Module 1 The Solar System

Size: px
Start display at page:

Download "Module 1 The Solar System"

Transcription

1 Lesson 1: The Planets Overview Module 1 The Solar System This lesson combines reading of the sections of Touch the Stars with follow-up knowledge questions. For reinforcing of the learning, students choose different sizes of balls to represent the scale between the Sun and Jupiter, Jupiter and Earth, and other comparisons as desired. The walking of the scale model of the solar system - counting steps to measure distances - will form the foundation for distances in the Galaxy and the rest of the Universe. Learning Outcomes Successfully answer question relating to listing the planets, describing similarities and differences, stating notable characteristics, and differentiating among the various objects in the solar system. Given a tray of different sized balls and one as a starting point, predict the relative sizes as directed and discuss any misconceptions. After pacing out the scaled solar system, discuss impressions about the relative distances between and sizes of the planets. Materials for Activity Touch the Stars by Noreen Grice Different size balls, from 1mm to 300 mm 1 Braille sheets with planet data (multiple copies) Scale model of Sun and planets (see below) Walkable scale model of solar system Optional activity: Make a comet in the classroom Figure It is a good idea to connect balls when working with objects that can escape while being handled. Pre-assessment Questions and Discussion Q. What is the order of the planets? A: Mercury, Venus, Earth, Mars, Asteroid Belt, Jupiter, Saturn, Uranus, Neptune, Kuiper Belt (dwarf planet Pluto), Oort Cloud A. Describe the Earth, Mars, Saturn, a comet, an asteroid. A. Earth: Dirt with organic matter. Mars: Fine grained sand, reddish color, crushed basalt. Saturn: Gas. Comet: Dirty icy snowball. Q. Which planet is the largest? Smallest? A. Largest: Jupiter, Smallest: Mercury Q. Which planet is similar in size to Earth? Is it like Earth? A. Venus; no, it is a lot hotter on the surface 1

2 A. Which planet is your favorite one, and why? A. Discuss. Text 'Touch the Stars' (p. 50 to 71), reading broken up into several sections. Follow up questions for each section are included. A. Inner planets (Mercury through Mars): p , top of p Name the inner planets and describe similarities and differences. 2. Which planet is closest to the Sun? Which one is the hottest? 3. Why isn't the closest planet also the hottest? 4. What is the asteroid belt? B. The Outer Planets or Gas Giants (with brief discussion of the asteroid belt): p (half page, stop at 'The Comets'. 1. Name the giant planets. 2. Other than their sizes, how are they different from the inner planets? 3. What can you state about Jupiter? (List everything you can think of.) C. The Comets (Kuiper Belt and Oort cloud): p (starting half-way down the page at 'The Comets' and stopping about three-fourths down at 'Meteors'.) 1. What is a comet made of? 2. What are the difference between gas and dust tails? 3. Do comets always have tails? D. Meteors: Bottom of p. 67 to What is a meteor 2. Why do meteors look like bright stars falling from the sky? Follow up Questions on the Reading Included with sectional reading above. 2

3 Activities Predicting, testing: Hand out trays holding a range of ball sizes. Pick the largest one to represent the Sun, and have students predict which ball would be scaled to Jupiter's comparative size. o Sun:Jupiter::10:1 Picking the largest ball to then represent Jupiter, have students predict which ball would be approximately scaled to Earth's comparative size. o Jupiter:Earth::11:1 Picking the largest ball to then represent Earth, have students predict which ball would be approximately scaled to Pluto's size. o Earth:Pluto::6:1 Exploring: Solar System walk (scaled for 1 ft. per sec for speed of light). Emphasize time elapsed versus distance; students walk at same pace between planets. Students may wish to count steps to get a sense of the relative distances. Summary and Post-Assessment 1. What impressed you the most about the relative sizes of the planets as scaled? 2. Were there any surprises when you were doing the comparisons? 3. Based on your walk through the solar system, what would you say our solar system is primarily made up of? 4. If you actually took just 1 step per second, the scaled down speed-of-light value, how long would it take you to go from the Sun to the Earth in this model? Relevant Information and Links Huygens descending Titan -- SEM85Q71Y3E_0.html Sounds of Jupiter--Galileo spacecraft -- Making a Comet in the Classroom by Dennis Schatz -- Build a Solar System ; Ron Hipschman, Exploratorium University of Washington's Scale Model of the Solar System - used in public educational outreach efforts at the Jacobsen Observatory -- solar_system_scale.html 3

