Overview of TCP. Overview of TCP. Overview of TCP. Overview of TCP. Connection-oriented, byte-stream

Size: px
Start display at page:

Download "Overview of TCP. Overview of TCP. Overview of TCP. Overview of TCP. Connection-oriented, byte-stream"

Transcription

1 Overview of TCP Overview of TCP Connection-oriented, byte-stream sending process writes some number of bytes TCP breaks into segments and sends via IP receiving process reads some number of bytes Full duplex Overview of TCP Implements both flow and congestion controls Flow control: keep sender from overrunning receiver Congestion control: keep sender from overrunning network Flow control is an end-to-end issue and congestion control is concerned with how hosts and network interact Overview of TCP Based on sliding window protocol used at data link level, but the situation is very different. Potentially connects many different hosts need explicit connection establishment and termination Potentially different RTT need adaptive timeout mechanism Potentially long delay in network need to be prepared for arrival of very old packets 1

2 Overview of TCP Potentially different capacity at destination need to accommodate different amounts of buffering Potentially different network capacity need to be prepared for network congestion TCP header TCP data is encapsulated in an IP datagram The normal size of the TCP header is 20 bytes, unless options are present TCP header TCP services TCP provides a byte-stream service no record markers are inserted by TCP if sending application writes 10 bytes, 20 bytes, and 50 bytes --- the receiving application may receive the 80 bytes in four reads of 20 bytes TCP does not interpret the contents of the bytes -- ASCII/binary -- same 2

3 TCP Segment format As mentioned earlier TCP does not transmit bytes -- although it is a byte stream based service Source host buffers enough bytes from the sending process to fill a reasonably sized packet Sends these packets, called segments to receiver TCP Segment format What causes TCP to send the segments? segment grows larger than the maximum segment size explicit action by the sending application trigger by a timer that periodically fires -- segment contains as many bytes as are currently buffered TCP Segment format Recall that IP discards packets after a packet s TTL expires each TCP packet has a maximum lifetime -- maximum segment lifetime (MSL) -- current recommended setting is 120 seconds This value is not enforced by the IP -- it is a conservative estimate the TCP makes of how long a packet might live TCP Segment format The Src Port and Dest Port along with the IP src/dest addresses identify each TCP connection TCP s demux key is <SrcPort, SrcIPAddr, DestPort, DestIPAddr> Because TCP connections come and go, it is possible for a connection to have different incarnations 3

4 TCP Segment format The Acknowledgment, SequenceNumber, AdvertisedWindow fields are all involved in TCP s sliding window algorithm Each data byte has a sequence number The Sequence Number field contains the # for the first byte of data Acknowledgment and AdvertisedWindow fields carry information about the opposite flow TCP Segment format 6-bit flag field is used to relay information between TCP peers SYN, FIN -- used for connections ACK flag set to indicate Acknowledgement field is valid URG flag set to indicate Urgent data is contained The RESET flag -- receiver wants to abort the connection TCP Connection Establishment TCP connection begins with two actions client (caller) does an active open -- party wanting to initiate a connection server (callee) has already done a passive open -- party willing to accept a connection Most connection setup is asymmetric TCP has an explicit connection setup -- both sides should agree on a set of transmission parameters Three-way handshake Why the sequence number ACK is one larger than the one sent? It is the next sequence number expected -- this implicitly acknowledges all earlier sequence numbers 4

5 Three-way handshake Why should client and server exchange starting sequence numbers with each other? It should be simpler is each side starts from 0 -- well known sequence number Reason: to protect against two incarnations of a connection reusing the same sequence numbers too soon TCP state-transition diagram The states above ESTABLISHED are involved in setting up a connection The states below ESTABLISHED are involved in terminating a connection The sliding-window algorithm is hidden in ESTABLISHED state all connections start in CLOSED state Each arc is labeled with a tag of the form event/action TCP state-transition diagram TCP state-transition diagram Opening a connection: server invokes a passive open operation -- causing TCP to move to LISTEN state client does an active open -- send a SYN segment to server and moves to SYN_SENT state when SYN arrives at the server -- server moves to SYN_RCVD and responds with SYN+ACK arrival of SYN+ACK at client moves it to ESTABLISHED -- three way handshake 5

6 TCP state-transition diagram Closing a connection: application process on both sides of the connection must independently close its half of the connection if one side closes the connection, it has no more data to send -- will be available to receive data TCP state-transition diagram Three possible combinations to go from ESTABLISHED to CLOSED this side closes first: ESTABLISHED -- FIN_WAIT_1 - - FIN_WAIT_2 -- TIME_WAIT -- CLOSED other side closes first: ESTABLISHED -- CLOSE_WAIT -- LAST_ACK -- CLOSED both sides close at the same time: ESTABLISHED -- FIN_WAIT_1 -- CLOSING -- TIME_WAIT -- CLOSED A connection in TIME_WAIT state cannot move to CLOSED state until it has waited 2*MSL TCP state-transition diagram Reason: local side responds with an ACK to a FIN from remote side in case the ACK is lost, the remote side would retransmit the FIN again after timeout if the connection is allowed to move to CLOSED state -- then there might be another incarnation of the connection when the FIN for the earlier connection arrives at the local side this FIN will close the new incarnation Serves several purposes: it guarantees reliable delivery of data it ensures data is delivered in order enforces flow control between sender/receiver Receiver advertises the size of the sliding window -- using the Advertised Window field in the TCP header Receiver selects a suitable value so that its buffer is not overflowed by a fast sender 6

7 Receiver cannot acknowledge a byte that has not been sent TCP can t send a byte application has not written In receiving side: LastByteRead < NextByteExpected -- byte cannot be read by the application until it is received and all preceding bytes are also received -- NextBytesExpected points to the byte immediately after the last byte meeting this criterion NextByteExpected <= LastByteRcvd + 1 if data has arrived in-order, NextByteExpected points to the byte after LastByteRcvd if out-of-order arrival, NextBytesExpected points to the first gap in the data Flow control: sending application is filling its local buffer receiving application is emptying its buffer Both buffers have finite size: MaxSendBuffer and MaxRcvBuffer Receiver throttles the sender by advertising the window size no larger than the amount of data it can buffer 7

8 On the receive side to avoid buffer overflow: LastByteRcvd - LastByteRead <= MaxRcvBuffer AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd - LastByteRead) This is the amount of free space remaining in the receive buffer If the data arrives faster than consumed, this value decreases with time -- at one time AdvertisedWindow will be 0 if the receiver falls behind the sender On sending side TCP should adhere to the advertised window it gets from the receiver LastByteReceived - LastByteAcked <= AdvertisedWindow EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked) EffectiveWindow must be greater than 0 before the sender can send data Send side must also make sure the local application does not overflow the send buffer LastByteWritten - LastByteAcked <= MaxSendBuffer if the sending process tries to write y bytes to TCP and (LastByteWritten - LastByteAcked) + y > MaxSendBuffer TCP blocks TCP ensures that a slow receiving process can stop a fast sending process When advertisedwindow becomes 0 the sender stops sending data Because TCP sends a segment only in response to a received segment -- How sender know the receiver is ready? When receiver advertises a window size of 0, sender periodically sends a 1 byte segment this triggers a response -- reports a non-zero window size called smart sender/dumb receiver technique 8

9 9 TCP sliding Window Issues TCP s sequence is 32-bits wide TCP s advertised window is 16-bits wide This satisfies the sliding window algorithm requirement 2 >> 2 2 However, 32-bit sequence number field can wrap around -- i.e., a packet with sequence # x can be sent and after a while another packet with sequence # x can be sent TCP sliding Window Issues A packet can survive for MSL time seconds If sequence number wraps around within 120 seconds we have a problem Sequence # will wrap around if the #s are consumed very fast -- data is transmitted very fast An OC-48 (622Mbps) link can wraparound sequence #s in 55 seconds TCP sliding Window Issues Largest possible data sender could have in the pipe is determined by the 16-bit AdvertisedWindow The advertisedwindow should be large enough to inject delay * bandwidth data into the network Assuming a RTT of 100ms for T Kbytes 16-bit AdvertisedWindow will allow only 64Kbytes! Adaptive Retransmissions in TCP

10 10 Adaptive Retransmissions in TCP TCP sets timeout for retransmission as a function of the estimated RTT TCP uses an adaptive mechanism to estimate the RTT Idea: keep a running average of RTT and compute timeout as a function of RTT EstimatedR TT = α EstimatedRTT + (1 α) SampleRTT α is selected to smooth EstimatedRTT -- original TCP spec. recommends a setting between 0.8 and 0.9 Adaptive Retransmissions in TCP TimeOut = 2 x EstimatedRTT Karn/Partridge Algorithm: Adaptive Retransmissions in TCP The RTT estimation process should not consider the samplertt when a retransmission occurs As shown above, precise measurement of samplertt becomes difficult due to the ambiguity in matching the ACKs with the transmissions Adaptive Retransmissions in TCP Jacobson/Karels Algorithm Only the aspect of the algorithm that deals with timeout and retransmit is discussed here Main problem with the original scheme it does not consider the variation of the samplertts into account if the variation is small, then EstimatedRTT can be better trusted if large variation then, timeout should not be tightly coupled to EstimatedRTT

11 Adaptive Retransmissions in TCP Difference = SampleRTT - EstimatedRTT EstimatedRTT = EstimatedRTT + (δ x Difference) Deviation = Deviation + δ( Difference - Deviation) δ is a fraction between 0 and 1 TCP Extensions Measuring RTT, sequence number wrap around, and keeping the pipe full are some of issues with TCP Extensions have been proposed to address these issues Timeout = µ x EstimatedRTT + φ x Deviation µ is typicall 1, φ is set to 4 TCP Extensions TCP timeout estimation: TCP reads the actual system clock and puts it in the segment header Receiver echo the timestamp back to the sender Sender can estimate the RTT by subtracting the current time from the received timestamp TCP Extensions Sequence number wrap around: Two segments with the same sequence number Differentiate the two segments by putting the timestamp value in the option field Timestamps monotonically increasing; helps in distinguishing the segments 11

12 Larger Pipe: TCP Extensions AdvertisedWindow may not be sufficient to fully utilize the pipe -- Delay * bandwidth product may very large compared to the AdvertisedWindow We can use a scaling factor AdvertisedWindow is left shifted by that many places before using its contents 12

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

Access Control: Firewalls (1)

Access Control: Firewalls (1) Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception

More information

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer

More information

TCP Performance Management for Dummies

TCP Performance Management for Dummies TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Transport Layer and Data Center TCP

Transport Layer and Data Center TCP Transport Layer and Data Center TCP Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking September 5, 2014 Slides used and adapted judiciously

More information

Chapter 6 Congestion Control and Resource Allocation

Chapter 6 Congestion Control and Resource Allocation Chapter 6 Congestion Control and Resource Allocation 6.3 TCP Congestion Control Additive Increase/Multiplicative Decrease (AIMD) o Basic idea: repeatedly increase transmission rate until congestion occurs;

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user Transport service characterization The Transport Layer End-to-End Protocols: UDP and TCP Connection establishment (if connection-oriented) Data transfer Reliable ( TCP) Unreliable / best effort ( UDP)

More information

Transport Layer. Chapter 3.4. Think about

Transport Layer. Chapter 3.4. Think about Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006

CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006 CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Professor: Ian Foster TAs: Xuehai Zhang, Yong Zhao. Winter Quarter. www.classes.cs.uchicago.edu/classes/archive/2003/winter/54001-1

Professor: Ian Foster TAs: Xuehai Zhang, Yong Zhao. Winter Quarter. www.classes.cs.uchicago.edu/classes/archive/2003/winter/54001-1 Professor: Ian oster Ts: Xuehai Zhang, Yong Zhao Winter Quarter www.classes.cs.uchicago.edu/classes/archive//winter/541-1 alculate the total time required to transfer a 1 KB file (RTT=1 ms, packet size

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Recent advances in transport protocols

Recent advances in transport protocols Recent advances in transport protocols April 12, 2013 Abstract Transport protocols play a critical role in today s Internet. This chapter first looks at the evolution of the Internet s Transport Layer

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

Higher Layer Protocols: UDP, TCP, ATM, MPLS

Higher Layer Protocols: UDP, TCP, ATM, MPLS Higher Layer Protocols: UDP, TCP, ATM, MPLS Massachusetts Institute of Technology Slide 1 The TCP/IP Protocol Suite Transmission Control Protocol / Internet Protocol Developed by DARPA to connect Universities

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Cours de C. Pham,

More information

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage

Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network

Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description AVR460: Embedded Web Server Introduction Intelligent homes will be connected to the Internet and require a microcontroller to communicate with the other network devices. The AVR embedded web server can

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham Basé sur les transparent de Shivkumar Kalyanaraman La couche transport dans

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------

Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------ Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------

More information

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,

More information

NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements

NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements Charles Robert Simpson, Jr. and George F. Riley Georgia Institute of Technology (Georgia Tech), Atlanta Georgia,

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

Digital Audio and Video Data

Digital Audio and Video Data Multimedia Networking Reading: Sections 3.1.2, 3.3, 4.5, and 6.5 CS-375: Computer Networks Dr. Thomas C. Bressoud 1 Digital Audio and Video Data 2 Challenges for Media Streaming Large volume of data Each

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) April 25, 2015 5:22pm c 2015 Avinash Kak, Purdue

More information

Architecture and Performance of the Internet

Architecture and Performance of the Internet SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

Overview of TCP/IP. TCP/IP and Internet

Overview of TCP/IP. TCP/IP and Internet Overview of TCP/IP System Administrators and network administrators Why networking - communication Why TCP/IP Provides interoperable communications between all types of hardware and all kinds of operating

More information

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?

Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control? Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

A Transport Protocol for Multimedia Wireless Sensor Networks

A Transport Protocol for Multimedia Wireless Sensor Networks A Transport Protocol for Multimedia Wireless Sensor Networks Duarte Meneses, António Grilo, Paulo Rogério Pereira 1 NGI'2011: A Transport Protocol for Multimedia Wireless Sensor Networks Introduction Wireless

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross Multimedia Communication Multimedia Systems(Module 5 Lesson 2) Summary: H Internet Phone Example Making the Best use of Internet s Best-Effort Service. Sources: H Chapter 6 from Computer Networking: A

More information

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes: Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?

More information

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview

Applications. Network Application Performance Analysis. Laboratory. Objective. Overview Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology TCP/IP Networking for Wireless Systems Integrated Communication Systems Group Ilmenau University of Technology Content Internet Protocol Suite Link Layer: Ethernet, PPP, ARP, MAC Addressing Network Layer:

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

Network Layer: Network Layer and IP Protocol

Network Layer: Network Layer and IP Protocol 1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols

More information

SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS

SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS by Rajashree Paul Bachelor of Technology, University of Kalyani, 2002 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Internet Packets. Forwarding Datagrams

Internet Packets. Forwarding Datagrams Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed

More information

1 An application in BPC: a Web-Server

1 An application in BPC: a Web-Server 1 An application in BPC: a Web-Server We briefly describe our web-server case-study, dwelling in particular on some of the more advanced features of the BPC framework, such as timeouts, parametrized events,

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Ethernet Hubs and Switches Based on Computer Networking, 4 th Edition by Kurose and Ross Ethernet dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology Simpler,

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

Introduction to Cisco IOS Flexible NetFlow

Introduction to Cisco IOS Flexible NetFlow Introduction to Cisco IOS Flexible NetFlow Last updated: September 2008 The next-generation in flow technology allowing optimization of the network infrastructure, reducing operation costs, improving capacity

More information

The present and the future of TCP/IP

The present and the future of TCP/IP The present and the future of TCP/IP David Espina Project in Electronics dea09001@student.mdh.com Dariusz Baha Computer science dba04002@student.mdh.se ABSTRACT The Transport Control Protocol (TCP) and

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Network Security I: Overview

Network Security I: Overview Network Security I: Overview April 13, 2015 Lecture by: Kevin Chen Slides credit: Vern Paxson, Dawn Song 1 network security 2 Today s Lecture Networking overview + security issues Keep in mind, networking

More information

New York University Computer Science Department Courant Institute of Mathematical Sciences

New York University Computer Science Department Courant Institute of Mathematical Sciences New York University Computer Science Department Courant Institute of Mathematical Sciences Course Title: Data Communications & Networks Course Number: g22.2662-001 Instructor: Jean-Claude Franchitti Session:

More information

TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15

TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15 TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15 1 Introduction File Transfer Protocol (FTP) is the protocol designed for file sharing over internet. By using TCP/IP for lower layer, FTP

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

Multiple Choice Questions

Multiple Choice Questions Comp18112: VoIP Examples/Revision 1 Barry 7/03/11 University of Manchester School of Computer Science COMP18112: Foundations of Distributed Computing 2011 Voice over Internet Protocol (VoIP) Questions

More information

High Speed Internet Access Using Satellite-Based DVB Networks

High Speed Internet Access Using Satellite-Based DVB Networks High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,

More information

Internet Protocols. Background CHAPTER

Internet Protocols. Background CHAPTER CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected

More information

Network Intrusion Detection Systems. Beyond packet filtering

Network Intrusion Detection Systems. Beyond packet filtering Network Intrusion Detection Systems Beyond packet filtering Goal of NIDS Detect attacks as they happen: Real-time monitoring of networks Provide information about attacks that have succeeded: Forensic

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

NETWORK LAYER/INTERNET PROTOCOLS

NETWORK LAYER/INTERNET PROTOCOLS CHAPTER 3 NETWORK LAYER/INTERNET PROTOCOLS You will learn about the following in this chapter: IP operation, fields and functions ICMP messages and meanings Fragmentation and reassembly of datagrams IP

More information

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services CS4983 Senior Technical Report Brian Chown 0254624 Faculty of Computer Science University of New Brunswick Canada

More information

PART III. OPS-based wide area networks

PART III. OPS-based wide area networks PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity

More information

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING CHAPTER 1 PRINCIPLES OF NETWORK MONITORING Jawwad Shamsi and Monica Brocmeyer Department of Computer Science, Wayne State University 5143 Cass Avenue, 431 State Hall, Detroit, MI 48202, USA E-mail:{ jshamsi,

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

Homework 3 assignment for ECE374 Posted: 03/13/15 Due: 03/27/15

Homework 3 assignment for ECE374 Posted: 03/13/15 Due: 03/27/15 1 Homework 3 assignment for ECE374 Posted: 03/13/15 Due: 03/27/15 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit

More information

Secure SCTP against DoS Attacks in Wireless Internet

Secure SCTP against DoS Attacks in Wireless Internet Secure SCTP against DoS Attacks in Wireless Internet Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwjoe@hanyang.ac.kr Abstract. The Stream Control Transport Protocol

More information

Network and Services Discovery

Network and Services Discovery A quick theorical introduction to network scanning January 8, 2016 Disclaimer/Intro Disclaimer/Intro Network scanning is not exact science When an information system is able to interact over the network

More information