of Glass Reinforced Plastic Waste in Concrete and Cement Composites Utilisation of Glass Reinforced Plastic Waste in Concrete and Cement Composites Osmani M. 1 and Pappu A. 2 1 Department of Civil and Building Engineering, Loughborough University, UK.; Email:

More information

4 Thermomechanical Analysis (TMA)

4 Thermomechanical Analysis (TMA) 172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.

More information

A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete

A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-02, pp-141-147 www.ajer.org Research Paper Open Access A Comparative Analysis of Modulus of Rupture

More information