Introduces the bra and ket notation and gives some examples of its use.

Save this PDF as:

Size: px
Start display at page:

Download "Introduces the bra and ket notation and gives some examples of its use."

Transcription

1 Chapter 7 ket and bra notation Introduces the bra and ket notation and gives some examples of its use. When you change the description of the world from the inutitive and everyday classical mechanics to the more abstract quantum mechanical description, youwill usually have gonefrom a description of a worldas composed of particles to one composed of wavefunctions. Instead of describing a physical system with coordinates and momenta, x and p (Dirac called them c-numbers), the quantum mechanical description is based on operators x and p (q-numbers) that operate on a wavefunction ψ. The wave function can be a function of coordinates or of momenta and yet describe the same system. Basically, the wavefunction in momentum space is the Fourier transform of the wavefunction in coordinate space, and it describes the same physical system in both cases. Likewise, one may write a wavefunction as a sum of energy eigenfunctions as long as the set of them is complete (it will be). This way we can represent a wavefunction as a vector of coefficients. In fact, the wavefunction for a specific system can be written in any number ways that can look very different but are in reality different expressions of the same state. It must be possible to express the state of the system without explicit reference to coordinates or momenta, much the same way we can express a plane wave with a few parameters such as the wave vector, the amplitude and the phase. Once these are given we do not need to give the amplitude at all points in space explicitly to describe the wave. Hereishowwedoit. Thestateofasystem(atom, molecule, superconductor, whatever) is described by a ket:.... The dots denote the quantities that that characterizes the state. Example: A harmonic oscillator with precisely three quanta of vibrations is described as 3, where it is understood that in this case we are looking at a harmonic oscillator with some given frequency ω, say. 17

2 18 CHAPTER 7. KET AND BRA NOTATION Because the state is specified with respect to the energy we can easily find the energy by application of the Hamiltonian operator on this state, H 3 = (3+1/2) ω 3, (7.1) if we chose the zero of energy equal to the classical potential energy zero. We need to be able to write superpositions of eigenstates also. This is done in a manner very similar to superpositions of wavefunctions. Give the state a name, S for example. Then S = j max j=1 c j q j, (7.2) where q j is the state with the jth eigenvalue of some operator Q. j max is the highest of these indices. It may be infinity. Compare this expression to the expansion of a wavefunction. Ψ S (x) = j max j=1 c j φ j (x). (7.3) We need to have an expression for the things we do when we do quantum mechanics. A matrix element can be expressed in terms of wavefucntions and in the bra-ket notation as ψ A (x) ψ B (x)dτ = A B. (7.4) dτ is the symbolic representation of all volume elements one needs to integrate over, and x is the complete set of coordinates used to describe the systems A and B. The denotes complex conjugation. (We will not write A B. To save ink we use just one vertical bar A B.) Whereas it may initially be a little difficult to get an understanding of the nature of B, the object A B is much simpler: It is a complex number. For consistency we must require that A B = B A. (7.5) This follows from a complex conjugation of Eq.(7.4). We can understand the definition in Eq.(7.4) in terms of another definition andanapplicationofanoperator. Wewrite A B asasumoverallintermediate states. Any set of complete states can be used. Let s begin with the set of all position eigenstates. Insertion of this set is accompliced with the operator 1 = x x x. (7.6) This is another object you will have to get used to. Insertion of this gives A B = A ( x x x) B = x A x x B. (7.7)

3 19 A sum over all x is an integral and we can write A B = A x x B dx. (7.8) x The two quantities A x and x B are complex numbers, and A x = x A. We can therefore identify them with the wavefunctions in coordinate space: x A = ψ A (x), (7.9) and similarly for B. This is precisely what Eq.(7.4) says. Expectation values are taken by sandwiching the ket with a bra, to give us a bra-ket (which is the origin of the name, if you didn t already notice this). The expectation value of some operator Q for state A is If A is an eigenstate of Q with eigenvalue a the expectation value is A Q A = Q. (7.10) Q A = a A, (7.11) A Q A = A a A. (7.12) Because a is just a number we can take it outside the bra-ket and we get (the state is normalized, A A = 1), A Q A = a. (7.13) This can be generalized to states that are not eigenstates of Q. Write the state as a superposition of the eigenstates of Q; A = j c j q j, (7.14) where the c j s are complex numbers that obey the normalization condition c j 2 = 1. (7.15) Inserting Eq.(7.14) into the definition of expectation values gives j A Q A = k q k c kq j c j q j. (7.16) Note the complex conjugation of the coefficients on the bras. The Q operating on the kets can be calculated because the states are eigenstates of Q: Q j c j q j = j c j q j q j. (7.17)