4 Figure 1.1.2: Making the comet in the classroom was Figure 1.1.3: The material used for the planets can an enjoyable and enlightening experience for our also be mounted on wooden caps for setting up in a blind testers and instructors. classroom or hallway. Figure 1.1.4: Demonstration of revolution and rotation using a plastic revolving tray and a center ball and outer bead, both capable of rotating. Figure 1.1.5: Scale model solar system set up at the Washington State School for the Blind, Vancouver, Washington, during a visit in

5 Lesson 2: Moon Phases and Eclipses Overview This is the activity on modeling the phases of the Moon by Noreen Grice, with some modifications to blend with the format of our curricula lessons. Using readily available materials, students, ideally 3-4, become the Sun, Earth, and Moon and simulate the phase cycle of the Moon. For the second part, we emphasize the alignment that is needed to have solar and lunar eclipses and why they do not happen every month. Learning Outcomes Name the 8 main phases and return to the Sun-Earth-Moon positioning that creates that phase. Replicate the 8 phases on a small model. State the alignment needed for a lunar eclipse, a solar eclipse, and why we do not have eclipses every month. Materials One styrene/styrofoam ball (baseball size) One small container of puff paint (optional) Four-sided (pencil-size) stick; glue Several jingle bells Three students (for the Sun, Moon and Earth) Wood/foam mock-up of Earth-Moon system Figure A simple Moon phase demonstrator can be made to give students another way of envisioning the phases of the Moon. Pre-assessment Questions and Discussion Q. What do we mean when we talk about the Moon going through phases? A. As the Moon orbits the Earth, we see different amounts of it lit depending on the Sun-Earth-Moon positions. Q. Who can name the main phases of the Moon? A. New, waxing crescent, 1 st quarter, waxing gibbous, full, waning gibbous, 3 rd quarter, waning crescent Q. Are there such things as the Moon blocking out the Sun s light, or the Earth blocking the Sun s light from reaching the Moon? A. Yes, and they are called solar and lunar eclipses. 5

6 Text The Moon orbits Earth at an average distance of 382,400 kilometers, which is about the same as 238,000 miles. The lunar month is the days it takes to go from one new moon to the next. During the lunar month, the Moon goes through all its phases. Just like the Earth, half of the Moon is lit by the Sun while the other half is in darkness. The phases we see result from the angle the Moon makes with the Sun as viewed from Earth. We only see the Moon because sunlight reflects back to us from its surface. During the course of a month, the Moon circles once around the Earth. If we could magically look down on our solar system, we would see that the half of the Moon facing the Sun is always lit. But the lit side does not always face the Earth. As the Moon circles the Earth, the amount of the lit side we see changes. These changes are known as the phases of the Moon and it repeats in a certain way over and over. At new moon, the Moon is lined up between the Earth and the Sun. We see the side of the Moon that is not being lit by the Sun, or what is sometimes called the dark side of the Moon. Although that side may be getting light that is reflected from the Earth, we can t see it because the Sun is so bright. When the Moon is exactly lined up with the Sun (as viewed from Earth), we experience a solar eclipse. Since the Moon s orbit is tilted with respect to the way the Earth lines up with the Sun, sometimes the Moon is too high or too low in its orbit to block the Sun. As the days go by, the Moon moves eastward away from the Sun in the sky, and we see a bit more of the sunlit side of the Moon each night. A few days after a new moon, we see a thin crescent in the western evening sky. The crescent Moon waxes, or appears to grow fatter, each night. When half of the half of the Moon that faces us is illuminated, we call it the first quarter moon. This name comes from the fact that the Moon is now one-quarter of the way through the lunar month. From Earth, we are now looking at half of the sunlit side of the Moon from off to the side. The first-quarter moon rises at noon. The Moon continues to wax over the next week. Once more than half of the disc is illuminated, it has a shape we call gibbous. The gibbous moon appears to grow fatter each night until we see the full sunlit face of the Moon. We call this phase the full moon. It rises in the east almost exactly as the Sun sets in the west, and sets just as the Sun rises the next day. The Moon has now completed one half of the lunar month. If the Sun-Earth-Moon alignment is perfect, we would see an eclipse of the Moon. However, because the Moon s orbit is tilted, sometimes the Moon doesn t pass through the Earth s shadow. During the second half of the lunar month, the Moon grows thinner each night. We call this waning. Its shape is still gibbous at this point, but grows a little thinner each night. As it reaches the third-quarter sometimes called last quarter point in its month, the Moon once again shows us one side of its disc illuminated and the other side in darkness. However, the half of the half that we saw dark at the first quarter phase is now the lit side, and what was the lit half is now the dark side. The third-quarter moon is high in the daytime sky when the Sun is rising in the east, and sets in the west when it is around noon for us. As the Moon completes its journey and approaches new moon again, the Moon is a waning crescent. The Moon grows thinner and thinner as it gradually disappears in the bright daytime sky, to return again in a few days as a waxing crescent. And so it goes, month after month, year after year. Follow-up Questions on Reading 1. Name the phases of the Moon in order from new to full and back to new again. 2. Imagine your head is the Earth, your left hand is the Sun, and your right hand is the Moon. Where would you place your right hand to have a new moon? 6

