Quantitative RNA Sequencing (RNA-seq) and Exome Analysis

Size: px
Start display at page:

Download "Quantitative RNA Sequencing (RNA-seq) and Exome Analysis"

Transcription

1 Quantitative RNA Sequencing (RNA-seq) and Exome Analysis Richard A. Radcliffe, Ph.D. Professor of Pharmacology School of Pharmacy, Department of Pharmaceutical Sciences Room V (303) Why RNA-seq? Genetic architecture Developmental stage Environmental influences Tissue type Disease state Phenotype Crick (1970) Nature 227:

2 Why RNA-seq? Understanding the transcriptome is essential for interpreting the functional elements of the genome and revealing the molecular constituents of cells and tissues, and also for understanding development and disease. Catalogue all species of transcript, including mrnas, non-coding RNAs and small RNAs Determine the transcriptional structure of genes, in terms of their start sites, 5 and 3 ends, splicing patterns and other post-transcriptional modifications Quantify the changing expression levels of each transcript during development and under different conditions. Pathway/network/ontology analysis. Massively parallel expression analysis Wang et al. (2009) Nat Rev Genetics 10:57-63 RNA-seq Overview Select fraction of interest Library prep Sequence and map to reference genome Analysis (QC, quantitation, transcript annotation) Adapted from: Pepke et al. (2009) Nat Methods 6:S22-S32 2

3 Library Prep Corney (2013) Mater Methods 3:203 Library Prep: Some Considerations RNA fraction Many different RNA species Poly(A) Size (<200 nt vs. >200 nt) Strandedness Read length Single- vs. pair-end Multiplexing 3

4 RR34 RNA Fraction ~80% ~15% Both strands transcribed Transcribed Genomic Distribution Total RNA Distribution Mattick & Makunin (2006) Hum Mol Genet 1:R17-29 Genomes, 2 nd Edition, Oxford: Wiley-Liss, 2002 Library Prep: Some Considerations RNA fraction Many different RNA species Poly(A) Size (<200 nt vs. >200 nt) Strandedness Overlapping transcripts Annotation of novel transcripts Read length Single- vs. pair-end Multiplexing 4

5 Slide 7 RR34 The area of the box represents the genome. The area of large green circle is equivalent to the documented extent of transcription, with the darker green area corresponding to that on both strands. CDSs are protein-coding sequences, and UTRs are 5 - and 3 -untranslated sequences in mrnas. The dots indicate (and in fact overstate) the proportion of the genome occupied by known snornas and mirnas. Richard Radcliffe, 1/26/2015

6 Strandedness Strandedness Ncstn (-) <<<<< <<< Copa (+) <<< Transcription <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< DS library prep SS library prep <<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<< Alignment <<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<< Which strand (gene) did the fragment come from? No question about which strand (gene) the fragment came from. 5

7 Library Prep: Some Considerations RNA fraction Many different RNA species Poly(A) Size (<200 nt vs. >200 nt) Strandedness Read length Single- vs. pair-end Multiplexing Read Length Read length is related to: Sequencing accuracy: quality declines as a function of the length of a read Mapping accuracy: the longer the read, the more accurately it maps 6

8 Library Prep: Some Considerations RNA fraction Many different RNA species Poly(A) Size (<200 nt vs. >200 nt) Strandedness Read length Single- vs. pair-end Multiplexing Single vs. Paired-end Zhernakova et al. (2013) PLoS Genet e

9 Library Prep: Some Considerations RNA fraction Many different RNA species Poly(A) Size (<200 nt vs. >200 nt) Strandedness Read length Single- vs. pair-end Multiplexing Mapping to the Reference CCATCTTTTTGATGTCCGCAATGATTT + WTORTSOQXTVVYXRXXXVPTXXXWUUL - chr CCATCTTT Bowtie, BWA Computational considerations 8

10 Mapping to the Genome: Some Considerations Non-unique reads Gene families Repeat sequences (simple repeats, transposons) Depth Probability of representation & limits of detection Transcript isoform quantification Variant calling (SNPs, small indels) Reference genome effects Non-unique Reads Fraction of reads suppressed (%) Number of alignments (10 6 ) Number of multiple alignment reads allowed (bowtie option -m) 9

11 Non-unique Reads: Gene Families Non-unique Reads: Repeats 10

12 Mapping to the Genome: Some Considerations Non-unique reads Gene families Repeat sequences (simple, SINEs, LINEs, etc.) Depth Probability of representation & limits of detection Transcript isoform quantification Variant calling (SNPs, small indels) Reference genome effects Depth: Transcript Quantification 11

