# Homework 3. Part 1. Name: Score: / null

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name: Score: / Homework 3 Part 1 null 1 For the following sample of scores, the standard deviation is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 2 2 For any set of data, the sum of the deviation scores will always be. A. impossible to determine without more information B. equal to zero C. greater than zero D. less than zero 3 For the following set of scores, the (x 2 ) is. Scores: 10, 10, 8, 3, 6, 5, 2, 7, 3 Answer Key: 396

2 4 A student kept track of the number of hours she studied each day for a 2-week period. The following daily scores were recorded (scores are in hours): 2.5, 3.2, 3.8, 1.3, 1.4, 0, 0, 2.6, 5.2, 4.8, 0, 4.6, 2.8, 3.3. The mean for this set of scores is. (Make sure that you round to two decimal places.) Answer Key: For a normally distributed set of data, what percentage of these data lie within three standard deviations of the mean? A. 99.7% B. 68% C. 95% D % Answer Key: A 6 For the following population of scores, the variance is. Scores: 1, 9, 8, 5, 7 Answer Key: 8

3 7 The value for the interquartile range is determined by. A. the middle scores in the distribution B. all of the scores in the distribution C. the extreme scores (both high and low) in the distribution D. the extremely high scores in the distribution Answer Key: A 8 For the following distribution, state whether you would use the mean or the median to represent the central tendency of the distribution. Scores: 2, 3, 8, 5, 7, 8 A. Median B. Mean 9 The value of one score in a distribution is changed from x = 20 to x = 30. Which measure(s) of central tendency is (are) certain to be changed? A. the mean and the median B. the mode C. the mean D. the median Answer Key: C

4 10 For the following frequency distribution table, the mean of x is. x f Answer Key: A population of scores has = 50 and = 10. If every score in the population is multiplied by 2, then the new mean and standard deviation would be. A. = 50 and = 10 B. = 50 and = 20 C. = 100 and = 20 D. = 100 and = 10 Answer Key: C 12 For the following set of scores, the (x) 2 is. Scores: 10, 10, 8, 3, 6, 5, 2, 7, 3 Answer Key: 2916

5 13 Attachments histogram.pdf For the set of scores in the frequency distribution histogram below, the mode is. Answer Key: 2 14 A population of N = 5 scores produces SS = 20. The variance for this population is. A. 5 B. 4 C. 5 D. 4 Answer Key: D 15 A sample consists of n = 16 scores. How many of the scores are used to calculate the sample variance? A. 15 B. all 16 C. 2 D. 8

6 16 Given the following values of central tendency for this distribution, determine whether the distribution is symmetrical, positively skewed, or negatively skewed: Mean = 14, median = 12, mode = 10 A. symmetrical B. negatively skewed C. positively skewed Answer Key: C 17 A population of scores has = 50 and = 10. If 5 points are added to every score in the population, then the new mean and standard deviation would be. A. = 55 and = 10 B. = 55 and = 15 C. = 50 and = 10 D. = 50 and = 15 Answer Key: A 18 What is the mean for the following sample of scores? Scores: 1, 2, 5, 4 A. 4 B. 12 C. 6 D. 3 Answer Key: D

7 19 For the following sample of scores, the variance is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 4 20 The mean is an appropriate measure of central tendency for summarizing data that that have been measured on a nominal scale. True False Answer Key: False 21 The sum of the squared deviation scores is SS = 60 for a sample of n = 5 scores. What is the variance for this sample? A. 12 B. 15 C. 240 D. 300

8 22 On an exam with a mean of = 70, you have a score of x = 75. Which of the following values for the standard deviation would give you the highest position within the class? A. = 10 B. = 5 C. = 1 D. cannot determine from the information given Answer Key: C 23 Which of the following symbols identifies the sample standard deviation? A. s 2 B. 2 C. D. s Answer Key: D 24 A population with a mean of = 6 has x = 42. How many scores are in the population? A. N = 7 B. N = 0.14 C. N = 252 D. cannot be determined from the information given Answer Key: A

9 25 For the following distribution, state whether you would use the mean or the median to represent the central tendency of the distribution. Scores: 1.2, 0.8, 1.1, 0.6, 25 A. mean B. median 26 Attachments histogram.pdf For the set of scores in the frequency distribution histogram below, the median is. Answer Key: The mean is a preferred measure for describing skewed distributions. True False Answer Key: False 28 For the following population of scores, the standard deviation is. Scores: 1, 9, 8, 5, 7. (Round your answer to two decimal places.) Answer Key:

10 29 Attachments histogram.pdf For the set of scores in the frequency distribution histogram below, the mean is. Answer Key: If a negatively skewed distribution has a mean of 50, then the mode is probably greater than 50. True False Answer Key: True 31 For a perfectly symmetrical distribution with µ = 30, the median would have a value. A. cannot be determined from the information given B. equal to 30 C. greater than 30 D. less than 30

11 32 A sample of n = 6 scores has a mean of M = 8. If one score with a value of x = 3 is removed from the sample, what is the mean for the remaining scores? A. 8 B. 5 C. 9.6 D. 9 Answer Key: D 33 A sample consists of n = 16 scores. How many of the scores are used to calculate the range? A. all 16 B. 4 C. 2 D. 8 Answer Key: C 34 Given the following values of central tendency for this distribution, determine whether the distribution is symmetrical, positively skewed, or negatively skewed: Mean = 14, median = 14, mode = 14 A. symmetrical B. negatively skewed C. positively skewed Answer Key: A

12 35 How would you characterize the shape of the frequency distribution histogram shown below? Attachments histogram.pdf A. symmetrical B. negatively skewed C. bimodal D. positively skewed Answer Key: D 36 A set of n = 6 scores has a mean of M = 10. Another set of scores has n = 4 and M = 20. If these two sets of scores are combined, what is the mean for the combined group? A. 16 B. 15 C. cannot be determine from the information given D. 14 Answer Key: D 37 A population has µ = 40 and = 8. If each score is divided by 2, the new standard deviation will be. A. 20 B. 4 C. 8 D. insufficient information, cannot be determined

13 38 What shape would you expect for the distribution of scores from a very hard exam for a large class of students? A. normal B. negatively skewed C. positively skewed D. symmetrical Answer Key: C

### Measures of Center Section 3-2 Definitions Mean (Arithmetic Mean)

Measures of Center Section 3-1 Mean (Arithmetic Mean) AVERAGE the number obtained by adding the values and dividing the total by the number of values 1 Mean as a Balance Point 3 Mean as a Balance Point

### Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

### Lesson 4 Measures of Central Tendency

Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

### Describing Data. We find the position of the central observation using the formula: position number =

HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

### Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

### Seminar paper Statistics

Seminar paper Statistics The seminar paper must contain: - the title page - the characterization of the data (origin, reason why you have chosen this analysis,...) - the list of the data (in the table)

### Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

### Descriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2

Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number

### CHAPTER 3 CENTRAL TENDENCY ANALYSES

CHAPTER 3 CENTRAL TENDENCY ANALYSES The next concept in the sequential statistical steps approach is calculating measures of central tendency. Measures of central tendency represent some of the most simple

### We will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:

MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having

### PROPERTIES OF MEAN, MEDIAN

PROPERTIES OF MEAN, MEDIAN In the last class quantitative and numerical variables bar charts, histograms(in recitation) Mean, Median Suppose the data set is {30, 40, 60, 80, 90, 120} X = 70, median = 70

### Statistics Review Solutions

Statistics Review Solutions 1. Katrina must take five exams in a math class. If her scores on the first four exams are 71, 69, 85, and 83, what score does she need on the fifth exam for her overall mean

### Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode

Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode Outline of the Course III. Descriptive Statistics A. Measures of Central Tendency (Chapter 3) 1. Mean 2. Median 3. Mode

### Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

### MEASURES OF CENTRAL TENDENCY

CHAPTER 5 MEASURES OF CENTRAL TENDENCY OBJECTIVES After completing this chapter, you should be able to define, discuss, and compute the most commonly encountered measures of central tendency the mean,

### Chapter 3 Central Tendency

Chapter 3 Central Tendency PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry B. Wallnau Learning Outcomes 1 2 3 4 5 6 Understand

### Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

### ( ) ( ) Central Tendency. Central Tendency

1 Central Tendency CENTRAL TENDENCY: A statistical measure that identifies a single score that is most typical or representative of the entire group Usually, a value that reflects the middle of the distribution

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### 2.3. Measures of Central Tendency

2.3 Measures of Central Tendency Mean A measure of central tendency is a value that represents a typical, or central, entry of a data set. The three most commonly used measures of central tendency are

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Raw data: 7, 8, 6, 3, 5, 5, 1, 6, 4, 10 Sorted data: 1, 3, 4, 5, 5, 6, 6, 7, 8, 10 Number of

### Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

### Statistics Chapter 3 Averages and Variations

Statistics Chapter 3 Averages and Variations Measures of Central Tendency Average a measure of the center value or central tendency of a distribution of values. Three types of average: Mode Median Mean

### Why do we measure central tendency? Basic Concepts in Statistical Analysis

Why do we measure central tendency? Basic Concepts in Statistical Analysis Chapter 4 Too many numbers Simplification of data Descriptive purposes What is central tendency? Measure of central tendency A

### MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

### 1 Measures for location and dispersion of a sample

Statistical Geophysics WS 2008/09 7..2008 Christian Heumann und Helmut Küchenhoff Measures for location and dispersion of a sample Measures for location and dispersion of a sample In the following: Variable

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1

Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 1-2 9 3-4 22 5-6

### Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### Chapter 3 : Central Tendency

Chapter 3 : Central Tendency Overview Definition: Central tendency is a statistical measure to determine a single score that t defines the center of a distribution. The goal of central tendency is to find

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

### Table 2-1. Sucrose concentration (% fresh wt.) of 100 sugar beet roots. Beet No. % Sucrose. Beet No.

Chapter 2. DATA EXPLORATION AND SUMMARIZATION 2.1 Frequency Distributions Commonly, people refer to a population as the number of individuals in a city or county, for example, all the people in California.

### MEASURES OF CENTER AND SPREAD MEASURES OF CENTER 11/20/2014. What is a measure of center? a value at the center or middle of a data set

MEASURES OF CENTER AND SPREAD Mean and Median MEASURES OF CENTER What is a measure of center? a value at the center or middle of a data set Several different ways to determine the center: Mode Median Mean

### COMPARISON MEASURES OF CENTRAL TENDENCY & VARIABILITY EXERCISE 8/5/2013. MEASURE OF CENTRAL TENDENCY: MODE (Mo) MEASURE OF CENTRAL TENDENCY: MODE (Mo)

COMPARISON MEASURES OF CENTRAL TENDENCY & VARIABILITY Prepared by: Jess Roel Q. Pesole CENTRAL TENDENCY -what is average or typical in a distribution Commonly Measures: 1. Mode. Median 3. Mean quantified

### x Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 3-1 Example 3-1: Solution

Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### Data. ECON 251 Research Methods. 1. Data and Descriptive Statistics (Review) Cross-Sectional and Time-Series Data. Population vs.

ECO 51 Research Methods 1. Data and Descriptive Statistics (Review) Data A variable - a characteristic of population or sample that is of interest for us. Data - the actual values of variables Quantitative

### LearnStat MEASURES OF CENTRAL TENDENCY, Learning Statistics the Easy Way. Session on BUREAU OF LABOR AND EMPLOYMENT STATISTICS

LearnStat t Learning Statistics the Easy Way Session on MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS OBJECTIVES At the end of the session,

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### Round to Decimal Places

Day 1 1 Round 5.0126 to 2 decimal 2 Round 10.3217 to 3 decimal 3 Round 0.1371 to 3 decimal 4 Round 23.4004 to 2 decimal 5 Round 8.1889 to 2 decimal 6 Round 9.4275 to 2 decimal 7 Round 22.8173 to 1 decimal

### Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

### Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

### Each exam covers lectures from since the previous exam and up to the exam date.

Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### Statistical Foundations: Measures of Location and Central Tendency and Summation and Expectation

Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #4-9/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location

### Frequency Distributions

Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data to get a general overview of the results. Remember, this is the goal

### Means, standard deviations and. and standard errors

CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### X - Xbar : ( 41-50) (48-50) (50-50) (50-50) (54-50) (57-50) Deviations: (note that sum = 0) Squared :

Review Exercises Average and Standard Deviation Chapter 4, FPP, p. 74-76 Dr. McGahagan Problem 1. Basic calculations. Find the mean, median, and SD of the list x = (50 41 48 54 57 50) Mean = (sum x) /

### Midterm Review Problems

Midterm Review Problems October 19, 2013 1. Consider the following research title: Cooperation among nursery school children under two types of instruction. In this study, what is the independent variable?

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 3 (b) 51

Chapter 2- Problems to look at Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Height (in inches) 1)

### Summarizing Data: Measures of Variation

Summarizing Data: Measures of Variation One aspect of most sets of data is that the values are not all alike; indeed, the extent to which they are unalike, or vary among themselves, is of basic importance

### Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

### GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

### Introduction to Statistics for Computer Science Projects

Introduction Introduction to Statistics for Computer Science Projects Peter Coxhead Whole modules are devoted to statistics and related topics in many degree programmes, so in this short session all I

### Frequency distributions, central tendency & variability. Displaying data

Frequency distributions, central tendency & variability Displaying data Software SPSS Excel/Numbers/Google sheets Social Science Statistics website (socscistatistics.com) Creating and SPSS file Open the

### Data Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010

Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References

### Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

### Topic 9 ~ Measures of Spread

AP Statistics Topic 9 ~ Measures of Spread Activity 9 : Baseball Lineups The table to the right contains data on the ages of the two teams involved in game of the 200 National League Division Series. Is

### Chapter 7 What to do when you have the data

Chapter 7 What to do when you have the data We saw in the previous chapters how to collect data. We will spend the rest of this course looking at how to analyse the data that we have collected. Stem and

### Chapter 2. Objectives. Tabulate Qualitative Data. Frequency Table. Descriptive Statistics: Organizing, Displaying and Summarizing Data.

Objectives Chapter Descriptive Statistics: Organizing, Displaying and Summarizing Data Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically

### Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

### 1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10. Bellwork 3-23-15 Simplify each expression.

Bellwork 3-23-15 Simplify each expression. 1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10 1 Objectives Find measures of central tendency and measures of variation for statistical data.

### 4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

### Central Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode

Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided

### Chapter 5: The normal approximation for data

Chapter 5: The normal approximation for data Context................................................................... 2 Normal curve 3 Normal curve.............................................................

### Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

### Assessment Anchors and Eligible Content Aligned to the Algebra 1 Pennsylvania Core Standards

Assessment Anchors and Eligible Content Aligned to the Algebra 1 Pennsylvania Core Standards MODULE 1 A1.1.1 ASSESSMENT ANCHOR Operations and Linear Equations & Inequalities Demonstrate an understanding

### Describing Data. Carolyn J. Anderson EdPsych 580 Fall Describing Data p. 1/42

Describing Data Carolyn J. Anderson EdPsych 580 Fall 2005 Describing Data p. 1/42 Describing Data Numerical Descriptions Single Variable Relationship Graphical displays Single variable. Relationships in

### 3: Summary Statistics

3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

### Unit 24 Hypothesis Tests about Means

Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a two-sample t test To perform a paired t test To perform a two-sample t test A measure of the amount

### Estimating and Finding Confidence Intervals

. Activity 7 Estimating and Finding Confidence Intervals Topic 33 (40) Estimating A Normal Population Mean μ (σ Known) A random sample of size 10 from a population of heights that has a normal distribution

### Measures of Central Tendency

Measures of Central Tendency TABLE OF CONTENTS Measures of Central Tendency... 1 What are MEASURES OF CENTRAL TENDENCY?... 1 Measures of Central Tendency... 1 Measures of Central Tendency... 1 Mode...

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### DATA HANDLING (3) Overview. Measures of dispersion (or spread) about the mean (ungrouped data) Lesson. Learning Outcomes and Assessment Standards

42 DATA HANDLING (3) Learning Outcomes and Assessment Standards Learning Outcome 4: Data handling and probability Assessment Standard AS 1(a) Calculate and represent measures of central tendency and dispersion

### Section 3.1 Measures of Central Tendency: Mode, Median, and Mean

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean One number can be used to describe the entire sample or population. Such a number is called an average. There are many ways to compute averages,

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

### Math Chapter 3 review

Math 116 - Chapter 3 review Name Find the mean for the given sample data. Unless otherwise specified, round your answer to one more decimal place than that used for the observations. 1) Bill kept track

### Unit 4: Statistics Measures of Central Tendency & Measures of Dispersion

Unit 4: Statistics Measures of Central Tendency & Measures of Dispersion 1 Measures of Central Tendency a measure that tells us where the middle of a bunch of data lies most common are Mean, Median, and

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### 3.2 Measures of Central Tendency

3. Measures of Central Tendency outlier an element of a data set that is very different from the others mean a measure of central tendency found by dividing the sum of all the data by the number of pieces

### Skew Dice TM Statistics Activities and Worksheets written by Robert Fathauer

Skew Dice TM Statistics Activities and Worksheets written by Robert Fathauer Teachers are given permission to print as many copies of the worksheets as needed for their own class. Individuals are given

### Ch. 3.1 # 3, 4, 7, 30, 31, 32

Math Elementary Statistics: A Brief Version, 5/e Bluman Ch. 3. # 3, 4,, 30, 3, 3 Find (a) the mean, (b) the median, (c) the mode, and (d) the midrange. 3) High Temperatures The reported high temperatures