7 3. Under this same set up, where would your right hand be to represent the location of a full moon? 4. Position your right moon hand above or below your earth head. Is this a good representation of the Moon s orbit? 5. Why don t we have a solar eclipse or a lunar eclipse every month? Hint: Think about what you did in question number 4. Reinforcing Activity Modeling: For this activity, you will need to create a tactile Moon. In order to do this, apply a small amount of glue to one end of the stick and insert that end into the styrene/styrofoam (Moon) ball. Next, using the puff paint, apply dots to only one half of the ball (from top to bottom). Allow the puff paint to dry. [An alternate method is to carve a rough surface on the ball.] The following is quoted directly from Noreen Grice s activity. 1 Begin the activity when the tactile Moon is dry. One student holds the Moon and a second student (the Earth) faces that person. The Earth student puts a hand on the shoulder of the Moon student. They practice, each person moving to the right, in a circle around an imaginary point between them (as if they were dancing). Eight steps should complete the circle. The Earth student s hand on the shoulder of the Moon student helps both students move as a unit and remain face to face. Once both students are comfortable turning as a unit, the third student (located a few feet away) shakes the jingle bells. This person represents the Sun. The bells provide an audible reference to the direction of the Sun. The Moon student stands so that his/her back is to the Sun. The Sun student s ringing bells should be heard in front of the Earth student. The tactile side of the ball represents the illuminated part of the Moon and should face the Sun (not visible to the Earth student). The Earth student puts his/her other hand on the Moon (ball). The student touching the Moon should use the palm of the hand to touch one side of the Moon. When the Sun, Moon and Earth are aligned in this way, the Moon is in New Moon Phase. The Earth student takes one step to the right as the Moon student takes one step to the right. The bells should be heard in front of and to the right of the Earth student. Using the edges of the stick as a reference, the Moon student rotates the stick to the left, halfway to the next side of the stick so that the edge is facing the Moon (student). A small curve of tactile Moon is visible (to the Earth) on the right side of the ball. This is the Waxing Crescent Moon. The Earth and Moon students each take another step to the right. The bells should be heard to the right of the Earth student. The Moon student rotates the stick to the left until the first side of the stick is reached. About half of the Moon should be visible to the Earth student on the right side. This is the First Quarter Moon. The Earth and Moon students each take another step to the right. The bells should be heard from behind the right side of the Earth student. The Moon student rotates the stick to the left, to the next edge (more than half of the tactile Moon should be visible from the Earth) on the right side. This is the Waxing Gibbous Moon. The Earth and Moon students each take another step to the right. The bells should be heard behind the Earth student. The Moon student rotates the stick to the left to reach the second side of the stick. The entire tactile Moon is visible from the Earth. This is the Full Moon. 1 Retrieved April 6,