13 Depth: Variant Calling Mapping to the Genome: Some Considerations Non-unique reads Gene families Repeat sequences (simple, SINEs, LINEs) Depth Probability of representation & limits of detection Variant calling (SNPs, small indels) Transcript isoform quantification Reference genome effects 12

14 Reference Genome Effects RNA seq: ISS (ISS genome) RNA seq: ISS (mm10 genome) ILS DNA Sequencing ISS DNA Sequencing Gene Annotations Analysis QC Assembly/Quantification Reads Per Kilobase Exon per Million Mapped Reads (RPKM) Differential expression Pathway/network functional analysis Annotation Novel exons novel splice junctions novel genes 13

15 Quality Control Pre-library construction: RNA quality Pre-alignment: Per base quality Per read quality Nucleotide distribution per position GC content Sequence over-representation Post-alignment: Mean coverage, 5-3 and 3-5 Ribosomal RNA contamination Percent mapped reads Quality Control: RNA Degradation 28s 18s 14

16 Quality Control Quality per position Quality per read Nucleotide distribution Analysis QC Assembly/Quantification Reads Per Kilobase Exon per Million Mapped Reads (RPKM) Differential expression Pathway/network functional analysis Annotation Novel exons novel splice junctions novel genes 15

17 Assembly/Quantification: RPKM 3.18 RPKM = C/LN Analysis QC Assembly/Quantification Reads Per Kilobase Exon per Million Mapped Reads (RPKM) Differential expression Pathway/network functional analysis Annotation Novel exons novel splice junctions novel genes 16

18 Differential Expression Hddc3 Analysis QC Assembly/Quantification Reads Per Kilobase Exon per Million Mapped Reads (RPKM) Differential expression Pathway/network functional analysis Annotation Novel exons novel splice junctions novel genes 17

19 Pathway/Network Functional Analysis Weighted Gene Co-expression Network Analysis (WGCNA) Gene Ontology (GO) Cluster Analysis Darlington et al. (2013) Genes Brain Behav 12: Bennett et al. (2015) Alcohol Clin Exp Res NIHMS Analysis QC Assembly/Quantification Reads Per Kilobase Exon per Million Mapped Reads (RPKM) Differential expression Pathway/network functional analysis Annotation Novel exons novel splice junctions novel genes 18

20 Annotation Exome Sequencing Why Identification of variants (SNPs, CNVs, small InDels) Linkage/association/pedigree studies Clinical diagnostics How Isolate, fragment DNA Build library Exome enrichment Sequence Align to reference genome Variant calling Higher order genetic analysis 19

21 Exome Enrichment RR1 Variant Calling Altmann et al. (2012) Hum Genetics 131:

22 Slide 40 RR1 Examples of intragenic deletion and duplication detected by WES and confirmed by exome acgh. Each bar in the graphs (a) (c) and (e) (g) represents an exon. (a c) WES data from a family trio in which the (a) proband has inherited a whole-gene duplication of KRT34 from the (b) father, whereas the (c) mother shows normal copy number at that gene. (e g) WES data from a family trio in which the (e) proband has inherited a partial-gene heterozygous deletion in the SYCP2L gene from the (g) mother, whereas the (f) father shows normal copy number at those exons. Each dot in panels d and h represents an oligonucleotide probe in the gene of interest on the exome array, with a duplication shown by probes deviating to a positive log2 ratio (marked in red) and a deletion shown by probes deviating to a negative log2 ratio (marked in green). Panels d and h show confirmation of the KRT34 duplication and the SYCP2L deletion, respectively, by exome acgh. acgh, array comparative genomic hybridization; WES, whole-exome sequencing. Radcliffe, Richard, 2/1/2015

23 RR2 Variant Calling: CNVs/Indels Child Father Mother Retterer et al. (2014) Genetics Med doi: /gim.2014 Genetic Analysis: Mendelian Inheritance Assumptions: Only consider small indels and SNPs Causal variants are coding Causal variants alter protein sequence Near complete penetrance Rabbani et al. (2012) J Hum Genetics 57:

24 Slide 41 RR2 Examples of intragenic deletion and duplication detected by WES and confirmed by exome acgh. Each bar in the graphs (a) (c) and (e) (g) represents an exon. (a c) WES data from a family trio in which the (a) proband has inherited a whole-gene duplication of KRT34 from the (b) father, whereas the (c) mother shows normal copy number at that gene. (e g) WES data from a family trio in which the (e) proband has inherited a partial-gene heterozygous deletion in the SYCP2L gene from the (g) mother, whereas the (f) father shows normal copy number at those exons. Each dot in panels d and h represents an oligonucleotide probe in the gene of interest on the exome array, with a duplication shown by probes deviating to a positive log2 ratio (marked in red) and a deletion shown by probes deviating to a negative log2 ratio (marked in green). Panels d and h show confirmation of the KRT34 duplication and the SYCP2L deletion, respectively, by exome acgh. acgh, array comparative genomic hybridization; WES, whole-exome sequencing. Radcliffe, Richard, 2/1/2015

