# Name Geometry Exam Review #1: Constructions and Vocab

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make the same arc from #1. Label the intersection B. A 3. MEASURE from B to C. you will have to adjust your compass. 4. with your compass open from #3, compass on B, make an arc. Where this arc crosses the arc from step 2 label C. Connect A and C. A Bisect an angle: 1. Compass on A, make any arc. Label where the arc crosses the sides of the angle as B and C. 2. compass on B, make an arc 3. do not change compass: compass on C make an arc A 4. label where arcs intersect D

2 Parallel Lines: 1. Place point P above a line. Connect P to the line on some kind of angle/slant. Label the intersection of the lines Q. 2. compass on Q. Draw any arc. Label the intersection points A and B. 3. compass on P. Draw the same arc from #2. Label the intersection point C. 4. MEASURE from A to B you will have to adjust your compass. 5. with your compass open the distance from A to B, place your compass on C and make an arc, label the intersection D. 6. connect P and D. * Q and P are congruent corresponding angles

3 Perpendicular Bisector: 1. open compass to a little more than half the segment. Compass on A, make an arc. 2. do not change compass!! Compass on B, make an arc. 3. arcs must cross each other!! Label these points C and D. Connect C and D. 4. label the intersection of and E., A B *also, if you place any point along the perpendicular bisector ( ) it is equidistant to the endpoints Perpendicular from a point to a line 1. place point P above the line 2. compass on P, make an arc so it crosses the line twice. Label these A and B. 3. widen your compass a bit. Compass on A, make an arc. Without changing compass, compass on B, make an arc. 4. label where the arcs intersect as C. Connect to P.

4 Incenter: These all mean the same thing: Find the incenter Find the center of the circle that is inscribed in a triangle Construct the incircle, inscribed circle Steps: Construct each angle bisector of a triangle. The bisectors are concurrent at the incenter. Call the incenter C. Construct a line perpendicular from C to one of the sides of the triangle. This will be the radius of the circle. Compass on C, open to the length of the radius, draw a circle. It should just graze the sides of the triangle. *the incenter is equidistant to the sides of the triangle because it is the radius of the circle.

5 Circumcenter: These all mean the same thing: Find the circumcenter Find the center of the circle that you can circumscribe about a triangle Construct the circumcircle, circumscribed circle Steps: 1. construct the perpendicular bisectors of each side of the triangle. These lines are concurrent at the circumcenter. Label the circumcenter C. 2. Compass on C, open it to one of the vertices (corners) of the triangle. This is the radius of your circle. Draw a circle. *The circumcenter is equidistant to the vertices of the triangle because it is the radius of the circle. Square: 1. Draw the diameter of the circle. Label the endpoints A and B. 2. Construct the perpendicular bisector of. Make sure this line goes all the way through the circle. Label where it crosses the circle C and D. 3. Connect A, B, C, D

6 Hexagon: 1. Label the center of the circle O. Place any point A on the circle. 2. open your compass the length of. This is the radius of your circle. 3. Compass on A, make an arc crossing the circle. Label it B. 4. compass on B, make an arc. Label it C. Continue around the circle. 5. Connect A & B, B & C, and so on. Equilateral triangle: Label the center of your circle O. Place any point A on the circle. 2. open your compass the length of. This is the radius of your circle. 3. Compass on A, make an arc crossing the circle. Label it B. 4. compass on B, make an arc. Label it C. Continue around the circle. 5. Connect EVERY OTHER letter: A and C, C and E, E and A. For additional help on constructions go to mathopenref.com

7 Three undefined terms in geometry: Three transformations that use rigid motions to produce congruent figures: Congruent means: When figures are congruent, their sides are and their angles are. The transformation that produces similar figures: When figures are similar, their sides are and their angles are. Medians are concurrent at the Altitudes are concurrent at the Angle bisectors are concurrent at the Perpendicular bisectors are concurrent at the

8 Name Support Exam Review #2: Transformations Translations ( ) Notation: a translation of left 3 up 4 can also be written: Vector notation: Arrow notation/rule: (x, y) (x 3, y + 4) 1. Which is the same as a translation of right 5 and down 7? A. B. C. D. 2. Which is the same as a translation of left 6? A. B. C. D. 3. Which is the same as a translation of left 3 down 8? A. (x, y) (x + 3, y + 8) B. (x, y) (x 3, y + 8) C. (x, y) (x + 3, y 8) D. (x, y) (x 3, y 8) 4. 5.