8 The Earth and Moon students each take another step to the right. The bells should be heard from behind the left side of the Earth student. The Moon student rotates the stick to the left, halfway to the next side. Some of the tactile Moon has disappeared from the right. This is the Waning Gibbous Moon. The Earth and Moon students each take another step to the right. The bells should be heard from the left side of the Earth student. The Moon student rotates the stick to the left, to the third side. Only the left half of the tactile Moon should be visible from the Earth. This is the Last Quarter Moon. The Earth and Moon students each take another step to the right. The bells should be heard from the left front of the Earth student. The Moon student rotates the stick to the left to the next edge. Only a curve of tactile Moon should be visible on the left edge. This is the Waning Crescent Moon. The Earth and Moon students each take another step to the right. The bells should again be heard in front of the Earth student. The Moon student rotates the stick to the left, to the final side of the stick. We have returned to the starting point, the New Moon. You have now completed a simulation of the Moon s phases! Modeling: Figure 1.2.2: A three-dimensional model of the Earth and Moon with the dark side hemisphere of the Moon indicated with a rough material. The Sun s light will be coming from a direction away from this model. The bells may still be used to indicate the direction of the Sun while students work with the model. The 8 phases of the Moon are marked on the foam board, and the Moon has a dark side indicated by a rougher surface. Students could work with this to determine the Sun-Earth-Moon angles and confirm the lit portions of the Moon during each phase. One way to demonstrate the Earth-Moon sizes and distances to scale is to give each student a meter stick, a 3.5 cm ball, and a 1 cm ball. By holding the 3.5 cm Earth at one end of the meter stick, and the 1 cm moon at the other, one will appreciate that it would take having the Moon only slightly above or below the Earth-Sun line to prevent eclipses. At this scale, the Sun would be over 390 km (240 mi) away. Summary and Post-Assessment The phases of the Moon occur because during the course of a month, the Sun, Earth, and Moon are in different positions relative to each other as the Moon orbits the Earth. Think about the angles involved, and how much of the lit side of the Moon we see at each phase. What phase still isn t clear to you? Many people have the misconception that the phases of the Moon are caused by the Earth s shadow falling on the Moon, not just during a lunar eclipse but throughout each month. Think of an observation that proves this idea wrong and share it with each other. 8

9 Relevant Information and Links Text material adapted from [Retrieved 01/16/2012] GriceMoonPhaseActivity.doc Ozone Publishing -- (Moon Phase Braille book) 9

10 EALR Module 1 Lesson Successfully answer question relating to listing the planets, describing similarities and differences, stating notable characteristics, and differentiating among the various objects in the solar system. Predict the relative sizes as directed and discuss any misconceptions. Discuss impressions about the relative distances between and sizes of the planets. Module 1 Lesson 2 Name the 8 main phases and return to the Sun-Earth-Moon positioning that creates that phase. Replicate the 8 phases on a small model. State the alignment needed for a lunar eclipse, a solar eclipse, and why we do not have eclipses every month. 10

Explain the Big Bang Theory and give two pieces of evidence which support it.

Explain the Big Bang Theory and give two pieces of evidence which support it. Name: Key OBJECTIVES Correctly define: asteroid, celestial object, comet, constellation, Doppler effect, eccentricity, eclipse, ellipse, focus, Foucault Pendulum, galaxy, geocentric model, heliocentric

More information

Phases of the Moon. Objective. Materials. Procedure. Name Date Score /20

Phases of the Moon. Objective. Materials. Procedure. Name Date Score /20 Name Date Score /20 Phases of the Moon Objective Working with models for the Earth-Moon-Sun system, the student will simulate the phases the Moon passes through each month. Upon completion of this exercise,

More information

Activity 3: Observing the Moon

Activity 3: Observing the Moon Activity 3: Observing the Moon Print Name: Signature: 1.) KEY. 2.). 3.). 4.). Activity: Since the dawn of time, our closest neighbor the moon has fascinated humans. In this activity we will explore the

More information

Solar System Fact Sheet

Solar System Fact Sheet Solar System Fact Sheet (Source: http://solarsystem.nasa.gov; http://solarviews.com) The Solar System Categories Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Rocky or Gas Rocky Rocky Rocky Rocky

More information

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.)