4 20 CHAPTER 7. KET AND BRA NOTATION Inserting this into Eq.(7.16) we therefore get A Q A = q k c k c j q j q j. (7.18) k j The eigenstates of Q are orthogonal and normalized. This means that q k q j = δ j,k (= 1 if j = k and zero otherwise, the Kronecker delta). The double sum therefore reduces to a single sum A Q A = j q j c jc j q j q j = j q j c j 2 q j q j. (7.19) Here c j 2 q j arejustnumbers, notoperators,andcanetakenoutsidethebra-ket. Because the states are normalized we finally get A Q A = j c j 2 q j. (7.20) Apart from the fact that the left hand side is written differently from what you may be used to, this is precisely what you have already learned in quantum mechanics about expectation values. A complete set does not have to be spanned by coordinates. It can be every complete set, as the momentum states. The overlap A B can be calculated as A B = A p p B = ψ A (p) ψ B (p)dp, (7.21) p where the tilde indicates that it is the wavefunction in momentum space. The useofbra sand ket sdoesnotdoanythingto the fundamentalequations of quantum mechanics. But they have two advantages; they provide an easier way to handle the equations, and they remind us that the world is not made out of wavefunctions that move around in space but of vectors that move around in Hilbert spaces. A few examples. The inner product x p is the wavefunction of the momentum eigenstate p (in one dimension), x p e ipx/. (7.22) We may or may not include the time in this expression. The proportionality sign indicates that plane waves are non-trivial to normalize because they are infinite in extension. The inner product p 1 p 2 is calculated to p 1 p 2 = dx p 1 x x p 2 dxe ip1x/ e ip2x/ = 2π δ(p 2 p 1 ), (7.23) where δ is the Dirac deltafunction. Wecanalsousetheformalismtofindouthowweconvertfromthecoordinate representation of the wavefunction, x A, to the momentum representation,

5 21 p A. We do it by inserting a complete set: ψ A (p) = p A = p x x A = dx x p x A dxe ipx/ ψ A (x). x x x (7.24) The momentum space wavefunction is a Fourier transform of the coordinate space wavefunction, as you may know already.

Hermitian Operators An important property of operators is suggested by considering the Hamiltonian for the particle in a box: d 2 dx 2 (1)

CHAPTER 4 PRINCIPLES OF QUANTUM MECHANICS In this Chapter we will continue to develop the mathematical formalism of quantum mechanics, using heuristic arguments as necessary. This will lead to a system

Mixed states and pure states

Mixed states and pure states (Dated: April 9, 2009) These are brief notes on the abstract formalism of quantum mechanics. They will introduce the concepts of pure and mixed quantum states. Some statements

The Central Equation

The Central Equation Mervyn Roy May 6, 015 1 Derivation of the central equation The single particle Schrödinger equation is, ( H E nk ψ nk = 0, ) ( + v s(r) E nk ψ nk = 0. (1) We can solve Eq. (1) at given

Bra-ket notation - Wikipedia, the free encyclopedia

Page 1 Bra-ket notation FromWikipedia,thefreeencyclopedia Bra-ket notation is the standard notation for describing quantum states in the theory of quantum mechanics. It can also be used to denote abstract

A. The wavefunction itself Ψ is represented as a so-called 'ket' Ψ>.

Quantum Mechanical Operators and Commutation C I. Bra-Ket Notation It is conventional to represent integrals that occur in quantum mechanics in a notation that is independent of the number of coordinates