9 Reflections ( ): Image should be equidistant from the reflection line Reflect over y = x Rotations ( ): Clockwise: counterclockwise:

10 Dilations: Sides are proportional, angles are congruent, shapes are similar What is the ratio of FG to F G? What is the ratio of F G to FG? The center of dilation: This picture is modeling that the new image is twice the distance from the origin (center (0, 0)) 15. find the scale factor: 16. Dilate the triangle with scale factor 2, center (0, 0)

11 Image Rules: V (2, -3) V R (5, -3) R Z (4, 2) Z Rule for reflection over x-axis (x, y) A (0, 2) A L (2, 0) L V (5, 4) V Rule for reflection over y-axis (x, y) T (-4, -2) T G (-2, -1) G W (-2, -4) W Rule for rotation 90 clockwise OR 270 counterclockwise (x, y)

12 E (2, 1) E N (4, -1) N F (4, 4) F Rule for rotation 180 (x, y) Rotate 270 clockwise about (0,0) T (-3, 5) T H (-3, 2) H D (-4, 3) D Rule for rotation 270 clockwise OR 90 counterclockwise (x, y) Practice: 1. What is the scale factor? What is the center of the dilation?

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 Name Support Exam Review 3 Midpoint Formula: Find the midpoint of each side of the triangle: Distance formula: Find the perimeter of the triangle: (find the length of each side, add) Find the perimeter of the triangle: (hint because it is a right triangle you can use Pythagorean theorem)

28 Find the area of the triangles: (A = ½ bh) Practice: Midpoint of RC Midpoint of CD Midpoint of RD Length RC Length CD Length RD Perimeter of triangle Area of triangle

29 Name Support Exam Review 4 Congruent Angles Vertical angles 1 = 74 4 = 6 = (9x + 5), 7 = (3x + 29) X = 6 = 7 = Alternate interior angles 3 = 88 6 = 4 = (2x 7) 5 = (x + 30) X = 4 = 5 = Corresponding angles 3 = 72 7 = 3 = (5x + 20) 7 = (-3x + 52) X = 3 = 7 = Alternate exterior angles

30 Supplementary Angles Linear Pair 1 = 74 2 = 5 = (5x + 25) 7 = (5x + 15) X = 5 = 7 = Same Side Interior (Consecutive interior) 4 = = 3 = (15x- 10) 5 = (15x + 10) X = 3 = 5 = Same Side Exterior 1 = = 1 =(20x + 6) 8 = (5x + 24) X = 1 = 8 =

31 Triangle Angle Sum Theorem: the sum of the angles in a triangle = 180 (X + Y + Z = 180) Exterior Angle Theorem: The exterior angle of a triangle = sum of two remote interior angles (W = X + Y) Examples:

32

33

34

35

36

37 Name Support Exam Review 5 Parallel lines have the same slope and different y-intercepts Write an equation of the line parallel to the given line passing through the given point: 1. y = 2x + 4 (-3, 1) 2. y = - x + 1 (6, -2) 3. y = x 4 (-4, 6) 4. 4y = 8x + 10 (-1, 3) 5. 3x + 6y = 12 (-2, 5)

38 Perpendicular Lines have opposite reciprocal slopes Write an equation of the line perpendicular to the given line through the point 6. y = - x + 5 (2, 3) 7. y = 2x 3 (-4, 1) 8. Y = -3x + 1 (3, 6) 9. 3y + 6 = 4x (4, 8) 10. 2x 4y = -12 (-2, 5)

39 Practice: Write an equation of the line parallel to the given line through the given point: 1. y = x + 3 (5, 2) 2. Y = -3x 7 (1, 1) 3. 3y + x = 6 (3, 1) 4. 2x + y = 4 (-3, 5) 5. 4y 8 = 3x (-4, 4) 6. -4x + 2y = 10 (3, 5)