The following questions refer to Chapter 19, (PAGES 259 278 IN YOUR MANUAL, 7 th ed.) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Locating the Planets (Chapter 19) and the Moon and Sun (Chapter 21) For this assignment you will require: a calculator, colored pencils, a metric

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

5- Minute Refresher: Daily Observable Patterns in the Sky

5- Minute Refresher: Daily Observable Patterns in the Sky 5- Minute Refresher: Daily Observable Patterns in the Sky Key Ideas Daily Observable Patterns in the Sky include the occurrence of day and night, the appearance of the moon, the location of shadows and

More information

A Solar System Coloring Book

A Solar System Coloring Book A Solar System Coloring Book Courtesy of the Windows to the Universe Project http://www.windows2universe.org The Sun Size: The Sun is wider than 100 Earths. Temperature: ~27,000,000 F in the center, ~10,000

More information

Journey to other celestial objects. learning outcomes

Journey to other celestial objects. learning outcomes The eight planets Journey to other celestial objects C 44 time 80 minutes. learning outcomes To: know which planets have moons know which planets have rings know the colours of the different planets know

More information

Scaling the Solar System

Scaling the Solar System Scaling the Solar System Materials 3lbs of play-dough (minimum quantity required for this activity) Student Sheet (Planet Boxes) Pens Rulers Plastic Knife Optional: Scale 1) Compare: Earth - Moon 1. Have

More information

XXX Background information

XXX Background information XXX Background information The solar system Our solar system is made up of the Sun, the planets, the dwarf planets, moons, asteroids and comets. The Sun is the star around which everything orbits. There

More information

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line Image taken by NASA Asteroids About 6,000 asteroids have been discovered; several hundred more are found each year. There are likely hundreds of thousands more that are too small to be seen from Earth.

More information

Study Guide due Friday, 1/29

Study Guide due Friday, 1/29 NAME: Astronomy Study Guide asteroid chromosphere comet corona ellipse Galilean moons VOCABULARY WORDS TO KNOW geocentric system meteor gravity meteorite greenhouse effect meteoroid heliocentric system

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase. Phases of the Moon Though we can see the moon s size change throughout the month, it is really always the same size. Yet we see these different sizes or moon phases at regular intervals every month. How

More information

Moon Phases & Eclipses Notes

Moon Phases & Eclipses Notes Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF KINDERGARTEN UNIVERSE WEEK 1. PRE: Discovering misconceptions of the Universe. LAB: Comparing size and distances in space. POST:

More information

Overarching questions

Overarching questions Moon phases Eclipses (Section. in textbook) Overarching questions What are the names of the Moon s phases? What causes these phases? What causes eclipses? What does the Moon look like during eclipses?

More information

Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit:

Produced by Billy Hix and Terry Sue Fanning. As part of the TeachSpace Program. For more ideas and an image of the current phase of the moon, visit: The Moon Phase Book Produced by Billy Hix and Terry Sue Fanning As part of the TeachSpace Program For more ideas and an image of the current phase of the moon, visit: www.teachspace.us Printing Date: 10/29/2010

More information

Phases of the Moon. Preliminaries:

Phases of the Moon. Preliminaries: Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

More information

HONEY, I SHRUNK THE SOLAR SYSTEM

HONEY, I SHRUNK THE SOLAR SYSTEM OVERVIEW HONEY, I SHRUNK THE SOLAR SYSTEM MODIFIED VERSION OF A SOLAR SYSTEM SCALE MODEL ACTIVITY FROM UNDERSTANDING SCIENCE LESSONS Students will construct a scale model of the solar system using a fitness

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking!

LER 2891. Ages. Grades. Solar System. A fun game of thinking & linking! Solar System Ages 7+ LER 2891 Grades 2+ Card Game A fun game of thinking & linking! Contents 45 Picture cards 45 Word cards 8 New Link cards 2 Super Link cards Setup Shuffle the two decks together to mix

More information

Group Leader: Group Members:

Group Leader: Group Members: THE SOLAR SYSTEM PROJECT: TOPIC: THE SUN Required Project Content for an Oral/Poster Presentation on THE SUN - What it s made of - Age and how it formed (provide pictures or diagrams) - What is an AU?