The Essentials of Quantum Mechanics

The Essentials of Quantum Mechanics Prof. Mark Alford v7, 2008-Oct-22 In classical mechanics, a particle has an exact, sharply defined position and an exact, sharply defined momentum at all times. Quantum

The Sixfold Path to understanding bra ket Notation

The Sixfold Path to understanding bra ket Notation Start by seeing the three things that bra ket notation can represent. Then build understanding by looking in detail at each of those three in a progressive

4. The Infinite Square Well

4. The Infinite Square Well Copyright c 215 216, Daniel V. Schroeder In the previous lesson I emphasized the free particle, for which V (x) =, because its energy eigenfunctions are so simple: they re the

1D 3D 1D 3D. is called eigenstate or state function. When an operator act on a state, it can be written as

Chapter 3 (Lecture 4-5) Postulates of Quantum Mechanics Now we turn to an application of the preceding material, and move into the foundations of quantum mechanics. Quantum mechanics is based on a series

Quick Reference Guide to Linear Algebra in Quantum Mechanics

Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................

For the case of an N-dimensional spinor the vector α is associated to the onedimensional . N

1 CHAPTER 1 Review of basic Quantum Mechanics concepts Introduction. Hermitian operators. Physical meaning of the eigenvectors and eigenvalues of Hermitian operators. Representations and their use. on-hermitian

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules Lecture 2 Bra-ket notation and molecular Hamiltonians C.-K. Skylaris Learning outcomes Be able to manipulate quantum chemistry expressions using bra-ket notation Be

We can represent the eigenstates for angular momentum of a spin-1/2 particle along each of the three spatial axes with column vectors: 1 +y =

Chapter 0 Pauli Spin Matrices We can represent the eigenstates for angular momentum of a spin-/ particle along each of the three spatial axes with column vectors: +z z [ ] 0 [ ] 0 +y y [ ] / i/ [ ] i/

Chemistry 431. NC State University. Lecture 3. The Schrödinger Equation The Particle in a Box (part 1) Orthogonality Postulates of Quantum Mechanics

Chemistry 431 Lecture 3 The Schrödinger Equation The Particle in a Box (part 1) Orthogonality Postulates of Quantum Mechanics NC State University Derivation of the Schrödinger Equation The Schrödinger

1 The Fourier Transform

Physics 326: Quantum Mechanics I Prof. Michael S. Vogeley The Fourier Transform and Free Particle Wave Functions 1 The Fourier Transform 1.1 Fourier transform of a periodic function A function f(x) that

2 Creation and Annihilation Operators

Physics 195 Course Notes Second Quantization 030304 F. Porter 1 Introduction This note is an introduction to the topic of second quantization, and hence to quantum field theory. In the Electromagnetic

Lecture 4. Reading: Notes and Brennan

Lecture 4 Postulates of Quantum Mechanics, Operators and Mathematical Basics of Quantum Mechanics Reading: Notes and Brennan.3-.6 ECE 645 - Dr. Alan Doolittle Postulates of Quantum Mechanics Classical

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

Harmonic Oscillator Physics

Physics 34 Lecture 9 Harmonic Oscillator Physics Lecture 9 Physics 34 Quantum Mechanics I Friday, February th, 00 For the harmonic oscillator potential in the time-independent Schrödinger equation: d ψx

Rutgers - Physics Graduate Qualifying Exam Quantum Mechanics: September 1, 2006

Rutgers - Physics Graduate Qualifying Exam Quantum Mechanics: September 1, 2006 QA J is an angular momentum vector with components J x, J y, J z. A quantum mechanical state is an eigenfunction of J 2 J

The Schrödinger Equation. Erwin Schrödinger Nobel Prize in Physics 1933

The Schrödinger Equation Erwin Schrödinger 1887-1961 Nobel Prize in Physics 1933 The Schrödinger Wave Equation The Schrödinger wave equation in its time-dependent form for a particle of energy E moving

221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization)

221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already.

