# Inverses and powers: Rules of Matrix Arithmetic

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix Theorem (Uniqueness of Inverse) Inverse Test Lemma (Reduced Row Echelon Form for Square Matrices) Lemma (Condition for Singularity) Lemma (AB=I and Nonsingularity) Proposition (AB=I implies BA=I) Theorem (A Right Inverse is an Inverse) New Inverse Test Theorem (Exponents and Transpose) Theorem (Inverse of Product of Matrices) 1.3 The Computation of the Inverse of a Matrix 1.4 Applying the Inverse of a Matrix to Systems of Linear Equations Theorem (Solving Equations Using the Matrix Inverse) 1.5 Powers of a Matrix Theorem (Laws of Exponents) Inverses and powers: Rules of Matrix Arithmetic What about division of matrices? We have considered addition, subtraction and multiplication of matrices. What about division? When we consider real numbers, we can write as In addition, we may think of as the multiplicative inverse of a, that is, it is the number which, when multiplied by a yields 1. In other words, if we set, then Finally, 1 is the multiplicative identity, that is, r1 = 1r = r for any real number r. While these concepts can not be extended to matrices completely, there are some circumstances when they do make sense. First, we can note that matrices satisfy [a] + [b] = [a + b] and [a][b] = [ab]. This means that both addition and multiplication of these matrices are just like the addition and multiplication of the real numbers. In this sense, matrices may be thought of as a generalization of the real numbers. Next we remember that if A is, then I m A = A = AI n. This means that the identity matrix (or, more properly, matrices) acts like 1 does for the real numbers. This also means that if we want there to be a (single) matrix I satisfying IA = A = AI, then we must have m = n. This means we have to restrict ourselves to square matrices. Inverses and powers: Rules of Matrix Arithmetic 1

2 If A is and matrix, then I n A = A = AI n, and so I n acts in the same manner as does 1 for the real numbers. Indeed, that is the reason it is called the identity matrix. Finally, we want to find (if possible) a matrix A 1 so that A 1 A = AA 1 = I. When such a matrix exists, it is called the inverse of A, and the matrix A itself is called invertible. Properties of the Inverse of a Matrix We consistently refer to the inverse of A rather than an inverse of A, which would seem to imply that a matrix can have only one inverse. This is indeed true. Theorem (Uniqueness of Inverse) A square matrix A can have no more than one inverse. Proof: Suppose we have matrices B and C which both act as inverses, that is, AB = BA = I and AC = CA = I. We evaluate BAC in two different ways and equate the results: BAC = (BA)C = IC = C and also BAC = B(AC) = BI = B, and so B = C. Inverse Test If A and B are square matrices of the same size, then B is a left inverse of A if BA = I. Similarly, it is a right inverse of A if AB = I. By definition A 1 is the inverse of A if AB = BA = I, that is, B is both a left inverse and a right inverse. We next make an observation about the reduced row echelon form of square matrices: Lemma (Reduced Row Echelon Form for Square Matrices) If A is an matrix then 1. The reduced row echelon form of A is I n, or 2. The last row of the reduced row echelon form of A is all zero. Proof: If every row in the reduced row echelon form of A has a leading one, then, since A has the same number of rows as columns, so does every column. This means that the leading ones must be on the diagonal, and the every other entry of the matrix is zero. In other words, the reduced row echelon form is I n. If, on the other hand, some row does not have a leading one, then it is an all-zero row. Since these rows are at the bottom of the matrix when it is in reduced row echelon form, the last row, in particular, must be all zero. When the reduced row echelon form is I n, the matrix is called nonsingular. Otherwise it is called singular. Next we give a criterion for nonsingularity. It is trivial that if then If this is the only vector x for which this is true, then M is nonsingular. What about division of matrices? 2

3 Lemma (Condition for Singularity) Math1300:MainPage/Inverses M is nonsingular if and only if implies Proof: First, suppose that M is nonsingular. The the equation reduced row echelon form, gives the equation. Hence has an augmented matrix which, in Now suppose that M is singular. The reduced row echelon form is not I n, and so some column does not contain a leading 1, that is, there must exist a free variable. It can be assigned a nonzero value, and thus provide a nonzero solution to Lemma (AB=I and Nonsingularity) If AB=I then B is nonsingular. Proof: Suppose that Multiply both sides of the equation by A to get On the other hand, A(Bx) = (AB)x = Ix = x, and so Hence implies and so B is nonsingular. Proposition (AB=I implies BA=I) Suppose the A and B are square matrices with AB = I. Then BA = I. Proof: From the previous lemma we know that B is nonsingular. Hence we know how to find C which is a solution to the equation BX = I, that is, so that BC = I. We now evaluate BABC in two different ways and equate the results: We get an important result from this Proposition. Theorem (A Right Inverse is an Inverse) Suppose A and B are square matrices with AB = I. Then B = A 1. Proof: By the Proposition above, AB = I implies BA = I. Since the inverse of A is unique, B = A 1. New Inverse Test If A and B are square matrices then B is the inverse of A if and only if AB = I. Here is an application of the previous theorem: Lemma (Condition for Singularity) 3