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

The Lunar Phase Wheel

The Lunar Phase Wheel The Lunar Phase Wheel A lunar phase wheel is a simple device to help you to visualize the positions of the Earth, Moon, and Sun at various times of the day or month, and then predict the phases and the

More information

Activities: The Moon is lit and unlit too

Activities: The Moon is lit and unlit too Activities: The Moon is lit and unlit too Key objectives: This activity aims to help student to: Identify the different phases of the Moon Know that the Moon does not produce its own light, but reflects

More information

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'. is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation,

Science Benchmark: 06 : 01 Standard 01: THE MYSTICAL MOON axis of rotation, Science Benchmark: 06 : 01 The appearance of the lighted portion of the moon changes in a predictable cycle as a result of the relative positions of Earth, the moon, and the sun. Standard 01: Students

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

Geometry and Geography

Geometry and Geography Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

More information

The changing phases of the Moon originally inspired the concept of the month

The changing phases of the Moon originally inspired the concept of the month The changing phases of the Moon originally inspired the concept of the month Motions of the Moon The Moon is in orbit around the Earth, outside the atmosphere. The Moon `shines via reflected light (12%)

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

Page. ASTRONOMICAL OBJECTS (Page 4).

Page. ASTRONOMICAL OBJECTS (Page 4). Star: ASTRONOMICAL OBJECTS ( 4). Ball of gas that generates energy by nuclear fusion in its includes white dwarfs, protostars, neutron stars. Planet: Object (solid or gaseous) that orbits a star. Radius

More information

26A Phases of the Moon

26A Phases of the Moon Phases of the Moon Investigation 26A 26A Phases of the Moon What causes the lunar cycle? Why does the Moon appear to change shape over the course of a month? In this investigation you will model the lunar

More information

Planets and Dwarf Planets by Shauna Hutton

Planets and Dwarf Planets by Shauna Hutton Name: Wow! Technology has improved so well in the last several years that we keep finding more and more objects in our solar system! Because of this, scientists have had to come up with new categories

More information

Exploring the Phases of the Moon

Exploring the Phases of the Moon Exploring the Phases of the Moon Activity UCIObs 5 Grade Level: 3 5 Source: Copyright (2009) by Tammy Smecker-Hane. Contact tsmecker@uci.edu with questions. Standards: This activity addresses these California

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

Lunar Phase Simulator Student Guide

Lunar Phase Simulator Student Guide Name: Lunar Phase Simulator Student Guide Part I: Background Material Answer the following questions after reviewing the background pages for the simulator. Page 1 Introduction to Moon Phases Is there

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

Rising and Setting of the Moon

Rising and Setting of the Moon Rising and Setting of the Moon Activity UCIObs 6 Grade Level: 3 5 Source: Copyright (2009) by Tammy Smecker-Hane. Contact tsmecker@uci.edu with questions. Standards: This activity addresses these California

More information

The University of Texas at Austin. Gravity and Orbits

The University of Texas at Austin. Gravity and Orbits UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

More information

Pocket Solar System. Make a Scale Model of the Distances in our Solar System

Pocket Solar System. Make a Scale Model of the Distances in our Solar System Pocket Solar System Make a Scale Model of the Distances in our Solar System About the Activity Using a strip of paper, construct a quick scale model of the distances between the orbits of the planets,

More information

Astronomy Notes for Educators

Astronomy Notes for Educators Our Solar System Astronomy Notes for Educators Our Solar System 5-1 5-2 Specific Outcomes: Learning Outcome 1: Knowledge / Content and it place in the Milky Way Different types of bodies make up the Solar

More information

What's Gravity Got To Do With It?