CHAPTER 12 MOLECULAR SYMMETRY

CHAPTER 12 MOLECULAR SYMMETRY In many cases, the symmetry of a molecule provides a great deal of information about its quantum states, even without a detailed solution of the Schrödinger equation. A geometrical

Primer on Index Notation

Massachusetts Institute of Technology Department of Physics Physics 8.07 Fall 2004 Primer on Index Notation c 2003-2004 Edmund Bertschinger. All rights reserved. 1 Introduction Equations involving vector

Physics 221A Spring 2016 Notes 1 The Mathematical Formalism of Quantum Mechanics

Copyright c 2016 by Robert G. Littlejohn Physics 221A Spring 2016 Notes 1 The Mathematical Formalism of Quantum Mechanics 1. Introduction The prerequisites for Physics 221A include a full year of undergraduate

Physics 70007, Fall 2009 Solutions to HW #4

Physics 77, Fall 9 Solutions to HW #4 November 9. Sakurai. Consider a particle subject to a one-dimensional simple harmonic oscillator potential. Suppose at t the state vector is given by ipa exp where

From Einstein to Klein-Gordon Quantum Mechanics and Relativity

From Einstein to Klein-Gordon Quantum Mechanics and Relativity Aline Ribeiro Department of Mathematics University of Toronto March 24, 2002 Abstract We study the development from Einstein s relativistic

Time dependence in quantum mechanics Notes on Quantum Mechanics

Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:37-05:00 Copyright 2003 Dan

2. Wavefunctions. An example wavefunction

2. Wavefunctions Copyright c 2015 2016, Daniel V. Schroeder To create a precise theory of the wave properties of particles and of measurement probabilities, we introduce the concept of a wavefunction:

Harmonic Oscillator and Coherent States

Chapter 5 Harmonic Oscillator and Coherent States 5. Harmonic Oscillator In this chapter we will study the features of one of the most important potentials in physics, it s the harmonic oscillator potential

Operator methods in quantum mechanics

Chapter 3 Operator methods in quantum mechanics While the wave mechanical formulation has proved successful in describing the quantum mechanics of bound and unbound particles, some properties can not be

An introduction to generalized vector spaces and Fourier analysis. by M. Croft

1 An introduction to generalized vector spaces and Fourier analysis. by M. Croft FOURIER ANALYSIS : Introduction Reading: Brophy p. 58-63 This lab is u lab on Fourier analysis and consists of VI parts.

CHAPTER 5 THE HARMONIC OSCILLATOR

CHAPTER 5 THE HARMONIC OSCILLATOR The harmonic oscillator is a model which has several important applications in both classical and quantum mechanics. It serves as a prototype in the mathematical treatment

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

Notes on wavefunctions

Notes on wavefunctions The double slit experiment In the double slit experiment, a beam of light is send through a pair of slits, and then observed on a screen behind the slits. At first, we might expect

Linear Algebra In Dirac Notation

Chapter 3 Linear Algebra In Dirac Notation 3.1 Hilbert Space and Inner Product In Ch. 2 it was noted that quantum wave functions form a linear space in the sense that multiplying a function by a complex

State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

MITES 2010: Physics III Survey of Modern Physics Final Exam Solutions

MITES 2010: Physics III Survey of Modern Physics Final Exam Solutions Exercises 1. Problem 1. Consider a particle with mass m that moves in one-dimension. Its position at time t is x(t. As a function of

CHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules

CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction

We have seen in the previous Chapter that there is a sense in which the state of a quantum

Chapter 8 Vector Spaces in Quantum Mechanics We have seen in the previous Chapter that there is a sense in which the state of a quantum system can be thought of as being made up of other possible states.

ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT

www.arpapress.com/volumes/vol12issue2/ijrras_12_2_22.pdf ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT M. C. Anumaka Department of Electrical Electronics Engineering,

Lecture 2. Observables

Lecture 2 Observables 13 14 LECTURE 2. OBSERVABLES 2.1 Observing observables We have seen at the end of the previous lecture that each dynamical variable is associated to a linear operator Ô, and its expectation

Second postulate of Quantum mechanics: If a system is in a quantum state represented by a wavefunction ψ, then 2

. POSTULATES OF QUANTUM MECHANICS. Introducing the state function Quantum physicists are interested in all kinds of physical systems (photons, conduction electrons in metals and semiconductors, atoms,

Fourier Series and Sturm-Liouville Eigenvalue Problems

Fourier Series and Sturm-Liouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Half-range Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

Fermi s Golden Rule. Emmanuel N. Koukaras A.M.: 198

Fermi s Golden Rule Emmanuel N. Kouaras A.M.: 198 Abstract We present a proof of Fermi s Golden rule from an educational perspective without compromising formalism. 2 1. Introduction Fermi s Golden Rule

Quantum Physics II (8.05) Fall 2013 Assignment 4

Quantum Physics II (8.05) Fall 2013 Assignment 4 Massachusetts Institute of Technology Physics Department Due October 4, 2013 September 27, 2013 3:00 pm Problem Set 4 1. Identitites for commutators (Based

Mathematical Formulation of the Superposition Principle

Mathematical Formulation of the Superposition Principle Superposition add states together, get new states. Math quantity associated with states must also have this property. Vectors have this property.

Notes on wavefunctions III: time dependence and the Schrödinger equation

Notes on wavefunctions III: time dependence and the Schrödinger equation We now understand that the wavefunctions for traveling particles with momentum p look like wavepackets with wavelength λ = h/p,

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates 5th April 2010 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

Quantum Mechanics: Fundamental Principles and Applications

Quantum Mechanics: Fundamental Principles and Applications John F. Dawson Department of Physics, University of New Hampshire, Durham, NH 0384 October 14, 009, 9:08am EST c 007 John F. Dawson, all rights

Basic Quantum Mechanics

Basic Quantum Mechanics Postulates of QM - The state of a system with n position variables q, q, qn is specified by a state (or wave) function Ψ(q, q, qn) - To every observable (physical magnitude) there

Introduction to Green s Functions: Lecture notes 1

October 18, 26 Introduction to Green s Functions: Lecture notes 1 Edwin Langmann Mathematical Physics, KTH Physics, AlbaNova, SE-16 91 Stockholm, Sweden Abstract In the present notes I try to give a better

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Exam Solutions Dec. 13, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Exam Solutions Dec. 1, 2004 No materials allowed. If you can t remember a formula, ask and I might help. If you can t do one part of a problem,

Matrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,

LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x

From Fourier Series to Fourier Integral

From Fourier Series to Fourier Integral Fourier series for periodic functions Consider the space of doubly differentiable functions of one variable x defined within the interval x [ L/2, L/2]. In this

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2

- develop a theory that describes the wave properties of particles correctly

Quantum Mechanics Bohr's model: BUT: In 1925-26: by 1930s: - one of the first ones to use idea of matter waves to solve a problem - gives good explanation of spectrum of single electron atoms, like hydrogen

Lecture 22 Relevant sections in text: 3.1, 3.2. Rotations in quantum mechanics

Lecture Relevant sections in text: 3.1, 3. Rotations in quantum mechanics Now we will discuss what the preceding considerations have to do with quantum mechanics. In quantum mechanics transformations in

Quantum Chemistry Exam 2 Solutions (Take-home portion)

Chemistry 46 Spring 5 Name KEY Quantum Chemistry Exam Solutions Take-home portion 5. 5 points In this problem, the nonlinear variation method will be used to determine approximations to the ground state

INTRODUCTION TO FOURIER TRANSFORMS FOR PHYSICISTS

INTRODUCTION TO FOURIER TRANSFORMS FOR PHYSICISTS JAMES G. O BRIEN As we will see in the next section, the Fourier transform is developed from the Fourier integral, so it shares many properties of the

Fourier Analysis. A cosine wave is just a sine wave shifted in phase by 90 o (φ=90 o ). degrees

Fourier Analysis Fourier analysis follows from Fourier s theorem, which states that every function can be completely expressed as a sum of sines and cosines of various amplitudes and frequencies. This

Till now, almost all attention has been focussed on discussing the state of a quantum system.