4 Theorem (Exponents and Transpose) If A is a square matrix with inverse A 1 then (A T ) 1 = (A 1 ) T Proof: Let B = (A 1 ) T. Then A T B = A T (A 1 ) T = (A 1 A) T = I T = I and so B = (A T ) 1. Here is another application of the previous theorem: Theorem (Inverse of Product of Matrices) If A and B are invertible matrices of the same size, then AB is also invertible and (AB) 1 = B 1 A 1 Proof: Since (AB)(B 1 A 1 ) = A(BB 1 )A 1 = AIA 1 = AA 1 = I, it follows that B 1 A 1 is the inverse of AB. The Computation of the Inverse of a Matrix Suppose we have a square matrix A and the reduced row echelon form of A is I (that is, A is nonsingular). X is the inverse of A if it satisfies the equation AX = I. We have seen how to solve such equations. We conclude that if we start with the matrix [A I] then the reduced row echelon form will be [I A 1 ]. This not only allows us to compute the inverse of A but it also shows that nonsingular matrices are invertible and vice-versa. Example: If we start with then has, as its reduced row echelon form, and so we conclude that Theorem (Exponents and Transpose) 4

5 Applying the Inverse of a Matrix to Systems of Linear Equations Theorem (Solving Equations Using the Matrix Inverse) If a system of linear equations is given by the equations Ax = b, and A has an inverse, then x = A 1 b. Proof: We take the equation Ax = b and multiply both sides by A 1 : A 1 (Ax) = A 1 b and A 1 (Ax) = (A 1 A)x = Ix = x, and so x = A 1 b. Example: Suppose we want to solve the system of equations Then let and so that we are solving Ax = b. We have already done the computation to determine that Hence and the (only) solution is x = 1,x = 1,x = 0. Powers of a Matrix Suppose we have a square matrix A. Then A 2 = AA, A 3 = AAA, and in general, for m,n > 0 we have 1 (Note that A = A) Applying the Inverse of a Matrix to Systems of Linear Equations 5

6 For invertible matrices, nonpositive powers are defined so that these equalities remain valid. n = 0: A m A 0 = A m + 0 = A m, so A 0 = I. m = 1,n = 1: A 1 A 1 = A = A 0 = I so A 1 is the inverse of A (hence the notation). n = m: A m A m = A m + ( m) = A 0 = I so A m is the inverse of A m. Theorem (Laws of Exponents) For any invertible square matrix A and integers m and n, A m A n = A m + n (A m ) n = A mn (A 1 ) 1 = A (A n ) 1 = (A 1 ) n Proof: The first two results have already been verified. The method for the last three is the same: (A 1 )A = I implies that A is the inverse of A 1, that is, A = (A 1 ) 1. Evaluate so the the middle factors "disappear": and so (A 1 ) n is the inverse of A n. so is the inverse of ra. Powers of a Matrix 6

### Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

### Matrices: 2.3 The Inverse of Matrices

September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

### MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### 1.5 Elementary Matrices and a Method for Finding the Inverse

.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:

### Lecture 6. Inverse of Matrix

Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

### 4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

### Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true

### Math 313 Lecture #10 2.2: The Inverse of a Matrix

Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is

### NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that

NON SINGULAR MATRICES DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that AB = I n = BA. Any matrix B with the above property is called

### Diagonal, Symmetric and Triangular Matrices

Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

### 2.1: MATRIX OPERATIONS

.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

### The Inverse of a Matrix

The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square

### Math 2331 Linear Algebra

2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

### Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

### Matrix Inverse and Determinants

DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### ( % . This matrix consists of \$ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

### Matrices, transposes, and inverses

Matrices, transposes, and inverses Math 40, Introduction to Linear Algebra Wednesday, February, 202 Matrix-vector multiplication: two views st perspective: A x is linear combination of columns of A 2 4

### MathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?

MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All

### B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

### Lecture 10: Invertible matrices. Finding the inverse of a matrix

Lecture 10: Invertible matrices. Finding the inverse of a matrix Danny W. Crytser April 11, 2014 Today s lecture Today we will Today s lecture Today we will 1 Single out a class of especially nice matrices

### 9 Matrices, determinants, inverse matrix, Cramer s Rule

AAC - Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:

### Chapter 4: Binary Operations and Relations

c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### 1 Gaussian Elimination

Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

### Determinants. Dr. Doreen De Leon Math 152, Fall 2015

Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.