25 Genetic Analysis Ku et al. (2012) Ann Neurology 71:5-14 A Few References RNA-seq: Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou YC, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H, Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJ, Tai IT, Marra MA (2010) Alternative expression analysis by RNA sequencing. Nat Methods 7: Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA- Seq. Nat Methods 5: Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, Svenson KL, Keller MP, Attie AD, Hibbs MA, Graber JH, Chesler EJ, Churchill GA (2014) RNA-Seq Alignment to Individualized Genomes Improves Transcript Abundance Estimates in Multiparent Populations. Genetics 198: Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: Exome sequencing: Altmann A, Weber P, Bader D, Preuß M, Binder E, Müller-Myhsok B (2012) A beginners guide to SNP calling from highthroughput DNA-sequencing data. Hum Genet 131: Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. The New England Journal of Medicine 370: Krumm N, Sudmant PH, Ko A, O'Roak BJ, Malig M, Coe BP, Quinlan AR, Nickerson DA, Eichler EE (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22: Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? Journal of Medical Genetics 48: Singleton AB (2011) Exome sequencing: a transformative technology. The Lancet Neurology 10:

Introduction to transcriptome analysis using High Throughput Sequencing technologies (HTS)

Introduction to transcriptome analysis using High Throughput Sequencing technologies (HTS) Introduction to transcriptome analysis using High Throughput Sequencing technologies (HTS) A typical RNA Seq experiment Library construction Protocol variations Fragmentation methods RNA: nebulization,

More information

Standards, Guidelines and Best Practices for RNA-Seq V1.0 (June 2011) The ENCODE Consortium

Standards, Guidelines and Best Practices for RNA-Seq V1.0 (June 2011) The ENCODE Consortium Standards, Guidelines and Best Practices for RNA-Seq V1.0 (June 2011) The ENCODE Consortium I. Introduction: Sequence based assays of transcriptomes (RNA-seq) are in wide use because of their favorable

More information

G E N OM I C S S E RV I C ES

G E N OM I C S S E RV I C ES GENOMICS SERVICES THE NEW YORK GENOME CENTER NYGC is an independent non-profit implementing advanced genomic research to improve diagnosis and treatment of serious diseases. capabilities. N E X T- G E

More information

New Technologies for Sensitive, Low-Input RNA-Seq. Clontech Laboratories, Inc.

New Technologies for Sensitive, Low-Input RNA-Seq. Clontech Laboratories, Inc. New Technologies for Sensitive, Low-Input RNA-Seq Clontech Laboratories, Inc. Outline Introduction Single-Cell-Capable mrna-seq Using SMART Technology SMARTer Ultra Low RNA Kit for the Fluidigm C 1 System

More information

Core Facility Genomics

Core Facility Genomics Core Facility Genomics versatile genome or transcriptome analyses based on quantifiable highthroughput data ascertainment 1 Topics Collaboration with Harald Binder and Clemens Kreutz Project: Microarray

More information

FlipFlop: Fast Lasso-based Isoform Prediction as a Flow Problem

FlipFlop: Fast Lasso-based Isoform Prediction as a Flow Problem FlipFlop: Fast Lasso-based Isoform Prediction as a Flow Problem Elsa Bernard Laurent Jacob Julien Mairal Jean-Philippe Vert September 24, 2013 Abstract FlipFlop implements a fast method for de novo transcript

More information

Next Generation Sequencing

Next Generation Sequencing Next Generation Sequencing Technology and applications 10/1/2015 Jeroen Van Houdt - Genomics Core - KU Leuven - UZ Leuven 1 Landmarks in DNA sequencing 1953 Discovery of DNA double helix structure 1977

More information

Next Generation Sequencing: Technology, Mapping, and Analysis

Next Generation Sequencing: Technology, Mapping, and Analysis Next Generation Sequencing: Technology, Mapping, and Analysis Gary Benson Computer Science, Biology, Bioinformatics Boston University gbenson@bu.edu http://tandem.bu.edu/ The Human Genome Project took

More information

Frequently Asked Questions Next Generation Sequencing

Frequently Asked Questions Next Generation Sequencing Frequently Asked Questions Next Generation Sequencing Import These Frequently Asked Questions for Next Generation Sequencing are some of the more common questions our customers ask. Questions are divided

More information

Using Illumina BaseSpace Apps to Analyze RNA Sequencing Data

Using Illumina BaseSpace Apps to Analyze RNA Sequencing Data Using Illumina BaseSpace Apps to Analyze RNA Sequencing Data The Illumina TopHat Alignment and Cufflinks Assembly and Differential Expression apps make RNA data analysis accessible to any user, regardless