Chapter 13 Observables and Measurements in Quantum Mechanics Till now, almost all attention has been focussed on discussing the state of a quantum system. As we have seen, this is most succinctly done

Lecture 2: Angular momentum and rotation

Lecture : Angular momentum and rotation Angular momentum of a composite system Let J and J be two angular momentum operators. One might imagine them to be: the orbital angular momentum and spin of a particle;

Physics 53. Wave Motion 1

Physics 53 Wave Motion 1 It's just a job. Grass grows, waves pound the sand, I beat people up. Muhammad Ali Overview To transport energy, momentum or angular momentum from one place to another, one can

1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

Contents Quantum states and observables

Contents 2 Quantum states and observables 3 2.1 Quantum states of spin-1/2 particles................ 3 2.1.1 State vectors of spin degrees of freedom.......... 3 2.1.2 Pauli operators........................

Particle in a Box : Absorption Spectrum of Conjugated Dyes

Particle in a Box : Absorption Spectrum of Conjugated Dyes Part A Recording the Spectra and Theoretical determination of λ max Theory Absorption bands in the visible region of the spectrum (350-700 nm)

Symbols, conversions, and atomic units

Appendix C Symbols, conversions, and atomic units This appendix provides a tabulation of all symbols used throughout this thesis, as well as conversion units that may useful for reference while comparing

The Schrödinger Equation

The Schrödinger Equation When we talked about the axioms of quantum mechanics, we gave a reduced list. We did not talk about how to determine the eigenfunctions for a given situation, or the time development

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

Teoretisk Fysik KTH Advanced QM (SI238), test questions NOTE THAT I TYPED THIS IN A HURRY AND TYPOS ARE POSSIBLE: PLEASE LET ME KNOW BY EMAIL IF YOU FIND ANY (I will try to correct typos asap - if you

3. A LITTLE ABOUT GROUP THEORY

3. A LITTLE ABOUT GROUP THEORY 3.1 Preliminaries It is an apparent fact that nature exhibits many symmetries, both exact and approximate. A symmetry is an invariance property of a system under a set of

Solved Problems on Quantum Mechanics in One Dimension

Solved Problems on Quantum Mechanics in One Dimension Charles Asman, Adam Monahan and Malcolm McMillan Department of Physics and Astronomy University of British Columbia, Vancouver, British Columbia, Canada

1 Introduction to quantum mechanics

ntroduction to quantum mechanics Quantum mechanics is the basic tool needed to describe, understand and devise NMR experiments. Fortunately for NMR spectroscopists, the quantum mechanics of nuclear spins

Quantum interference with slits

1 Quantum interference with slits Thomas V Marcella Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854-2881, USA E-mail: thomasmarcella@verizon.net In the experiments

Lecture 18 Time-dependent perturbation theory

Lecture 18 Time-dependent perturbation theory Time-dependent perturbation theory So far, we have focused on quantum mechanics of systems described by Hamiltonians that are time-independent. In such cases,

07. Quantum Mechanics Basics.

07. Quantum Mechanics Basics. Stern-Gerlach Experiment (Stern & Gerlach 1922) magnets splotches sliver atoms detection screen Suggests: Electrons possess 2-valued "spin" properties. (Goudsmit & Uhlenbeck

Chemistry 417! 1! Fall Chapter 2 Notes

Chemistry 417! 1! Fall 2012 Chapter 2 Notes September 3, 2012! Chapter 2, up to shielding 1. Atomic Structure in broad terms a. nucleus and electron cloud b. nomenclature, so we may communicate c. Carbon-12

1 Complex Numbers in Quantum Mechanics

1 Complex Numbers in Quantum Mechanics Complex numbers and variables can be useful in classical physics. However, they are not essential. To emphasize this, recall that forces, positions, momenta, potentials,

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

Hilbert Space Quantum Mechanics

qitd114 Hilbert Space Quantum Mechanics Robert B. Griffiths Version of 16 January 2014 Contents 1 Introduction 1 1.1 Hilbert space............................................. 1 1.2 Qubit.................................................

