acute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.


 Stanley Banks
 1 years ago
 Views:
Transcription
1 Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points complementary angles hapter 1 (p. 4) hapter 1 (p. 48) opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
2 Vocabulary Flash ards Two angles that share a common vertex and side, but have no common interior points n angle that has a measure greater than 0 and less than 90 common side 5 6 common vertex 5 and 6 are adjacent angles. ray that divides an angle into two angles that are congruent set of points consisting of two different rays that have the same Y X W,,, or 1 vertex sides Z 1 YW bisects XYZ, so XYW ZYW. When three points are collinear, one point is between the other two. rule that is accepted without proof The Segment ddition Postulate states that if is between and, then. Point is between points and. Two angles whose measures have a sum of 90 Points that lie on the same line D,, and are collinear. and are complementary angles. opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
3 Vocabulary Flash ards congruent angles congruent segments hapter 1 (p. 40) hapter 1 (p. 13) construction coordinate hapter 1 (p. 13) hapter 1 (p. 12) coplanar points defined terms hapter 1 (p. 4) hapter 1 (p. 5) distance s hapter 1 (p. 12) hapter 1 (p. 5) opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
4 Vocabulary Flash ards Line segments that have the same length Two angles that have the same measure 5 in. 5 in. D D real number that corresponds to a point on a line geometric drawing that uses a limited set of tools, usually a compass and a straightedge x 1 x 2 coordinates of points D Terms that can be described using known words, such as point or line Points that lie in the same plane Line segment and ray are two defined terms. M,, and are coplanar. Points that represent the ends of a line segment or ray The absolute value of the difference of two coordinates on a line x 1 x 2 = x 2 x 1 opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
5 Vocabulary Flash ards exterior of an angle interior of an angle hapter 1 (p. 38) hapter 1 (p. 38) intersection line hapter 1 (p. 6) hapter 1 (p. 4) line segment linear pair hapter 1 (p. 5) hapter 1 (p. 50) measure of an angle midpoint hapter 1 (p. 39) hapter 1 (p. 20) opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
6 0 180 Vocabulary Flash ards The region that contains all the points between the sides of an angle The region that contains all the points outside of an angle interior exterior line has one dimension. It is represented by a line with two arrowheads, but it extends without end. The set of points two or more geometric figures have in common m n line, line (), or line () The intersection of two different lines is a point. Two adjacent angles whose noncommon sides are opposite rays onsists of two s and all the points between them common side 1 2 noncommon side noncommon side 1 and 2 are a linear pair. The point that divides a segment into two congruent segments M is the midpoint of. So, M M and M M. opyright ig Ideas Learning, LL ll rights reserved. M The absolute value of the difference between the real numbers matched with the two rays that form the angle on a protractor O m O ig Ideas Math Geometry
7 Vocabulary Flash ards obtuse angle opposite rays hapter 1 (p. 39) hapter 1 (p. 5) plane point hapter 1 (p. 4) hapter 1 (p. 4) postulate ray hapter 1 (p. 12) hapter 1 (p. 5) right angle segment hapter 1 (p. 39) hapter 1 (p. 5) opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
8 Vocabulary Flash ards If point lies on and are opposite rays. between and, then n angle that has a measure greater than 90 and less than 180 and are opposite rays. location in space that is represented by a dot and has no dimension flat surface made up of points that has two dimensions and extends without end, and is represented by a shape that looks like a floor or a wall point M plane M, or plane is a ray if it consists of the and all points on that lie on the same side of as. rule that is accepted without proof The Segment ddition Postulate states that if is between and, then. onsists of two s and all the points between them n angle that has a measure of 90 opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
9 Vocabulary Flash ards segment bisector sides of an angle hapter 1 (p. 20) hapter 1 (p. 38) straight angle supplementary angles hapter 1 (p. 39) hapter 1 (p. 48) undefined terms vertex of an angle hapter 1 (p. 4) hapter 1 (p. 38) vertical angles hapter 1 (p. 50) opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
10 Vocabulary Flash ards The rays of an angle point, ray, line, line segment, or plane that intersects the segment at its midpoint sides D M D is a segment bisector of. So, M M and M M. Two angles whose measures have a sum of 180 n angle that has a measure of 180 M J K L JKM and LKM are supplementary angles. The common of the two rays that form an angle Words that do not have formal definitions, but there is agreement about what they mean In geometry, the words point, line, and plane are undefined terms. vertex Two angles whose sides form two pairs of opposite rays and 6 are vertical angles. 4 and 5 are vertical angles. opyright ig Ideas Learning, LL ll rights reserved. ig Ideas Math Geometry
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationChapter 1. Foundations of Geometry: Points, Lines, and Planes
Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in
More informationChapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More informationA (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. beginning or end.
Points, Lines, and Planes Point is a position in space. point has no length or width or thickness. point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. (straight)
More informationThe Protractor Postulate and the SAS Axiom. Chapter The Axioms of Plane Geometry
The Protractor Postulate and the SAS Axiom Chapter 3.43.7 The Axioms of Plane Geometry The Protractor Postulate and Angle Measure The Protractor Postulate (p51) defines the measure of an angle (denoted
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationChapter 1: Points, Lines, Planes, and Angles
Chapter 1: Points, Lines, Planes, and Angles (page 1) 11: A Game and Some Geometry (page 1) In the figure below, you see five points: A,B,C,D, and E. Use a centimeter ruler to find the requested distances.
More informationcircumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)
Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More informationThis is a tentative schedule, date may change. Please be sure to write down homework assignments daily.
Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (11) Points, Lines, & Planes Topic: (12) Segment Measure Quiz
More information1.2 Informal Geometry
1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior
More informationGeometry Unit 1. Basics of Geometry
Geometry Unit 1 Basics of Geometry Using inductive reasoning  Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture an unproven statement that is based
More information**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.
Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:
More informationStudent Name: Teacher: Date: District: MiamiDade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1
Student Name: Teacher: Date: District: MiamiDade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the
More informationCentroid: The point of intersection of the three medians of a triangle. Centroid
Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:
More informationEuclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:
Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start
More informationTransversals. 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by vertical angles, corresponding angles,
Transversals In the following explanation and drawing, an example of the angles created by two parallel lines and two transversals are shown and explained: 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by
More information#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.
1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationGeometry Review Flash Cards
point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on
More information55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.
Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit
More informationA summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:
summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of midpoint and segment bisector M If a line intersects another line segment
More informationChapter One. Points, Lines, Planes, and Angles
Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More informationGeometry Chapter 1 Vocabulary. coordinate  The real number that corresponds to a point on a line.
Chapter 1 Vocabulary coordinate  The real number that corresponds to a point on a line. point  Has no dimension. It is usually represented by a small dot. bisect  To divide into two congruent parts.
More informationGEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
More informationGEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 14 Lesson 1.2: SWBAT: Use
More informationGeometry: 11 Day 1 Points, Lines and Planes
Geometry: 11 Day 1 Points, Lines and Planes What are the Undefined Terms? The Undefined Terms are: What is a Point? How is a point named? Example: What is a Line? A line is named two ways. What are the
More informationChapter 1: Essentials of Geometry
Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,
More informationA geometric construction is a drawing of geometric shapes using a compass and a straightedge.
Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a
More informationGeometry Chapter 1 Review
Name: lass: ate: I: Geometry hapter 1 Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name two lines in the figure. a. and T c. W and R b. WR and
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More informationFoundations of Geometry 1: Points, Lines, Segments, Angles
Chapter 3 Foundations of Geometry 1: Points, Lines, Segments, Angles 3.1 An Introduction to Proof Syllogism: The abstract form is: 1. All A is B. 2. X is A 3. X is B Example: Let s think about an example.
More informationThe Basics: Geometric Structure
Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 62015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow
More informationMath 366 Lecture Notes Section 11.1 Basic Notions (of Geometry)
Math 366 Lecture Notes Section. Basic Notions (of Geometry) The fundamental building blocks of geometry are points, lines, and planes. These terms are not formally defined, but are described intuitively.
More information1.7 Find Perimeter, Circumference,
.7 Find Perimeter, Circumference, and rea Goal p Find dimensions of polygons. Your Notes FORMULS FOR PERIMETER P, RE, ND CIRCUMFERENCE C Square Rectangle side length s length l and width w P 5 P 5 s 5
More information1.1 Identify Points, Lines, and Planes
1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms  These words do not have formal definitions, but there is agreement aboutwhat they mean.