40 Write an equation of the line perpendicular to the given line through the point: 7. y = - x + 5 (-2, 6) 8. Y = 3x 2 (-6, 8) 9. 4y = 5x + 12 (-5, 2) 10. 3x 2y = 6 (6, 4) 11. y + 5 = x (-8, 2) 12. Y + 2x = 6 (2, 1)

41 Your exam has 40 questions. If you google the standard, look for the Shmoop.com entry. It will have additional practice problems (sample assignments) G.CO.1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc G.CO.2: Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

42

43 G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself

44 G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. 14.

45 G.CO.5:Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

46 17. G.CO.6: Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent

47 A triangle was rotated 90 degrees counterclockwise and then translated 2 down and 4 left. The final coordinates of the triangle are: (1, -3), (-2, 0), and (3, 2). What were the original coordinates? A (1, 1) (4, 4) (6, -1) B (0, 2) (2, -3) (-3, -1) C (-1, 3) (2, 0) (-3, -2) D (3, 7) (8, -2) (6, 4) G.CO.7 Use the definitions of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 23.

48 G.CO.8: Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow the definition of congruence in terms of rigid motions.

49 G.CO.9: Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

50

51 33. G.CO.10: Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 ; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. 34.

52 G.CO.11: Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals

53 G.CO.12: Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line

54 41. G.CO.13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. G.SRT.1: Verify experimentally the properties of dilations given by a center and a scale factor:

55 44. G.SRT.2: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G.SRT.3: Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar

56 47. G.SRT.4: Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. 48.

57 G.SRT.5: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. G.C.3: Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle A (4, 6) B (6, 4) C (3, 3) D (1, 2)

58 G.GPE.5: Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). G.GPE.6: Find the point on a directed line segment between two given points that partitions the segment in a given ratio Where should you plot point X so that PX is of the length of PQ? A. (4, 0) B (6, 0) C (7, 0) D (8, 0) Where should you plot X so it divides PQ in a ratio of 3:4? A. (5, 0) B (4, 0) C 4, 0) D (3, 0)

59 G.GPE.7: Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula

60 Additional midterm review key 1. A 2. D 3. A 4. B 5. B 6. B 7. A 8. C 9. D 10. D 11. A 12. C 13. B 14. A 15. B 16. B 17. A 18. D 19. C 20. A 21. C 22. A 23. D 24. D 25. C 26. C 27. C 28. B 29. B 30. B 31. C 32. D 33. D 34. A 35. C 36. B 37. D 38. A 39. A 40. A 41. B 42. B 43. D 44. C 45. C 46. B 47. B 48. C 49. C 50. C 51. A 52. B 53. C 54. A 55. D, A 56. B 57. D 58. C 59. B 60. C

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE Geometry

Georgia Standards of Excellence Curriculum Map Mathematics GSE Geometry These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Coordinate Coplanar Distance Formula Midpoint Formula

G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

### Unit 1: Similarity, Congruence, and Proofs

Unit 1: Similarity, Congruence, and Proofs This unit introduces the concepts of similarity and congruence. The definition of similarity is explored through dilation transformations. The concept of scale

### CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key

Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### A COURSE OUTLINE FOR GEOMETRY DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION

A COURSE OUTLINE FOR GEOMETRY DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION JANUARY 2014 Geometry Course Outline Content Area G0 Introduction and Construction G-CO Congruence

### Geometry Essential Curriculum

Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Geometry Performance Level Descriptors

Geometry Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Geometry. A student at this level has an emerging

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Objectives. Cabri Jr. Tools

Activity 24 Angle Bisectors and Medians of Quadrilaterals Objectives To investigate the properties of quadrilaterals formed by angle bisectors of a given quadrilateral To investigate the properties of

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### Comprehensive Benchmark Assessment Series

Test ID #1910631 Comprehensive Benchmark Assessment Series Instructions: It is time to begin. The scores of this test will help teachers plan lessons. Carefully, read each item in the test booklet. Select

### Lesson 4.4 Congruence shortcuts SSS, AAS, SAS (not AAA or ASS)

Review Problems Lesson 1.3 Terminology Lesson 1.4 Polygons Lesson 1.5 Triangles and special quadrilaterals Lesson 2.5 Angle relationships Lesson 2.6 Special angels on parallel lines Chapter 3 Points of

COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

### of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

### Higher Geometry Problems

Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

### Lesson 28: Properties of Parallelograms

Student Outcomes Students complete proofs that incorporate properties of parallelograms. Lesson Notes Throughout this module, we have seen the theme of building new facts with the use of established ones.

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### 2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

Geometry Honors Semester McDougal 014-015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 1-1 MAFS.91.G-CO.1.1 1 Use Segments & Congruence, Use Midpoint & 1-/1- MAFS.91.G-CO.1.1,

### 7. 6 Justifying Constructions

31 7. 6 Justifying Constructions A Solidify Understanding Task CC BY THOR https://flic.kr/p/9qkxv Compass and straightedge constructions can be justified using such tools as: the definitions and properties

### Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations

### 3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### A. 3y = -2x + 1. y = x + 3. y = x - 3. D. 2y = 3x + 3

Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x - 1 D. y = 3x + 1

### Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

### FS Geometry EOC Review

MAFS.912.G-C.1.1 Dilation of a Line: Center on the Line In the figure, points A, B, and C are collinear. http://www.cpalms.org/public/previewresource/preview/72776 1. Graph the images of points A, B, and

### Final Review Problems Geometry AC Name

Final Review Problems Geometry Name SI GEOMETRY N TRINGLES 1. The measure of the angles of a triangle are x, 2x+6 and 3x-6. Find the measure of the angles. State the theorem(s) that support your equation.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### Polygons are figures created from segments that do not intersect at any points other than their endpoints.

Unit #5 Lesson #1: Polygons and Their Angles. Polygons are figures created from segments that do not intersect at any points other than their endpoints. A polygon is convex if all of the interior angles

### CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page of 6 2 77.5 Unit : Tools of 5 9 Totals Always Include 2 blocks for Review & Test Activity binder, District Google How do you find length, area? 2 What are the basic tools

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### 1) Perpendicular bisector 2) Angle bisector of a line segment

1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through

### #2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: School Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, June 16, 2009 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name of

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### CK-12 Geometry: Perpendicular Bisectors in Triangles

CK-12 Geometry: Perpendicular Bisectors in Triangles Learning Objectives Understand points of concurrency. Apply the Perpendicular Bisector Theorem and its converse to triangles. Understand concurrency

### Sum of the interior angles of a n-sided Polygon = (n-2) 180

5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

### 55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

### Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard- Geometry Unit Overview In this unit, students will study formal definitions of basic figures,

### Blue Springs School District Geometry - Syllabus 1 Credit Hour

Teacher: Mr. Jakob Estep Plan: 2 nd Hour (8:20-9:10) School Phone Number: (816) 224-1315 Email: jestep@bssd.net Blue Springs School District Geometry - Syllabus 1 Credit Hour 2014-2015 Textbook: Course

### Georgia Standards of Excellence Curriculum Frameworks. Mathematics. GSE Geometry Unit 2: Similarity, Congruence, and Proofs

Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Geometry Unit 2: Similarity, Congruence, and Proofs Unit 2 Similarity, Congruence, and Proofs Table of Contents OVERVIEW... 3 STANDARDS

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

### Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS. Middle School and High School

PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION GEOMETRY HONORS Length of Course: Elective/Required: Schools: Term Required Middle School and High School Eligibility: Grades 8-12

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Chapter 14. Transformations

Chapter 14 Transformations Questions For Thought 1. When you take a picture, how does the real world image become a reduced celluloid or digital image? 2. How are maps of the Earth made to scale? 3. How

### Duplicating Segments and Angles

CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

### DRAFT. Geometry EOC Item Specifications

DRAFT Geometry EOC Item Specifications The release of the updated FSA Test Item Specifications is intended to provide greater specificity for item writers in developing items to be field tested in 2016.

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Framework for developing schemes of work for the geometry curriculum for ages 14-16

Framework for developing schemes of work for the geometry curriculum for ages 14-16 CURRICULUM GRADES G - F GRADES E - D GRADES C - B GRADES A A* INVESTIGATION CONTEXT Distinguish Know and use angle, Construct

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is