What's Gravity Got To Do With It? Monday, December 16 What's Gravity Got To Do With It? By Erin Horner When you woke up this morning did you fly up to the ceiling? Of course not! When you woke up this morning you put both feet on the floor

More information

x Distance of the Sun to planet --------------------------------------------------------------------

x Distance of the Sun to planet -------------------------------------------------------------------- Solar System Investigation 26C 26C Solar System How big is the solar system? It is difficult to comprehend great distances. For example, how great a distance is 140,000 kilometers (the diameter of Jupiter)

More information

A.4 The Solar System Scale Model

A.4 The Solar System Scale Model CHAPTER A. LABORATORY EXPERIMENTS 25 Name: Section: Date: A.4 The Solar System Scale Model I. Introduction Our solar system is inhabited by a variety of objects, ranging from a small rocky asteroid only

More information

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe

The Earth, Sun & Moon. The Universe. The Earth, Sun & Moon. The Universe Football Review- Earth, Moon, Sun 1. During a total solar eclipse, when almost all of the Sun's light traveling to the Earth is blocked by the Moon, what is the order of the Earth, Sun, and Moon? A. Moon,

More information

Name: Date: Goals: to discuss the composition, components, and types of comets; to build a comet and test its strength and reaction to light

Name: Date: Goals: to discuss the composition, components, and types of comets; to build a comet and test its strength and reaction to light Name: Date: 17 Building a Comet 17.1 Introduction Comets represent some of the earliest material left over from the formation of the solar system, and are therefore of great interest to planetary astronomers.

More information

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

Out of This World Classroom Activity

Out of This World Classroom Activity Out of This World Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to assess.

More information

Copyright 2006, Astronomical Society of the Pacific

Copyright 2006, Astronomical Society of the Pacific 2 1 3 4 Diameter: 590 miles (950 km) Distance to Sun: 257 million miles (414 million km) Orbits: # 18 Composition: Outer layer probably ice and frozen ammonia, no Diameter: 750 miles (1200 km) Distance

More information

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? Grade 6 Standard 3 Unit Test A Astronomy Multiple Choice 1. The four inner planets are rocky and small. Which description best fits the next four outer planets? A. They are also rocky and small. B. They

More information

Planets beyond the solar system

Planets beyond the solar system Planets beyond the solar system Review of our solar system Why search How to search Eclipses Motion of parent star Doppler Effect Extrasolar planet discoveries A star is 5 parsecs away, what is its parallax?

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Astronomical Units and The Solar System Grade Level and Course: 8th grade Physical Science Materials: Visual introduction for solar system (slides, video, posters,

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets?

A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets? Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets? A: Planets Q: What can we learn by studying small bodies of the solar system? A: We can

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

Lesson 3 Understanding Distance in Space (optional)

Lesson 3 Understanding Distance in Space (optional) Lesson 3 Understanding Distance in Space (optional) Background The distance between objects in space is vast and very difficult for most children to grasp. The values for these distances are cumbersome

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated

More information

Background Information Students will learn about the Solar System while practicing communication skills.

Background Information Students will learn about the Solar System while practicing communication skills. Teacher Information Background Information Students will learn about the Solar System while practicing communication skills. Materials clipboard for each student pencils copies of map and Available Destinations

More information

Astronomy Club of Asheville October 2015 Sky Events

Astronomy Club of Asheville October 2015 Sky Events October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Our Solar System Scavenger Hunt Activity

Our Solar System Scavenger Hunt Activity Name: Our Activity Materials: Question worksheet (pages 2-3) 16 Cards (pages 4-8) Tape and Scissors Preparation: Print the fact cards on card stock or brightly-colored paper and cut them out. Make copies

More information

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

More information

Exploring Creation with Astronomy Learning Lapbook - Full Color Version

Exploring Creation with Astronomy Learning Lapbook - Full Color Version Exploring Creation with Astronomy Learning Lapbook - Full Color Version Authors: Nancy Fileccia and Paula Winget Copyright 2010 A Journey Through Learning Pages may be copied for other members of household

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Chapter 1 Our Place in the Universe

Chapter 1 Our Place in the Universe Chapter 1 Our Place in the Universe Syllabus 4 tests: June 18, June 30, July 10, July 21 Comprehensive Final - check schedule Website link on blackboard 1.1 Our Modern View of the Universe Our goals for

More information

Nevada Department of Education Standards

Nevada Department of Education Standards How Big Is Jupiter? It s hard to imagine the size of Jupiter compared to the size of Pluto. Through this hands-on activity, students will use a scale model to easily visualize such hard to grasp concepts

More information

Solar System. Trading Cards. Solar System Trading Cards, Jr. Edition. Learn more about the solar system on these Web sites:

Solar System. Trading Cards. Solar System Trading Cards, Jr. Edition. Learn more about the solar system on these Web sites: Solar System Trading Cards, Jr. Edition To use these cards: Print out onto card stock or heavy paper. Cut out and fold in half along dotted line; glue or tape each card together. FOLD National Aeronautics

More information

Solar System: Planets and Moon Size and Distance Grade 2-4 BACKGROUND Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Solar System: Planets and Moon Size and Distance Grade 2-4 BACKGROUND Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Solar System: Planets and Moon Size and Distance Grade 2-4 BACKGROUND The Universe is everything in outer space, including stars, black holes, quasars, and galaxies. The Solar System is part of the Universe.

More information

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2 Suggested levels for Guided Reading, DRA, Lexile, and Reading Recovery are provided in the Pearson Scott Foresman Leveling Guide. Space and Technology Look at Our Galaxy Genre Expository nonfiction Comprehension

More information

Activity One: Activate Prior Knowledge: Powers of Ten Video and Explore the sizes of various objects in the solar system

Activity One: Activate Prior Knowledge: Powers of Ten Video and Explore the sizes of various objects in the solar system Scale in the Solar System ------------------------------------------------------------------------------------------------------------ SIXTH GRADE SCIENCE STANDARDS: STANDARD FOUR Students will understand

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Solar System Facts & Fun

Solar System Facts & Fun Solar System Facts & Fun Space is such a fascinating place. God put the Earth in just the right place so everything was just right for life as we know it. Have you ever wondered about the other planets

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Moon. & eclipses. Acting out celestial events. (oh my)

Moon. & eclipses. Acting out celestial events. (oh my) phasestides & eclipses Moon (oh my) Acting out celestial events Developed by: Betsy Mills, UCLA NSF GK-12 Fellow Title of Lesson: Moon Phases, Tides, & Eclipses (oh my)! Grade Level: 8 th grade Subject(s):

More information

Exploration of the Solar System

Exploration of the Solar System Exploration of the Solar System I. Phases of the Moon all about perspective. In this section you will use WWT to explore how the moon appears to change phases from our vantage point on Earth over the course

More information

ANSWER KEY. Chapter 22. 8. phase 9. spring 10. lunar 11. solar 12. gravity

ANSWER KEY. Chapter 22. 8. phase 9. spring 10. lunar 11. solar 12. gravity Chapter 22 Section 22-1 Review and Reinforce (p. 11) 1. winter 2. At point A the sun would be directly overhead, at point B it would be on the horizon, and at point C it would not be visible because it

More information

THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún

THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún Worksheets UNIT 1 October-December 2009 NAME: DATE: Worksheet 1A Cut out these 9 circles and then order them from the smallest to the biggest. NAME: DATE: Worksheet 1B NAME: DATE: Worksheet 2 Read the

More information

7 Scale Model of the Solar System

7 Scale Model of the Solar System Name: Date: 7 Scale Model of the Solar System 7.1 Introduction The Solar System is large, at least when compared to distances we are familiar with on a day-to-day basis. Consider that for those of you

More information

Lesson 1: Phases of the Moon

Lesson 1: Phases of the Moon Lesson 1: Phases of the Moon The moon takes 29.5 days to revolve around the earth. During this time, the moon you see in the sky appears to change shape. These apparent changes, which are called phases,

More information

1. Title: Relative Sizes and Distance in the Solar System: Introducing Powers of Ten

1. Title: Relative Sizes and Distance in the Solar System: Introducing Powers of Ten 1. Title: Relative Sizes and Distance in the Solar System: Introducing Powers of Ten Here we're going to learn how big the Sun is relative to the different types of planet in our Solar System and the huge

More information

Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System

Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System Outdoor Exploration Guide A Journey Through Our Solar System A Journey Through Our Solar System The Solar System Imagine that you are an explorer investigating the solar system. It s a big job, but in

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

AP Environmental Science Graph Prep

AP Environmental Science Graph Prep AP Environmental Science Graph Prep Practice Interpreting Data: The following questions are to help you practice reading information shown on a graph. Answer each question on the separate answer sheet.

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information