More informationCRS SKILL LEVEL DESCRIPTION Level 1 ALL students must attain mastery at this level
PPF 501 & PPF 503 LESSON _NOTES Period Name CRS SKILL LEVEL DESCRIPTION Level 1 ALL students must attain mastery at this level PPF 501 PPF 503 Level 1 Level 2 MOST students will attain mastery of the focus
More informationIntermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
More informationCongruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key
Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,
More information2. Sketch and label two different isosceles triangles with perimeter 4a + b. 3. Sketch an isosceles acute triangle with base AC and vertex angle B.
Section 1.5 Triangles Notes Goal of the lesson: Explore the properties of triangles using Geometer s Sketchpad Define and classify triangles and their related parts Practice writing more definitions Learn
More informationChapter 1 Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1.
Name: lass: ate: I: hapter 1 Exam Multiple hoice Identify the choice that best completes the statement or answers the question. 1. bisects, m = (7x 1), and m = (4x + 8). Find m. a. m = c. m = 40 b. m =
More informationCK12 Geometry: Midpoints and Bisectors
CK12 Geometry: Midpoints and Bisectors Learning Objectives Identify the midpoint of line segments. Identify the bisector of a line segment. Understand and the Angle Bisector Postulate. Review Queue Answer
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationINDEX. Arc Addition Postulate,
# 3060 right triangle, 441442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent
More informationNAME DATE PERIOD. Study Guide and Intervention
opyright Glencoe/McGrawHill, a division of he McGrawHill ompanies, Inc. 51 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector
More informationASSIGNMENTS FOR PART 1 OF UNIT 2 LINES AND ANGLES
ASSIGNMENTS FOR PART 1 OF UNIT 2 LINES AND ANGLES Part 1 of Unit 2 includes sections 14, 15, and 28 from our textbook. Due Number Description Topics 2A 2B 2C p. 4142 # 9, 10, 12, 18, 20 23 all, 43
More informationA segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem
Perpendicular Bisector Theorem A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Converse of the Perpendicular Bisector Theorem If a
More informationChapter 1 Basics of Geometry Geometry. For questions 15, draw and label an image to fit the descriptions.
Chapter 1 Basics of Geometry Geometry Name For questions 15, draw and label an image to fit the descriptions. 1. intersecting and Plane P containing but not. 2. Three collinear points A, B, and C such
More informationStatements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Drafting, Sports, Geography
36 Conditional Statements Goals Identify and evaluate conditional statements. Identify converses and biconditionals. Applications Drafting, Sports, Geography Do you think each statement is true or false?
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationThe Next Step. Mathematics Applications for Adults. Book Geometry
The Next Step Mathematics Applications for Adults Book 14018  Geometry OUTLINE Mathematics  Book 14018 Geometry Lines and Angles identify parallel lines and perpendicular lines in a given selection of
More informationPARALLEL LINES CHAPTER
HPTR 9 HPTR TL OF ONTNTS 91 Proving Lines Parallel 92 Properties of Parallel Lines 93 Parallel Lines in the oordinate Plane 94 The Sum of the Measures of the ngles of a Triangle 95 Proving Triangles
More informationChapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
More information4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.
14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right
More information3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs
SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure
More informationG73 Measuring and Drawing Angles and Triangles
G73 Measuring and Drawing ngles and Triangles right angle acute angles obtuse angles 90 less than 90 more than 90 and less than 180 1. Without using a protractor, identify each angle as acute or obtuse.
More informationContent Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade
Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationA convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.
hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.
More informationTerminology: When one line intersects each of two given lines, we call that line a transversal.
Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.
More information2.1 Use Inductive Reasoning
2.1 Use Inductive Reasoning Obj.: Describe patterns and use inductive reasoning. Key Vocabulary Conjecture  A conjecture is an unproven statement that is based on observations. Inductive reasoning  You
More informationTriangle. A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles.
Triangle A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles. A triangle is consisting of three line segments linked end to end. As the figure linked
More informationDuplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
More information6. Angles. a = AB and b = AC is called the angle BAC.
6. Angles Two rays a and b are called coterminal if they have the same endpoint. If this common endpoint is A, then there must be points B and C such that a = AB and b = AC. The union of the two coterminal
More informationSec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.
Sec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have
More informationBASIC GEOMETRY GLOSSARY
BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More informationChapters 4 and 5 Notes: Quadrilaterals and Similar Triangles
Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More information73 Parallel and Perpendicular Lines
Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 73 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationA polygon with five sides is a pentagon. A polygon with six sides is a hexagon.
Triangles: polygon is a closed figure on a plane bounded by (straight) line segments as its sides. Where the two sides of a polygon intersect is called a vertex of the polygon. polygon with three sides
More information2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
More informationThe angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons.
Interior Angles of Polygons The angle sum property of triangles can help determine the sum of the measures of interior angles of other polygons. The sum of the measures of the interior angles of a triangle
More informationBetweenness of Points
Math 444/445 Geometry for Teachers Summer 2008 Supplement : Rays, ngles, and etweenness This handout is meant to be read in place of Sections 5.6 5.7 in Venema s text [V]. You should read these pages after
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationNCERT. In examples 1 and 2, write the correct answer from the given four options.
MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point
More informationMathematics Geometry Unit 1 (SAMPLE)
Review the Geometry sample yearlong scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This
More informationMeasure and classify angles. Identify and use congruent angles and the bisector of an angle. big is a degree? One of the first references to the
ngle Measure Vocabulary degree ray opposite rays angle sides vertex interior exterior right angle acute angle obtuse angle angle bisector tudy ip eading Math Opposite rays are also known as a straight
More informationMath 330A Class Drills All content copyright October 2010 by Mark Barsamian
Math 330A Class Drills All content copyright October 2010 by Mark Barsamian When viewing the PDF version of this document, click on a title to go to the Class Drill. Drill for Section 1.3.1: Theorems about
More informationGeometry. Unit 6. Quadrilaterals. Unit 6
Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections
More informationDuplicating Segments and Angles
ONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson you will Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using
More informationCK12 Geometry Algebraic and Congruence Properties
CK12 Geometry Algebraic and Congruence Properties Learning Objectives Understand basic properties of equality and congruence. Solve equations and justify each step in the solution. Use a 2column format
More informationChapter Three. Parallel Lines and Planes
Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More informationPage : 17, 19, 21, 31, 33. Conditional/Biconditional/Inverse/Converse/Contrapositive Page 109: odd, odd, 47, 48
Geometry UNIT 2 Reasoning and Proof Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 11 Inductive Reasoning and Conjecture Page 9395: 1525 odds, 3134, 36, 38, 47a Logic Page 101102: 17, 19,
More information1.1. Building Blocks of Geometry EXAMPLE. Solution a. P is the midpoint of both AB and CD. Q is the midpoint of GH. CONDENSED
CONDENSED LESSON 1.1 Building Blocks of Geometry In this lesson you will Learn about points, lines, and planes and how to represent them Learn definitions of collinear, coplanar, line segment, congruent
More informationAngles Formed by Intersecting Lines
COMMON CORE 1 3 Locker LESSON Common Core Math Standards The student is expected to: COMMON CORE GCO.C.9 Prove theorems about lines and angles. Mathematical Practices COMMON CORE 4.1 Angles Formed by
More informationINFORMATION FOR TEACHERS
INFORMATION FOR TEACHERS The math behind DragonBox Elements  explore the elements of geometry  Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through
More informationGEOMETRY  QUARTER 1 BENCHMARK
Name: Class: _ Date: _ GEOMETRY  QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name
More informationalternate interior angles
alternate interior angles two nonadjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
More informationMath 3372College Geometry
Math 3372College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents
More informationTriangle congruence can be proved by: SAS. Identify the congruence theorem or postulate:
Geometry Week 14 sec. 7.1 sec. 7.3 section 7.1 Triangle congruence can be proved by: SAS ASA SSS SAA Identify the congruence theorem or postulate: SAS ASA SAA SAA SSS or SAS SSA* (*There is no SSA theorem.)
More informationFind the measure of each numbered angle, and name the theorems that justify your work.
Find the measure of each numbered angle, and name the theorems that justify your work. 1. The angles 2 and 3 are complementary, or adjacent angles that form a right angle. So, m 2 + m 3 = 90. Substitute.
More informationGeometry Chapter 5 Relationships Within Triangles
Objectives: Section 5.1 Section 5.2 Section 5.3 Section 5.4 Section 5.5 To use properties of midsegments to solve problems. To use properties of perpendicular bisectors and angle bisectors. To identify
More information41 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.
ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.
More information37 Basic Geometric Shapes and Figures
37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars
More information