More information

School of Nursing. Presented by Yvette Conley, PhD

School of Nursing. Presented by Yvette Conley, PhD Presented by Yvette Conley, PhD What we will cover during this webcast: Briefly discuss the approaches introduced in the paper: Genome Sequencing Genome Wide Association Studies Epigenomics Gene Expression

More information

RNAseq / ChipSeq / Methylseq and personalized genomics

RNAseq / ChipSeq / Methylseq and personalized genomics RNAseq / ChipSeq / Methylseq and personalized genomics 7711 Lecture Subhajyo) De, PhD Division of Biomedical Informa)cs and Personalized Biomedicine, Department of Medicine University of Colorado School

More information

Services. Updated 05/31/2016

Services. Updated 05/31/2016 Updated 05/31/2016 Services 1. Whole exome sequencing... 2 2. Whole Genome Sequencing (WGS)... 3 3. 16S rrna sequencing... 4 4. Customized gene panels... 5 5. RNA-Seq... 6 6. qpcr... 7 7. HLA typing...

More information

Disease gene identification with exome sequencing

Disease gene identification with exome sequencing Disease gene identification with exome sequencing Christian Gilissen Dept. of Human Genetics Radboud University Nijmegen Medical Centre c.gilissen@antrg.umcn.nl Contents Infrastructure Exome sequencing

More information

Sequencing and microarrays for genome analysis: complementary rather than competing?

Sequencing and microarrays for genome analysis: complementary rather than competing? Sequencing and microarrays for genome analysis: complementary rather than competing? Simon Hughes, Richard Capper, Sandra Lam and Nicole Sparkes Introduction The human genome is comprised of more than

More information

Introduction to NGS data analysis

Introduction to NGS data analysis Introduction to NGS data analysis Jeroen F. J. Laros Leiden Genome Technology Center Department of Human Genetics Center for Human and Clinical Genetics Sequencing Illumina platforms Characteristics: High

More information

Shouguo Gao Ph. D Department of Physics and Comprehensive Diabetes Center

Shouguo Gao Ph. D Department of Physics and Comprehensive Diabetes Center Computational Challenges in Storage, Analysis and Interpretation of Next-Generation Sequencing Data Shouguo Gao Ph. D Department of Physics and Comprehensive Diabetes Center Next Generation Sequencing

More information

PreciseTM Whitepaper

PreciseTM Whitepaper Precise TM Whitepaper Introduction LIMITATIONS OF EXISTING RNA-SEQ METHODS Correctly designed gene expression studies require large numbers of samples, accurate results and low analysis costs. Analysis

More information

Computational Genomics. Next generation sequencing (NGS)

Computational Genomics. Next generation sequencing (NGS) Computational Genomics Next generation sequencing (NGS) Sequencing technology defies Moore s law Nature Methods 2011 Log 10 (price) Sequencing the Human Genome 2001: Human Genome Project 2.7G$, 11 years

More information

Next generation DNA sequencing technologies. theory & prac-ce

Next generation DNA sequencing technologies. theory & prac-ce Next generation DNA sequencing technologies theory & prac-ce Outline Next- Genera-on sequencing (NGS) technologies overview NGS applica-ons NGS workflow: data collec-on and processing the exome sequencing

More information

Focusing on results not data comprehensive data analysis for targeted next generation sequencing

Focusing on results not data comprehensive data analysis for targeted next generation sequencing Focusing on results not data comprehensive data analysis for targeted next generation sequencing Daniel Swan, Jolyon Holdstock, Angela Matchan, Richard Stark, John Shovelton, Duarte Mohla and Simon Hughes

More information

Discovery and Quantification of RNA with RNASeq Roderic Guigó Serra Centre de Regulació Genòmica (CRG) roderic.guigo@crg.cat

Discovery and Quantification of RNA with RNASeq Roderic Guigó Serra Centre de Regulació Genòmica (CRG) roderic.guigo@crg.cat Bioinformatique et Séquençage Haut Débit, Discovery and Quantification of RNA with RNASeq Roderic Guigó Serra Centre de Regulació Genòmica (CRG) roderic.guigo@crg.cat 1 RNA Transcription to RNA and subsequent

More information

Targeted. sequencing solutions. Accurate, scalable, fast TARGETED

Targeted. sequencing solutions. Accurate, scalable, fast TARGETED Targeted TARGETED Sequencing sequencing solutions Accurate, scalable, fast Sequencing for every lab, every budget, every application Ion Torrent semiconductor sequencing Ion Torrent technology has pioneered

More information

Expression Quantification (I)