H = = + H (2) And thus these elements are zero. Now we can try to do the same for time reversal. Remember the

1 INTRODUCTION 1 1. Introduction In the discussion of random matrix theory and information theory, we basically explained the statistical aspect of ensembles of random matrices, The minimal information

Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

Lecture 18: Quantum Mechanics. Reading: Zumdahl 12.5, 12.6 Outline. Problems (Chapter 12 Zumdahl 5 th Ed.)

Lecture 18: Quantum Mechanics Reading: Zumdahl 1.5, 1.6 Outline Basic concepts of quantum mechanics and molecular structure A model system: particle in a box. Demos how Q.M. actually obtains a wave function.

Notes on Quantum Mechanics. Finn Ravndal Institute of Physics University of Oslo, Norway

Notes on Quantum Mechanics Finn Ravndal Institute of Physics University of Oslo, Norway e-mail: finnr@fys.uio.no v.4: December, 2006 2 Contents 1 Linear vector spaces 7 1.1 Real vector spaces...............................

Lecture-XXIV. Quantum Mechanics Expectation values and uncertainty

Lecture-XXIV Quantum Mechanics Expectation values and uncertainty Expectation values We are looking for expectation values of position and momentum knowing the state of the particle, i,e., the wave function

Introduction to quantum mechanics

Introduction to quantum mechanics Lecture 3 MTX9100 Nanomaterjalid OUTLINE -What is electron particle or wave? - How large is a potential well? -What happens at nanoscale? What is inside? Matter Molecule

We consider a hydrogen atom in the ground state in the uniform electric field

Lecture 13 Page 1 Lectures 13-14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and

How is a vector rotated?

How is a vector rotated? V. Balakrishnan Department of Physics, Indian Institute of Technology, Madras 600 036 Appeared in Resonance, Vol. 4, No. 10, pp. 61-68 (1999) Introduction In an earlier series

PHY 481/581 Intro Nano-Materials Science and engineering: Some Basics of Quantum Mechanics

PHY 481/581 Intro Nano-Materials Science and engineering: Some Basics of Quantum Mechanics http://creativecommons.org/licenses/by-nc-sa/2.5/ 1 Basics of Quantum Mechanics - Why Quantum Physics? - Experimental

PHY411. PROBLEM SET 3

PHY411. PROBLEM SET 3 1. Conserved Quantities; the Runge-Lenz Vector The Hamiltonian for the Kepler system is H(r, p) = p2 2 GM r where p is momentum, L is angular momentum per unit mass, and r is the

Mathematical Notation and Symbols

Mathematical Notation and Symbols 1.1 Introduction This introductory block reminds you of important notations and conventions used throughout engineering mathematics. We discuss the arithmetic of numbers,

Polarized Light and Quantum Mechanics

Polarized Light and Quantum Mechanics Introduction Readily available and inexpensive polarizing films can be used to illustrate many fundamental quantum mechanical concepts. The purpose of this tutorial

Introduction to Schrödinger Equation: Harmonic Potential

Introduction to Schrödinger Equation: Harmonic Potential Chia-Chun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential Time-Dependent Schrödinger Equation For a nonrelativistic particle

From Wave Mechanics to Matrix Mechanics: The Finite Element Method

Printed from file Rouen-2/Quantum/finite-elements.tex on November, 2 From Wave Mechanics to Matrix Mechanics: The Finite Element Method Robert Gilmore The Origin of Wave Mechanics Schrödinger originally

CHEM344 HW#7 Due: Fri, Mar BEFORE CLASS!

CHEM344 HW#7 Due: Fri, Mar 14@2pm BEFORE CLASS! HW to be handed in: Atkins Chapter 8: Exercises: 8.11(b), 8.16(b), 8.19(b), Problems: 8.2, 8.4, 8.12, 8.34, Chapter 9: Exercises: 9.5(b), 9.7(b), Extra (do

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

UNIVERSITY OF LONDON BSc/MSci EXAMINATION June 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship