Chapter 4 Objectives


 Joan Charles
 2 years ago
 Views:
Transcription
1 Chapter 4 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 4 Objectives Understand and be able to use the nodevoltage method to solve a circuit; Understand and be able to use the meshcurrent method to solve a circuit; Be able to determine which technique is best for a particular circuit; Understand source transformations and be able to use them to simplify a circuit; Understand the concept of Thevenin and Norton equivalent circuits and be able to derive one; Know the condition for maximum power transfer to a resistive load and be able to calculate the value of the load resistor that satisfies this condition. Engr228  Chapter 4, Nilsson 10E 1
2 Engr228  Chapter 4, Nilsson 10E 2
3 Circuit Analysis As circuits get more complicated, we need an organized method of applying KVL, KCL, and Ohm s law. Nodal analysis assigns voltages to each node, and then we apply Kirchhoff's Current Law to solve for the node voltages. Mesh analysis assigns currents to each mesh, and then we apply Kirchhoff s Voltage Law to solve for the mesh currents. Review  Nodes, Paths, Loops, Branches These two networks are equivalent. There are three nodesand five branches: Node: a point at which two or more elements have a common connection point. Branch: a single path in a network composed of one simple element and the node at each end of that element. A path is a sequence of nodes. A loop is a closed path. Engr228  Chapter 4, Nilsson 10E 3
4 Review  Kirchhoff s Current Law Kirchhoff s Current Law (KCL) states that the algebraic sum of all currents entering a node is zero. i A + i B + ( i C ) + ( i D ) = 0 Review  Kirchhoff s Voltage Law Kirchhoff s Voltage Law (KVL) states that the algebraic sum of the voltages around any closed path is zero. v 1 + v 2 + v 3 = 0 Engr228  Chapter 4, Nilsson 10E 4
5 Node Example Node = every point along the same wire 6K V 10V 4K 3 nodes Nodes How many nodes are there in the circuit(s) below? Engr228  Chapter 4, Nilsson 10E 5
6 Notes on Writing Nodal Equations All terms in the equations are in units of current. Everyone has their own style of writing nodal equations The important thing is that you remain consistent. Probably the easiest method if you are just getting started is to remember that: current entering a node = current leaving the node Current directions can be assigned arbitrarily, unless they are previously specified. The Nodal Analysis Method Assign voltages to every node relative to a reference node. Engr228  Chapter 4, Nilsson 10E 6
7 Choosing the Reference Node By convention, the bottom node is often the reference node. If a ground connection is shown, then that becomes the reference node. Otherwise, choose a node with many connections. The reference node is most often assigned a value of 0.00 volts. Apply KCL to Find Voltages Assume reference voltage = 0.0 volts Assign current names and directions Apply KCL to node v 1 ( Σ out = Σ in) Apply Ohm s law to each resistor: v v v = 3.1 Engr228  Chapter 4, Nilsson 10E 7
8 Apply KCL to Find Voltages Apply KCL to node v 2 ( Σ out = Σ in) Apply Ohm s law to each resistor: v1 v2 v2 0 = + ( 1.4) 5 1 We now have two equations for the two unknowns v 1 and v 2 and we can solve them simultaneously: v 1 = 5V and v 2 = 2V Example: Nodal Analysis Find the current i in the circuit below. Answer: i = 0 (since v 1 =v 2 =20 V) Engr228  Chapter 4, Nilsson 10E 8
9 Nodal Analysis: Dependent Source Example Determine the power supplied by the dependent source. Key step: eliminate i 1 from the equations using v 1 =2i 1 v1 v2 v = v v v2 + 3i1 = 1 0 i1 = v Answer: 4.5 kw being generated Example #2 How many nodes are in this circuit? How many nodal equations must you write to solve for the unknown voltages? 4Ω 3A V2 V1 3Ω V38A 1Ω 5Ω 25A 0V Engr228  Chapter 4, Nilsson 10E 9
10 Example #2 node V13A 4Ω 3Ω V1 V2 V38A 1Ω 5Ω 25A 0V At node V 1 V1 V 3 V1 V = V 1 3V V 1 4V 2 = 0 7V1 4V 2 3V 3 = 132 Example #2 node V23A 4Ω 3Ω V1 V2 V38A 1Ω 5Ω 25A 0V At node V 2 V 2 V1 V 2 V 3 V = V 2 2V V 2 3V 3 + 6V 2 = 0 2V 1+ 11V 2 3V 3 = 18 Engr228  Chapter 4, Nilsson 10E 10
11 Example #2 node V33A 4Ω 3Ω V1 V2 V38A 1Ω 5Ω 25A 0V At node V 3 V 3 V 2 V 3 V1 V = V 3 10V 2 + 5V 3 5V V 3 = 0 5V 1 10V V 3 = 500 All 3 Equations 7V1 4V 2 3V 3 = 132 2V 1+ 11V 2 3V 3 = 18 5V 1 10V V 3 = 500 Answer: V1 = 0.956V V2 = V V3 = V Engr228  Chapter 4, Nilsson 10E 11
12 Voltage Sources and the Supernode If there is a DC voltage source between two nonreference nodes, you can get into trouble when trying to use KCL between the two nodes because the current through the voltage source may not be known, and an equation cannot be written for it. Therefore, we create a supernode. The Supernode Analysis Technique Apply KCL at Node v 1. Apply KCL at the supernode. Add the equation for the voltage source inside the supernode. v 1 = V v 2 = 10.5V v 3 = 32.5V v1 v3 4 v1 v2 3 v v 3 2 v1 v + 3 v1 v + 4 = = 3 8 v2 v3 = Engr228  Chapter 4, Nilsson 10E 12
13 Supernode Example 3A 4Ω 3Ω V1 V2 V3 1V 8A 1Ω 5Ω 25A 0V Supernode Example Node V13A 4Ω 3Ω V1 V2 V3 1V 8A 1Ω 5Ω 25A 0V At node V 1 V1 V 3 V1 V = V 1 3V V 1 4V 2 = 0 7V1 4V 2 3V 3 = 132 Engr228  Chapter 4, Nilsson 10E 13
14 Supernode Example Nodes V2 and V3 4Ω 3A 3Ω V1 V2 V3 1V 8A 1Ω 5Ω 25A supernode At node V 2 Supernode 0V V 2 V1 V 3 V1 V 3 0 V = V 2 20V V 3 15V V V 2 = 0 35V 1+ 80V V 3 = 1680 V 2 V 3 = 1 Solving Simultaneous Equations 7V 1 4V 2 3V 3 = V 1+ 80V V 3 = 1680 V 2 V 3 = 1 V1 = V V2 = V V3 = V Engr228  Chapter 4, Nilsson 10E 14
15 Textbook Problem 4.32 Nilsson 10E Use the nodevoltage method to solve for the currents in the circuit below. Answer: i a = 0.1A i b = 0.3A i c = 0.2A Mesh Analysis: Nodal Alternative A mesh is a loop that does not contain any other loops within it. In mesh analysis, we assign mesh currents and solve using KVL. All terms in the equations are in units of voltage. Remember voltage drops in the direction of current flow except for sources that are generating power. The circuit below has four meshes: Engr228  Chapter 4, Nilsson 10E 15
16 Mesh Example Simple resistive circuit showing three paths, which represent three mesh currents. Note that I R3 = I 1 I 2 The Mesh Analysis Method Mesh currents Branch currents Engr228  Chapter 4, Nilsson 10E 16
17 Mesh: Apply KVL Apply KVL to mesh 1 ( Σ voltage drops = 0 ): i 1 +3(i 1 i 2 ) = 0 Apply KVL to mesh 2 ( Σ voltage drops = 0 ): 3(i 2 i 1 ) + 4i 210 = 0 i 1 = 6A i 2 = 4A Example: Mesh Analysis Determine the power supplied by the 2 V source. Applying KVL to the meshes: 5 + 4i 1 + 2(i 1 i 2 ) 2 = (i 2 i 1 ) + 5i = 0 i 1 = A i 2 = A Answer: W (the source is generating power) Engr228  Chapter 4, Nilsson 10E 17
18 A Three Mesh Example Follow each mesh clockwise Simplify Solve the equations: i 1 = 3 A, i 2 = 2 A, and i 3 = 3 A Example Use mesh analysis to determine Vx 1Ω I2 7V I1 6V + Vx  3Ω I3 1Ω Engr228  Chapter 4, Nilsson 10E 18
19 Example  continued 7V I1 6V 1Ω I2 + Vx  3Ω I3 1Ω 7 + 1( I1 I 2) ( I1 I3) = 0 3I1 I 2 2I3 = 1 Equation I 1( I 2 I1) + 2I 2 + 3( I 2 I3) = 0 I1+ 6I 2 3I3 = 0 Equation II 2( I3 I1) 6 + 3( I3 I 2) + I3 = 0 2I1 3I 2 + 6I3 = 6 Equation III I 1 = 3A, I 2 = 2A, I 3 = 3A Vx = 3(I3I2) = 3V Current Sources and the Supermesh If a current source is present in the network and shared between two meshes, then you must use a supermesh formed from the two meshes that have the shared current source. Engr228  Chapter 4, Nilsson 10E 19
20 Supermesh Example Use mesh analysis to evaluate Vx 1Ω I2 7V I1 7A + Vx  3Ω I3 1Ω Supermesh Example  continued 1Ω I2 7V I1 7A + Vx  3Ω I3 1Ω Loop 2: 1( I 2 I1) + 2I 2 + 3( I 2 I3) = 0 I1+ 6I 2 3I3 = 0 Equation I Engr228  Chapter 4, Nilsson 10E 20
21 Supermesh Example  continued Supermesh 1Ω I2 7V I1 + Vx  3Ω 7A I3 1Ω I 1 = 9A I 2 = 2.5A I 3 = 2A Vx = 3(I3I2) = 1.5V 7 + 1( I1 I 2) + 3( I3 I 2) + I3 = 0 I1 4I 2 + 4I3 = 7 I1 I3 = 7 Equation II Equation III Node or Mesh: How to Choose? Use the one with fewer equations, or Use the method you like best, or Use both, as a check. Engr228  Chapter 4, Nilsson 10E 21
22 Dependent Source Example Find i 1 Answer: i 1 = ma. Dependent Source Example Find Vx 1Ω I2 15A I1 + Vx  3Ω 1/9 Vx I3 1Ω Engr228  Chapter 4, Nilsson 10E 22
23 15A Dependent Source Example  continued I1 1Ω 1/9 Vx I2 + Vx  3Ω I3 1Ω I1 = 15A Equation I 1( I 2 I1) + 2I 2 + 3( I 2 I3) = 0 I1+ 6I 2 3I3 = 0 Equation II 1 I3 I1 = Vx 9 Equation III Vx = 3( I3 I 2) Equation IV I 1 =15A, I 2 =11A, I 3 =17A Vx = 3(1711) = 18V Textbook Problem 4.52 Hayt 7E Obtain a value for the current labeled i 10 in the circuit below I 10 = 4mA Engr228  Chapter 4, Nilsson 10E 23
24 Textbook Problem 4.56 Nilsson 10th Find the power absorbed by the 20V source in the circuit below. Power 20V = 480 mw absorbed Linear Elements and Circuits A linear circuit element has a linear voltagecurrent relationship: If i(t) produces v(t), then Ki(t) produces Kv(t) If i 1 (t) produces v 1 (t) and i 2 (t) produces v 2 (t), then i 1 (t) + i 2 (t) produces v 1 (t) + v 2 (t), Resistors and sources are linear elements Dependent sources need linear control equations to be linear elements A linear circuit is one with only linear elements Engr228  Chapter 4, Nilsson 10E 24
25 The Superposition Concept For the circuit shown below, the question is: How much of v 1 is due to source i a, and how much is due to source i b? We will use the superposition principle to answer this question. The Superposition Theorem In a linear network, the voltage across or the current through any element may be calculated by adding algebraically all the individual voltages or currents caused by the separate independent sources acting alone, i.e. with All other independent voltage sources replaced by short circuits (i.e. set to a zero value) and All other independent current sources replaced by open circuits (also set to a zero value). Engr228  Chapter 4, Nilsson 10E 25
26 Applying Superposition Leave one source ON and turn all other sources OFF: Voltage sources: set v=0 These become short circuits. Current sources: set i=0 These become open circuits. Then, find the response due to that one source Add the responses from the other sources to find the total response Superposition Example (Part 1 of 4) Use superposition to solve for the current i x Engr228  Chapter 4, Nilsson 10E 26
27 Superposition Example (Part 2 of 4) First, turn the current source off: i ʹ x = = 0.2 Superposition Example (Part 3 of 4) Then, turn the voltage source off: i xʹ = 6 (2) = Engr228  Chapter 4, Nilsson 10E 27
28 Superposition Example (Part 4 of 4) Finally, combine the results: i x = i xʹ +i xʹ = =1.0 Source Transformation The circuits (a) and (b) are equivalent at the terminals. If given circuit (a), but circuit (b) is more convenient, switch them. This process is called source transformation. Engr228  Chapter 4, Nilsson 10E 28
29 Example: Source Transformation We can find the current I in the circuit below using a source transformation, as shown. I = (453)/( ) = ma I = ma Textbook Problem 5.6 Hayt 8E (a) Determine the individual contributions of each of the two current sources to the nodal voltage v 1 (b) Determine the power dissipated by the resistor v 17A = 6.462V, v 14A = V, v 1tot = 4.31V, P = 3.41W Engr228  Chapter 4, Nilsson 10E 29
30 Textbook Problem 5.17 Hayt 8E Determine the current labeled i after first transforming the circuit such that it contains only resistors and voltage sources. i = 577mA Textbook Problem 5.19 Hayt 8E Find the power generated by the 7V source. P 7v = 17.27W (generating) Engr228  Chapter 4, Nilsson 10E 30
31 Thévenin Equivalent Circuits Thévenin s theorem: a linear network can be replaced by its Thévenin equivalent circuit, as shown below: Thévenin Equivalent using Source Transformations We can repeatedly apply source transformations on network A to find its Thévenin equivalent circuit. This method has limitations due to circuit topology, not all circuits can be source transformed. Engr228  Chapter 4, Nilsson 10E 31
32 Finding the Thévenin Equivalent Disconnect the load; Find the open circuit voltage v oc ; Find the equivalent resistance R eq of the network with all independent sources turned off. Set voltage sources to zero volts short circuit Set current sources to zero amps open circuit Then: V TH = v oc and R TH = R eq Thévenin Example Engr228  Chapter 4, Nilsson 10E 32
33 Example Find Thévenin s equivalent circuit and the current passing thru RL given that RL = 1Ω 10Ω 10V 3Ω RL Example  continued Find V TH 10V 6V 10Ω 6V 10V 3Ω 0V 0V 0V 3 V TH = 10 = 6V Engr228  Chapter 4, Nilsson 10E 33
34 Example  continued 10Ω Find R TH 10V 3Ω Short voltage source 10Ω 3Ω R TH 2 3 = = 13. R TH = Example  continued Thévenin s equivalent circuit 13. 6V RL The current thru RL = 1Ω is = A Engr228  Chapter 4, Nilsson 10E 34
35 Example: Bridge Circuit Find Thévenin s equivalent circuit as seen by RL R1=2K R3=4K 10V RL=1K +  R2=8K R4=1K Example  continued Find V TH 10V R1=2K R3=4K 10V 8V 2V R2=8K R4=1K 0V V TH = 82 = 6V Engr228  Chapter 4, Nilsson 10E 35
36 Example  continued Find R TH R1=2K R3=4K R TH R2=8K R4=1K R1=2K R3=4K R1=2K R3=4K R2=8K R4=1K R2=8K R4=1K Example  continued R1=2K R3=4K R2=8K R4=1K R TH = 2K 8K + 4K 1K = 1.6K + 0.8K = 2. 4K Engr228  Chapter 4, Nilsson 10E 36
37 Example  continued Thévenin s equivalent circuit 2.4K 6V RL Norton Equivalent Circuits Norton s theorem: a linear network can be replaced by its Norton equivalent circuit, as shown below: Engr228  Chapter 4, Nilsson 10E 37
38 Finding the Norton Equivalent Replace the load with a short circuit; Find the short circuit current i sc ; Find the equivalent resistance R eq of the network with all independent sources turned off (same as Thévenin) Set voltage sources to zero volts short circuit; Set current sources to zero amps open circuit. Then: I N = i sc and R N = R eq Source Transformation: Norton and Thévenin The Thévenin and Norton equivalents are source transformations of each other. R TH =R N =R eq and v TH =i N R eq Engr228  Chapter 4, Nilsson 10E 38
39 Example: Norton and Thévenin Find the Thévenin and Norton equivalents for the network faced by the 1kΩ resistor. The load resistor This is the circuit we will simplify Example: Norton and Thévenin Thévenin Norton Source Transformation Engr228  Chapter 4, Nilsson 10E 39
40 Thévenin Example: Handling Dependent Sources The normal technique for finding Thévenin or Norton equivalent circuits can not usually be used if a dependent source is present. In this case, we can find both V TH and I N and solve for R TH =V TH / I N Thévenin Example: Handling Dependent Sources Another situation that rarely arises, is if both V TH and I N are zero, or just I N is zero. In this situation, we can apply a test source to the output of the network and measure the resulting shortcircuit (I N ) current, or opencircuit voltage (V TH ). R TH is then calculated as V TH /I N Engr228  Chapter 4, Nilsson 10E 40
41 Thévenin Example: Handling Dependent Sources Solve: v test =0.6 V, so R TH = 0.6 Ω v test 2 + v test (1.5i) 3 i = 1 =1 Recap: Thévenin and Norton Thévenin s equivalent circuit Norton s equivalent circuit V RL RL R V TH TH = R = I N N R TH Same R value 6 = Engr228  Chapter 4, Nilsson 10E 41
42 Textbook Problem 5.50 Hayt 7E Find the Thévenin equivalent of the circuit below. R TH = kω V TH = 83.5 V Maximum Power Transfer Thévenin s or Norton s equivalent circuit, which has an R TH connected to it, delivers a maximum power to the load R L for which R TH = R L Engr228  Chapter 4, Nilsson 10E 42
43 Maximum Power Theorem Proof R TH V TH RL Plug it in P = I 2 R L VTH P = RTH + R L 2 VTH and I = RTH + R 2 VTH RL RL = 2 ( R + RL ) TH L dp dr L ( R = TH + R L 2 2 ) VTH VTH RL 4 ( R + R ) TH 2 L 2( R TH + R L ) = 0 Maximum Power Theorem Proof  continued dp dr L ( R = TH + R L 2 2 ) VTH VTH RL 4 ( R + R ) TH 2 L 2( R TH + R L ) = 0 ( R TH + R ) ( R L TH 2 V 2 TH R L TH = V = R 2 TH + R ) = 2R L L R L 2( R TH + R ) L For maximum power transfer Engr228  Chapter 4, Nilsson 10E 43
44 Example Evaluate RL for maximum power transfer and find the power. 10Ω 10V 3Ω RL Example  continued Thévenin s equivalent circuit V RL RL should be set to 13. to get maximum power transfer. Max. power is 2 V R = 2 (6/ 2) 13.2 = 0.68W Engr228  Chapter 4, Nilsson 10E 44
45 Practical Voltage Sources Ideal voltage sources: a first approximation model for a battery. Why do real batteries have a current limit and experience voltage drop as current increases? Two car battery models: Practical Source: Effect of Connecting a Load For the car battery example: V L = I L This line represents all possible R L Engr228  Chapter 4, Nilsson 10E 45
46 Chapter 4 Summary Illustrated the nodevoltage method to solve a circuit; Illustrated the meshcurrent method to solve a circuit; Practiced choosing which technique is better for a particular circuit; Explained source transformations and how to use them to simplify a circuit; Illustrated the techniques of constructing Thevenin and Norton equivalent circuits; Explained the principle of maximum power transfer to a resistive load and showed how to calculate the value of the load resistor that satisfies this condition. Engr228  Chapter 4, Nilsson 10E 46
Chapter 2 Objectives
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationChapter 4: Techniques of Circuit Analysis
4.1 Terminology Example 4.1 a. Nodes: a, b, c, d, e, f, g b. Essential Nodes: b, c, e, g c. Branches: v 1, v 2, R 1, R 2, R 3, R 4, R 5, R 6, R 7, I d. Essential Branch: v 1 R 1, R 2 R 3, v 2 R 4, R
More informationChapter 2. Circuit Analysis Techniques
Chapter 2 Circuit Analysis Techniques 1 Objectives To formulate the nodevoltage equations. To solve electric circuits using the node voltage method. To introduce the mesh current method. To formulate
More informationProblem set #5 EE 221, 09/26/ /03/2002 1
Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making
More informationBasic circuit analysis
EIE209 Basic Electronics Basic circuit analysis Analysis 1 Fundamental quantities Voltage potential difference bet. 2 points across quantity analogous to pressure between two points Current flow of charge
More informationNode and Mesh Analysis
Node and Mesh Analysis 1 Copyright ODL Jan 2005 Open University Malaysia Circuit Terminology Name Definition Node Essential node Path Branch Essential Branch Loop Mesh A point where two ore more branches
More informationMeshCurrent Method (Loop Analysis)
MeshCurrent Method (Loop Analysis) Nodal analysis was developed by applying KCL at each nonreference node. MeshCurrent method is developed by applying KVL around meshes in the circuit. A mesh is a loop
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationCopyright The McGrawHill Companies, Inc. Permission required for reproduction or display.
AlexanderSadiku Fundamentals of Electric Circuits Chapter 3 Methods of Analysis Copyright The McGrawHill Companies, Inc. Permission required for reproduction or display. 1 Methods of Analysis  Chapter
More informationBasic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis NonLinear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
More information(a) Working from right to left, and borrowing x y notation from resistance calculations to indicate the operation xy/(x + y),
1 Problem set #6, EE 221, 10/08/2002 10/15/2002 Chapter 3, Problem 55. Determine G in in for each network shown in Fig. 3.86. Values are all given in millisiemens. Chapter 3, Solution 55. (a) Working from
More informationChapter 4: Methods of Analysis
Chapter 4: Methods of Analysis 4.1 Motivation 4.2 Nodal Voltage Analysis 4.3 Simultaneous Eqs. & Matrix Inversion 4.4 Nodal Voltage Analysis with Voltage Sources 4.5 Mesh Current Analysis 4.6 Mesh Current
More informationSolving for Voltage and Current
Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we
More information120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1
IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume
More informationECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS. Tutor: Asad Akram
ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS Tutor: Asad Akram 1 AGENDA Background: KCL and KVL. Nodal Analysis: Independent Sources and relating problems, Dependent Sources and relating problems. Loop (Mesh
More information07Nodal Analysis Text: ECEGR 210 Electric Circuits I
07Nodal Analysis Text: 3.1 3.4 ECEGR 210 Electric Circuits I Overview Introduction Nodal Analysis Nodal Analysis with Voltage Sources Dr. Louie 2 Basic Circuit Laws Ohm s Law Introduction Kirchhoff s Voltage
More informationHow can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery
Network nalysis ims: Consolidate use of KCL in circuit analysis. Use Principle of Superposition. Learn basics of Node Voltage nalysis (uses KCL) Learn basics of Mesh Current nalysis (uses KVL) Lecture
More informationChapter 5: Circuit Theorems
Chapter 5: Circuit Theorems 5.1 Motivation 5.2 Source Transformation 5.3 Superposition (2.1 Linearity Property) 5.4 Thevenin s Theorem 5.5 Norton s Theorem 5.6 Maximum Power Transfer 5.7 Summary 1 5.1
More information4. Basic Nodal and Mesh Analysis
1 4. Basic Nodal and Mesh Analysis This chapter introduces two basic circuit analysis techniques named nodal analysis and mesh analysis 4.1 Nodal Analysis For a simple circuit with two nodes, we often
More informationSeries and Parallel Resistors
Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //
More informationChapter 08. Methods of Analysis
Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning CC Tsai Outline Source Conversion Mesh Analysis Nodal Analysis DeltaWye ( Y) Conversion Bridge Networks
More informationInternational Islamic University Chittagong Department of Electrical & Electronics Engineering
International Islamic University Chittagong Department of Electrical & Electronics Engineering Course No: EEE 1102 Course Title: Electrical Circuit I Sessional Experiment No : 01 Experiment Name: Introduction
More informationKirchhoff s Laws. Kirchhoff's Law #1  The sum of the currents entering a node must equal the sum of the currents exiting a node.
Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1  The sum of the currents
More information5: Thévenin and Norton Equivalents
E1.1 Analysis of (20157087) Thevenin and Norton: 5 1 / 12 Equivalent Networks From linearity theorem: V = ai +b. E1.1 Analysis of (20157087) Thevenin and Norton: 5 2 / 12 Equivalent Networks From linearity
More informationElectric Circuits. Overview. Hani Mehrpouyan,
Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 5 (Mesh Analysis) Sep 8 th, 205 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 205 Overview With Ohm s
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More information3. Introduction and Chapter Objectives
Real nalog Circuits Chapter 3: Nodal and Mesh nalysis 3. Introduction and Chapter Objectives In Chapters and 2, we introduced several tools used in circuit analysis: Ohm s law, Kirchoff s laws, and circuit
More informationNodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
More informationChapter 6. SeriesParallel Circuits. Objectives
Chapter 6 SeriesParallel Circuits Objectives Identify seriesparallel relationships Analyze seriesparallel circuits Analyze loaded voltage dividers Determine the loading effect of a voltmeter on a circuit
More informationEECE251 Circuit Analysis Set 2: Methods of Circuit Analysis
EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Reading Material Chapter
More information1.Find the Thévenin equivalent with respect to the 7k ohm resistor.
Tutorial questions 1.Find the Thévenin equivalent with respect to the 7k ohm resistor. Remove the 7k ohm, since it is not part of the circuit we wish to simplify. Keep the terminals open since we are finding
More informationUseful Circuit Analysis Techniques
CHAPTER 5 Useful Circuit Analysis Techniques KEY CONCEPTS INTRODUCTION The techniques of nodal and mesh analysis described in Chap. 4 are reliable and extremely powerful methods. However, both require
More informationKirchhoff s Voltage Law
BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel
More informationPHYS 343 Homework Set #3 Solutions
PHYS 343 Homework Set #3 Solutions 1. In the circuit shown, resistor C has a resistance R and the voltage across the battery is. The power delivered to resistor C is 3 times as great as the power delivered
More informationThevenin Equivalent Circuits
hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three
More informationELEC166 Tutorial Week 3 Solutions
ELEC166 Tutorial eek 3 Solutions Q1 n ideal voltmeter gives a reading of 9 when measuring between the terminals of a (real) battery n ideal ohmmeter gives a reading of 900Ω when measuring between the ends
More informationBASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE4 SOME USEFUL LAWS IN BASIC ELECTRONICS
BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now
More informationLecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
More informationES203 Electrical Systems Study Guide. C.A. Berry
ES203 Electrical Systems Study Guide C.A. Berry ES203 Electrical Systems Study Guide Lecture 11: Introduction and Overview eading: 1.13 Objectives: Be able to briefly and clearly explain static electricity,
More informationThe node voltage method
The node voltage method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Not every circuit lends itself to shortcut methods. Sometimes
More informationIntroduction to SeriesParallel DC Circuits. Online Resource for ETCH 213 Faculty: B. Allen
Introduction to SeriesParallel DC Circuits Seriesparallel circuit A network or circuit that contains components that are connected in both series and parallel. Seriesparallel resistive circuits Tracking
More informationCircuit Analysis using the Node and Mesh Methods
Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The
More informationW03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018  Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
More informationSCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course
SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self Stud Course MODULE 27 FURTHER APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Inverse of a matri using elimination 2. Mesh analsis of
More informationUnit FE2 Foundation Electricity: DC Network Analysis
Unit FE2 Foundation Electricity: DC Network Analysis What this unit is about This unit contains some basic ideas on DC network analysis. It also deals with the Thevenin theorem, a technique of considerable
More informationExample: Determine the power supplied by each of the sources, independent and dependent, in this circuit:
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the
More informationUnit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & TwoPorts
Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & TwoPorts ROSEHULMAN INSTITUTE OF TECHNOLOGY ECE 203 DC Circuits Winter 0910 Course Information and
More information= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
More informationMatrices & Their Applications: Nodal Analysis
Matrices & Their Applications: Nodal Analysis Introduction Nodal analysis is a method applied to electrical circuits to determine the nodal voltages. In electrical circuits nodes are points where two or
More informationSeries and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
More informationDependent Sources: Introduction and analysis of circuits containing dependent sources.
Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal
More informationEMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
More informationVerification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson
Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 22405 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to
More informationOhm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Fall 2007 Date: Lab Section #: Lab #2
EE 101 Fall 2007 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20070725JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it
More informationEE301  PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW
Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL
More informationJ. McNames Portland State University ECE 221 Basic Laws Ver
Basic Laws Overview Ideal sources: series & parallel Resistance & Ohm s Law Definitions: open circuit, short circuit, conductance Definitions: nodes, branches, & loops Kirchhoff s Laws Voltage dividers
More informationNodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis.
Circuits (MTE 20) (Spring 200) Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis. http://pami.uwaterloo.ca/~akrem/ University of Waterloo, Electrical and Computer
More information3LEARNING GOALS. Analysis Techniques
IRWI3_8232hr 9/3/4 8:54 AM Page 82 3 Nodal 3LEARNING GOALS and Loop Analysis Techniques 3. Nodal Analysis An analysis technique in which one node in an Nnode network is selected as the reference node and
More informationElectrical Circuits I Lecture 1
Electrical Circuits I Lecture Course Contents Basic dc circuit elements, series and parallel Networks Ohm's law and Kirchoff's laws Nodal Analysis Mesh Analysis Source Transformation
More informationDC mesh current analysis
DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationChapter 28. DirectCurrent Circuits
Chapter 28. DirectCurrent Circuits esistors in Series and Parallel (gnore internal resistances for batteries in this section.) 281. A 5 resistor is connected in series with a 3 resistor and a 16V
More informationThevenin Equivalent Circuits (EC 4.10)
Thevenin Equivalent Circuits (EC 4.10) Thevenin equivalent Current delivered to any load resistance by a circuit is equal to: Voltage source equal to open circuit voltage V th at load n series with a simple
More informationSERIESPARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIESPARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of seriesparallel networks through direct measurements. 2. Improve skills
More informationPHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More informationParallel Circuits. Objectives
Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s Current Law Determine total parallel resistance Apply Ohm s law in a parallel
More informationEE 201 ELECTRIC CIRCUITS. Class Notes CLASS 8
EE 201 ELECTRIC CIRCUITS Class Notes CLASS 8 The material covered in this class will be as follows: Nodal Analysis in the Presence of Voltage Sources At the end of this class you should be able to: Apply
More informationADVANCED METHODS OF DC AND AC CIRCUIT
CHAPTER 11 ADVANCED METHODS OF DC AND AC CIRCUIT ANALYSIS Learning Objectives As a result of successfully completing this chapter, you should be able to: 1. Explain why more sophisticated methods of circuit
More informationSeries & Parallel Circuits Challenge
Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,
More informationHomework 6 Solutions PHYS 212 Dr. Amir
Homework 6 Solutions PHYS Dr. Amir Chapter 5: 9. (II) A 00W lightbulb has a resistance of about Ω when cold (0 C) and 0 Ω when on (hot). Estimate the temperature of the filament when hot assuming an average
More informationChapter 28A  Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 28A  Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
More informationChapter 5. Parallel Circuits ISU EE. C.Y. Lee
Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in
More informationNODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller
NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'shortcircuit', is not considered a branch since it is known
More informationFirst Order Transient Response
First Order Transient Response When nonlinear elements such as inductors and capacitors are introduced into a circuit, the behaviour is not instantaneous as it would be with resistors. A change of state
More informationLecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli
Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
More informationLab 4 Series and Parallel Resistors
Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE  Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and
More informationEE 1202 Experiment #2 Resistor Circuits
EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltagecurrent relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,
More informationHenry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013
Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network
More information1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination?
1. If each of the four resistors below has a resistance of 1 µω, what is the equivalent resistance of the combination? V (a) 0.25 µω (b) 1 µω (c) 2 µω (d) 4 µω (e) none of these 2. Three identical lamps
More informationA Practical Exercise Name: Section:
Updated 16 AUG 2016 A Practical Exercise Name: Section: I. Purpose. 1. Review the construction of a DC series circuit on a quad board from a circuit schematic. 2. Review the application of Kirchhoff s
More information2. Introduction and Chapter Objectives
Real Analog  Circuits Chapter 2: Circuit Reduction 2. Introduction and Chapter Objectives In Chapter, we presented Kirchoff s laws (which govern the interactions between circuit elements) and Ohm s law
More information8. Resistors in Parallel
8. Resistors in Parallel Resistors are said to be connected together in "Parallel" when both of their terminals are respectively connected to each terminal of the other resistor or resistors. Unlike the
More informationGraph theory and systematic analysis
Electronic Circuits 1 Graph theory and systematic analysis Contents: Graph theory Tree and cotree Basic cutsets and loops Independent Kirchhoff s law equations Systematic analysis of resistive circuits
More informationExercise 3 (Resistive Network Analysis)
Circuit Analysis Exercise 0/0/08 Problem. (Hambley.49) Exercise (Resistive Network Analysis) Problem. (Hambley.5) Circuit Analysis Exercise 0/0/08 Problem. (Hambley.59) Problem 4. (Hambley.68) Circuit
More informationApplication Report. Mixed Signal Products SLAA067
Application Report July 1999 Mixed Signal Products SLAA067 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product
More informationSeriesParallel Circuits
Chapter 6 SeriesParallel Circuits Topics Covered in Chapter 6 61: Finding R T for SeriesParallel Resistances 62: Resistance Strings in Parallel 63: Resistance Banks in Series 64: Resistance Banks
More informationKirchhoff's Current Law (KCL)
Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per
More informationTECHNIQUES OF. C.T. Pan 1. C.T. Pan
TECHNIQUES OF CIRCUIT ANALYSIS C.T. Pan 1 4.1 Introduction 4.2 The NodeVoltage Method ( Nodal Analysis ) 4.3 The MeshCurrent Method ( Mesh Analysis ) 4.4 Fundamental Loop Analysis 4.5 Fundamental Cutset
More informationDepartment of Electrical and Electronic Engineering, California State University, Sacramento
Department of Electrical and Electronic Engineering, California State University, Sacramento Engr 17 Introductory Circuit Analysis, graded, 3 units Instructor: Tatro Fall 2016 Section 1, Call No. 84063,
More informationElectrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310 Electrical Fundamentals 2 Module 3 Parallel Circuits Module
More informationUsing a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance
Name: Date: Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Background Information and PreLab Activity Materials: One solar module One small DC
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Moule 2 DC Circuit Lesson 9 Analysis of c resistive network in presence of one nonlinear element Objectives To unerstan the volt (V ) ampere ( A ) characteristics of linear an nonlinear elements. Concept
More information3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.
Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:
More information2: Resistor Circuits. E1.1 Analysis of Circuits ( ) Resistor Circuits: 2 1 / 13. 2: Resistor Circuits
and E1.1 Analysis of Circuits (20168284) Resistor Circuits: 2 1 / 13 Kirchoff s Voltage Law and The five nodes are labelled A, B, C, D, E wheree is the reference node. Each component that links a pair
More informationCircuit Elements. Electric Circuits
Circuit Elements Qi Xuan Ghangzhi Building( 广知楼 ) C323 I will be in the office on Monday, Wednesday, and Friday Zhejiang University of Technology September 2015 Electric Circuits 1 Structure Voltage and
More informationDirectCurrent Circuits
Chapter 13 DirectCurrent Circuits In This Chapter: Resistors in Series Resistors in Parallel EMF and Internal Resistance Kirchhoff s Rules Resistors in Series The equivalent resistance of a set of resistors
More informationCircuits 1 M H Miller
Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents
More informationCapacitors and RC Circuits
Chapter 6 Capacitors and RC Circuits Up until now, we have analyzed circuits that do not change with time. In other words, these circuits have no dynamic elements. When the behavior of all elements is
More informationDC Circuits: Operational Amplifiers Hasan Demirel
DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationTHE UNIVERSITY OF TRINIDAD & TOBAGO
THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL EXAMINATIONS SEPTEMBER/ DECEMBER 2014 Course Code and Title: ELCT1001 Electrical and Electronic Fundamentals for ICT I Programme: Diploma in Computer, Network
More information