Expression Quantification (I) Expression Quantification (I) Mario Fasold, LIFE, IZBI Sequencing Technology One Illumina HiSeq 2000 run produces 2 times (paired-end) ca. 1,2 Billion reads ca. 120 GB FASTQ file RNA-seq protocol Task

More information

Single-Cell Whole Genome Sequencing on the C1 System: a Performance Evaluation

Single-Cell Whole Genome Sequencing on the C1 System: a Performance Evaluation PN 100-9879 A1 TECHNICAL NOTE Single-Cell Whole Genome Sequencing on the C1 System: a Performance Evaluation Introduction Cancer is a dynamic evolutionary process of which intratumor genetic and phenotypic

More information

Single-Cell DNA Sequencing with the C 1. Single-Cell Auto Prep System. Reveal hidden populations and genetic diversity within complex samples

Single-Cell DNA Sequencing with the C 1. Single-Cell Auto Prep System. Reveal hidden populations and genetic diversity within complex samples DATA Sheet Single-Cell DNA Sequencing with the C 1 Single-Cell Auto Prep System Reveal hidden populations and genetic diversity within complex samples Single-cell sensitivity Discover and detect SNPs,

More information

Challenges associated with analysis and storage of NGS data

Challenges associated with analysis and storage of NGS data Challenges associated with analysis and storage of NGS data Gabriella Rustici Research and training coordinator Functional Genomics Group gabry@ebi.ac.uk Next-generation sequencing Next-generation sequencing

More information

The world of non-coding RNA. Espen Enerly

The world of non-coding RNA. Espen Enerly The world of non-coding RNA Espen Enerly ncrna in general Different groups Small RNAs Outline mirnas and sirnas Speculations Common for all ncrna Per def.: never translated Not spurious transcripts Always/often

More information

CRAC: An integrated approach to analyse RNA-seq reads Additional File 3 Results on simulated RNA-seq data.

CRAC: An integrated approach to analyse RNA-seq reads Additional File 3 Results on simulated RNA-seq data. : An integrated approach to analyse RNA-seq reads Additional File 3 Results on simulated RNA-seq data. Nicolas Philippe and Mikael Salson and Thérèse Commes and Eric Rivals February 13, 2013 1 Results

More information

Data Analysis & Management of High-throughput Sequencing Data. Quoclinh Nguyen Research Informatics Genomics Core / Medical Research Institute

Data Analysis & Management of High-throughput Sequencing Data. Quoclinh Nguyen Research Informatics Genomics Core / Medical Research Institute Data Analysis & Management of High-throughput Sequencing Data Quoclinh Nguyen Research Informatics Genomics Core / Medical Research Institute Current Issues Current Issues The QSEQ file Number files per

More information

BIOL 3200 Spring 2015 DNA Subway and RNA-Seq Data Analysis

BIOL 3200 Spring 2015 DNA Subway and RNA-Seq Data Analysis BIOL 3200 Spring 2015 DNA Subway and RNA-Seq Data Analysis By the end of this lab students should be able to: Describe the uses for each line of the DNA subway program (Red/Yellow/Blue/Green) Describe

More information

Genomes and SNPs in Malaria and Sickle Cell Anemia

Genomes and SNPs in Malaria and Sickle Cell Anemia Genomes and SNPs in Malaria and Sickle Cell Anemia Introduction to Genome Browsing with Ensembl Ensembl The vast amount of information in biological databases today demands a way of organising and accessing

More information

Information leaflet. Centrum voor Medische Genetica. Version 1/20150504 Design by Ben Caljon, UZ Brussel. Universitair Ziekenhuis Brussel

Information leaflet. Centrum voor Medische Genetica. Version 1/20150504 Design by Ben Caljon, UZ Brussel. Universitair Ziekenhuis Brussel Information on genome-wide genetic testing Array Comparative Genomic Hybridization (array CGH) Single Nucleotide Polymorphism array (SNP array) Massive Parallel Sequencing (MPS) Version 120150504 Design

More information

How Sequencing Experiments Fail

How Sequencing Experiments Fail How Sequencing Experiments Fail v1.0 Simon Andrews simon.andrews@babraham.ac.uk Classes of Failure Technical Tracking Library Contamination Biological Interpretation Something went wrong with a machine

More information

NEXT GENERATION SEQUENCING

NEXT GENERATION SEQUENCING NEXT GENERATION SEQUENCING Dr. R. Piazza SANGER SEQUENCING + DNA NEXT GENERATION SEQUENCING Flowcell NEXT GENERATION SEQUENCING Library di DNA Genomic DNA NEXT GENERATION SEQUENCING NEXT GENERATION SEQUENCING

More information

From Reads to Differentially Expressed Genes. The statistics of differential gene expression analysis using RNA-seq data

From Reads to Differentially Expressed Genes. The statistics of differential gene expression analysis using RNA-seq data From Reads to Differentially Expressed Genes The statistics of differential gene expression analysis using RNA-seq data experimental design data collection modeling statistical testing biological heterogeneity

More information

ncounter Leukemia Fusion Gene Expression Assay Molecules That Count Product Highlights ncounter Leukemia Fusion Gene Expression Assay Overview

ncounter Leukemia Fusion Gene Expression Assay Molecules That Count Product Highlights ncounter Leukemia Fusion Gene Expression Assay Overview ncounter Leukemia Fusion Gene Expression Assay Product Highlights Simultaneous detection and quantification of 25 fusion gene isoforms and 23 additional mrnas related to leukemia Compatible with a variety

More information

TGC AT YOUR SERVICE. Taking your research to the next generation

TGC AT YOUR SERVICE. Taking your research to the next generation TGC AT YOUR SERVICE Taking your research to the next generation 1. TGC At your service 2. Applications of Next Generation Sequencing 3. Experimental design 4. TGC workflow 5. Sample preparation 6. Illumina

More information

Lectures 1 and 8 15. February 7, 2013. Genomics 2012: Repetitorium. Peter N Robinson. VL1: Next- Generation Sequencing. VL8 9: Variant Calling

Lectures 1 and 8 15. February 7, 2013. Genomics 2012: Repetitorium. Peter N Robinson. VL1: Next- Generation Sequencing. VL8 9: Variant Calling Lectures 1 and 8 15 February 7, 2013 This is a review of the material from lectures 1 and 8 14. Note that the material from lecture 15 is not relevant for the final exam. Today we will go over the material

More information

-> Integration of MAPHiTS in Galaxy

-> Integration of MAPHiTS in Galaxy Enabling NGS Analysis with(out) the Infrastructure, 12:0512 Development of a workflow for SNPs detection in grapevine From Sets to Graphs: Towards a Realistic Enrichment Analy species: MAPHiTS -> Integration

More information

Gene Expression Analysis

Gene Expression Analysis Gene Expression Analysis Jie Peng Department of Statistics University of California, Davis May 2012 RNA expression technologies High-throughput technologies to measure the expression levels of thousands

More information

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources

Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources 1 of 8 11/7/2004 11:00 AM National Center for Biotechnology Information About NCBI NCBI at a Glance A Science Primer Human Genome Resources Model Organisms Guide Outreach and Education Databases and Tools

More information

An example of bioinformatics application on plant breeding projects in Rijk Zwaan

An example of bioinformatics application on plant breeding projects in Rijk Zwaan An example of bioinformatics application on plant breeding projects in Rijk Zwaan Xiangyu Rao 17-08-2012 Introduction of RZ Rijk Zwaan is active worldwide as a vegetable breeding company that focuses on

More information

Q&A: Kevin Shianna on Ramping up Sequencing for the New York Genome Center

Q&A: Kevin Shianna on Ramping up Sequencing for the New York Genome Center Q&A: Kevin Shianna on Ramping up Sequencing for the New York Genome Center Name: Kevin Shianna Age: 39 Position: Senior vice president, sequencing operations, New York Genome Center, since July 2012 Experience

More information

Introduction To Epigenetic Regulation: How Can The Epigenomics Core Services Help Your Research? Maria (Ken) Figueroa, M.D. Core Scientific Director

Introduction To Epigenetic Regulation: How Can The Epigenomics Core Services Help Your Research? Maria (Ken) Figueroa, M.D. Core Scientific Director Introduction To Epigenetic Regulation: How Can The Epigenomics Core Services Help Your Research? Maria (Ken) Figueroa, M.D. Core Scientific Director Gene expression depends upon multiple factors Gene Transcription

More information

OriGene Technologies, Inc. MicroRNA analysis: Detection, Perturbation, and Target Validation

OriGene Technologies, Inc. MicroRNA analysis: Detection, Perturbation, and Target Validation OriGene Technologies, Inc. MicroRNA analysis: Detection, Perturbation, and Target Validation -Optimal strategies to a successful mirna research project Optimal strategies to a successful mirna research

More information

Systematic discovery of regulatory motifs in human promoters and 30 UTRs by comparison of several mammals

Systematic discovery of regulatory motifs in human promoters and 30 UTRs by comparison of several mammals Systematic discovery of regulatory motifs in human promoters and 30 UTRs by comparison of several mammals Xiaohui Xie 1, Jun Lu 1, E. J. Kulbokas 1, Todd R. Golub 1, Vamsi Mootha 1, Kerstin Lindblad-Toh

More information

SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE

SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE AP Biology Date SICKLE CELL ANEMIA & THE HEMOGLOBIN GENE TEACHER S GUIDE LEARNING OBJECTIVES Students will gain an appreciation of the physical effects of sickle cell anemia, its prevalence in the population,

More information

A Primer of Genome Science THIRD

A Primer of Genome Science THIRD A Primer of Genome Science THIRD EDITION GREG GIBSON-SPENCER V. MUSE North Carolina State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts USA Contents Preface xi 1 Genome Projects:

More information

Overview of Genetic Testing and Screening

Overview of Genetic Testing and Screening Integrating Genetics into Your Practice Webinar Series Overview of Genetic Testing and Screening Genetic testing is an important tool in the screening and diagnosis of many conditions. New technology is

More information

RNA-seq. Quantification and Differential Expression. Genomics: Lecture #12

RNA-seq. Quantification and Differential Expression. Genomics: Lecture #12 (2) Quantification and Differential Expression Institut für Medizinische Genetik und Humangenetik Charité Universitätsmedizin Berlin Genomics: Lecture #12 Today (2) Gene Expression per Sources of bias,

More information

Basic processing of next-generation sequencing (NGS) data

Basic processing of next-generation sequencing (NGS) data Basic processing of next-generation sequencing (NGS) data Getting from raw sequence data to expression analysis! 1 Reminder: we are measuring expression of protein coding genes by transcript abundance

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression (Learning Objectives) Explain the role of gene expression is differentiation of function of cells which leads to the emergence of different tissues, organs, and organ systems

More information

Biomedical Big Data and Precision Medicine

Biomedical Big Data and Precision Medicine Biomedical Big Data and Precision Medicine Jie Yang Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago October 8, 2015 1 Explosion of Biomedical Data 2 Types

More information

AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE

AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE ACCELERATING PROGRESS IS IN OUR GENES AGILENT S BIOINFORMATICS ANALYSIS SOFTWARE GENESPRING GENE EXPRESSION (GX) MASS PROFILER PROFESSIONAL (MPP) PATHWAY ARCHITECT (PA) See Deeper. Reach Further. BIOINFORMATICS

More information

New solutions for Big Data Analysis and Visualization

New solutions for Big Data Analysis and Visualization New solutions for Big Data Analysis and Visualization From HPC to cloud-based solutions Barcelona, February 2013 Nacho Medina imedina@cipf.es http://bioinfo.cipf.es/imedina Head of the Computational Biology

More information

Go where the biology takes you. Genome Analyzer IIx Genome Analyzer IIe

Go where the biology takes you. Genome Analyzer IIx Genome Analyzer IIe Go where the biology takes you. Genome Analyzer IIx Genome Analyzer IIe Go where the biology takes you. To published results faster With proven scalability To the forefront of discovery To limitless applications

More information

Overview of Next Generation Sequencing platform technologies

Overview of Next Generation Sequencing platform technologies Overview of Next Generation Sequencing platform technologies Dr. Bernd Timmermann Next Generation Sequencing Core Facility Max Planck Institute for Molecular Genetics Berlin, Germany Outline 1. Technologies

More information

Nazneen Aziz, PhD. Director, Molecular Medicine Transformation Program Office

Nazneen Aziz, PhD. Director, Molecular Medicine Transformation Program Office 2013 Laboratory Accreditation Program Audioconferences and Webinars Implementing Next Generation Sequencing (NGS) as a Clinical Tool in the Laboratory Nazneen Aziz, PhD Director, Molecular Medicine Transformation

More information

BRCA1 / 2 testing by massive sequencing highlights, shadows or pitfalls?

BRCA1 / 2 testing by massive sequencing highlights, shadows or pitfalls? BRCA1 / 2 testing by massive sequencing highlights, shadows or pitfalls? Giovanni Luca Scaglione, PhD ------------------------ Laboratory of Clinical Molecular Diagnostics and Personalized Medicine, Institute

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

LifeScope Genomic Analysis Software 2.5

LifeScope Genomic Analysis Software 2.5 USER GUIDE LifeScope Genomic Analysis Software 2.5 Graphical User Interface DATA ANALYSIS METHODS AND INTERPRETATION Publication Part Number 4471877 Rev. A Revision Date November 2011 For Research Use

More information

Gene Models & Bed format: What they represent.