### Homework: 2.1 (page 56): 7, 9, 13, 15, 17, 25, 27, 35, 37, 41, 46, 49, 67

Chapter Matrices Operations with Matrices Homework: (page 56):, 9, 3, 5,, 5,, 35, 3, 4, 46, 49, 6 Main points in this section: We define a few concept regarding matrices This would include addition of

### MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

### Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

### A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

### (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

### Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we

### Solving Linear Systems, Continued and The Inverse of a Matrix

, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

### Elementary Row Operations and Matrix Multiplication

Contents 1 Elementary Row Operations and Matrix Multiplication 1.1 Theorem (Row Operations using Matrix Multiplication) 2 Inverses of Elementary Row Operation Matrices 2.1 Theorem (Inverses of Elementary

### 4. MATRICES Matrices

4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

### Mathematics Notes for Class 12 chapter 3. Matrices

1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form

### The Inverse of a Square Matrix

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Introduction to Matrix Algebra I

Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### Matrices Worksheet. Adding the results together, using the matrices, gives

Matrices Worksheet This worksheet is designed to help you increase your confidence in handling MATRICES. This worksheet contains both theory and exercises which cover. Introduction. Order, Addition and

### Lecture 2 Matrix Operations

Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

### LECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A

LECTURE I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find such that A = y. Recall: there is a matri I such that for all R n. It follows that

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### SECTION 8.3: THE INVERSE OF A SQUARE MATRIX

(Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or

### Matrix Algebra and Applications

Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2 - Matrices and Matrix Algebra Reading 1 Chapters

### Helpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants

### Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015

Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

### 2.5 Gaussian Elimination

page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3

### 8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

### L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014

L1-2. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself. -- Morpheus Primary concepts:

### Lecture 23: The Inverse of a Matrix

Lecture 23: The Inverse of a Matrix Winfried Just, Ohio University March 9, 2016 The definition of the matrix inverse Let A be an n n square matrix. The inverse of A is an n n matrix A 1 such that A 1

### We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

### Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

### Lecture 21: The Inverse of a Matrix

Lecture 21: The Inverse of a Matrix Winfried Just, Ohio University October 16, 2015 Review: Our chemical reaction system Recall our chemical reaction system A + 2B 2C A + B D A + 2C 2D B + D 2C If we write

### Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

### Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

### Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

### Math 240: Linear Systems and Rank of a Matrix

Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011

### SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

### 1 Eigenvalues and Eigenvectors

Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

### 7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0 has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

### APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A.

APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the co-factor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### 2.5 Elementary Row Operations and the Determinant

2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)

### 6. Cholesky factorization

6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

### 12.3 Inverse Matrices

2.3 Inverse Matrices Two matrices A A are called inverses if AA I A A I where I denotes the identit matrix of the appropriate size. For example, the matrices A 3 7 2 5 A 5 7 2 3 If we think of the identit

### MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

### NOTES on LINEAR ALGEBRA 1

School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

### 1. For each of the following matrices, determine whether it is in row echelon form, reduced row echelon form, or neither.

Math Exam - Practice Problem Solutions. For each of the following matrices, determine whether it is in row echelon form, reduced row echelon form, or neither. (a) 5 (c) Since each row has a leading that

### Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.

Solutions to Math 30 Take-home prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)

### Sergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014

Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of

### Solving Systems of Linear Equations; Row Reduction

Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed

### Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

### Typical Linear Equation Set and Corresponding Matrices

EWE: Engineering With Excel Larsen Page 1 4. Matrix Operations in Excel. Matrix Manipulations: Vectors, Matrices, and Arrays. How Excel Handles Matrix Math. Basic Matrix Operations. Solving Systems of

### EC9A0: Pre-sessional Advanced Mathematics Course

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Pre-sessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond

### Row Operations and Inverse Matrices on the TI-83

Row Operations and Inverse Matrices on the TI-83 I. Elementary Row Operations 2 8 A. Let A =. 2 7 B. To interchange rows and 2 of matrix A: MATRIX MATH C:rowSwap( MATRIX NAMES :[A],, 2 ) ENTER. 2 7 The

### 4 Solving Systems of Equations by Reducing Matrices

Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example

### In this leaflet we explain what is meant by an inverse matrix and how it is calculated.

5.5 Introduction The inverse of a matrix In this leaflet we explain what is meant by an inverse matrix and how it is calculated. 1. The inverse of a matrix The inverse of a square n n matrix A, is another

### DETERMINANTS. b 2. x 2

DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,

### Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants

Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen October 30, 2008 Overview

### 4.2. Linear Combinations and Linear Independence that a subspace contains the vectors

4.2. Linear Combinations and Linear Independence If we know that a subspace contains the vectors v 1 = 2 3 and v 2 = 1 1, it must contain other 1 2 vectors as well. For instance, the subspace also contains

### Chapter 1 - Matrices & Determinants

Chapter 1 - Matrices & Determinants Arthur Cayley (August 16, 1821 - January 26, 1895) was a British Mathematician and Founder of the Modern British School of Pure Mathematics. As a child, Cayley enjoyed

### MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### 160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

### T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

### Basics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20

Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical

### Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

### 10. Graph Matrices Incidence Matrix

10 Graph Matrices Since a graph is completely determined by specifying either its adjacency structure or its incidence structure, these specifications provide far more efficient ways of representing a