Gene Models & Bed format: What they represent. GeneModels&Bedformat:Whattheyrepresent. Gene models are hypotheses about the structure of transcripts produced by a gene. Like all models, they may be correct, partly correct, or entirely wrong. Typically,

More information

The Future of the Electronic Health Record. Gerry Higgins, Ph.D., Johns Hopkins

The Future of the Electronic Health Record. Gerry Higgins, Ph.D., Johns Hopkins The Future of the Electronic Health Record Gerry Higgins, Ph.D., Johns Hopkins Topics to be covered Near Term Opportunities: Commercial, Usability, Unification of different applications. OMICS : The patient

More information

Delivering the power of the world s most successful genomics platform

Delivering the power of the world s most successful genomics platform Delivering the power of the world s most successful genomics platform NextCODE Health is bringing the full power of the world s largest and most successful genomics platform to everyday clinical care NextCODE

More information

How many of you have checked out the web site on protein-dna interactions?

How many of you have checked out the web site on protein-dna interactions? How many of you have checked out the web site on protein-dna interactions? Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset to show detail. Find and be ready to discuss

More information

Introduction to Genome Annotation

Introduction to Genome Annotation Introduction to Genome Annotation AGCGTGGTAGCGCGAGTTTGCGAGCTAGCTAGGCTCCGGATGCGA CCAGCTTTGATAGATGAATATAGTGTGCGCGACTAGCTGTGTGTT GAATATATAGTGTGTCTCTCGATATGTAGTCTGGATCTAGTGTTG GTGTAGATGGAGATCGCGTAGCGTGGTAGCGCGAGTTTGCGAGCT

More information

Outline. MicroRNA Bioinformatics. microrna biogenesis. short non-coding RNAs not considered in this lecture. ! Introduction

Outline. MicroRNA Bioinformatics. microrna biogenesis. short non-coding RNAs not considered in this lecture. ! Introduction Outline MicroRNA Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology (CMB) Karolinska Institutet! Introduction! microrna target site prediction! Useful resources 2 short non-coding RNAs

More information

Introduction to next-generation sequencing data

Introduction to next-generation sequencing data Introduction to next-generation sequencing data David Simpson Centre for Experimental Medicine Queens University Belfast http://www.qub.ac.uk/research-centres/cem/ Outline History of DNA sequencing NGS

More information

Next Generation Sequencing: Adjusting to Big Data. Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa 29.10.2013

Next Generation Sequencing: Adjusting to Big Data. Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa 29.10.2013 Next Generation Sequencing: Adjusting to Big Data Daniel Nicorici, Dr.Tech. Statistikot Suomen Lääketeollisuudessa 29.10.2013 Outline Human Genome Project Next-Generation Sequencing Personalized Medicine

More information

Analysis of ChIP-seq data in Galaxy

Analysis of ChIP-seq data in Galaxy Analysis of ChIP-seq data in Galaxy November, 2012 Local copy: https://galaxy.wi.mit.edu/ Joint project between BaRC and IT Main site: http://main.g2.bx.psu.edu/ 1 Font Conventions Bold and blue refers

More information

Genetic diagnostics the gateway to personalized medicine

Genetic diagnostics the gateway to personalized medicine Micronova 20.11.2012 Genetic diagnostics the gateway to personalized medicine Kristiina Assoc. professor, Director of Genetic Department HUSLAB, Helsinki University Central Hospital The Human Genome Packed

More information

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik

Leading Genomics. Diagnostic. Discove. Collab. harma. Shanghai Cambridge, MA Reykjavik Leading Genomics Diagnostic harma Discove Collab Shanghai Cambridge, MA Reykjavik Global leadership for using the genome to create better medicine WuXi NextCODE provides a uniquely proven and integrated

More information

RNA-Seq Tutorial 1. John Garbe Research Informatics Support Systems, MSI March 19, 2012

RNA-Seq Tutorial 1. John Garbe Research Informatics Support Systems, MSI March 19, 2012 RNA-Seq Tutorial 1 John Garbe Research Informatics Support Systems, MSI March 19, 2012 Tutorial 1 RNA-Seq Tutorials RNA-Seq experiment design and analysis Instruction on individual software will be provided

More information

Micro RNAs: potentielle Biomarker für das. Blutspenderscreening

Micro RNAs: potentielle Biomarker für das. Blutspenderscreening Micro RNAs: potentielle Biomarker für das Blutspenderscreening micrornas - Background Types of RNA -Coding: messenger RNA (mrna) -Non-coding (examples): Ribosomal RNA (rrna) Transfer RNA (trna) Small nuclear

More information

Organization and analysis of NGS variations. Alireza Hadj Khodabakhshi Research Investigator

Organization and analysis of NGS variations. Alireza Hadj Khodabakhshi Research Investigator Organization and analysis of NGS variations. Alireza Hadj Khodabakhshi Research Investigator Why is the NGS data processing a big challenge? Computation cannot keep up with the Biology. Source: illumina

More information

Gene Expression Assays

Gene Expression Assays APPLICATION NOTE TaqMan Gene Expression Assays A mpl i fic ationef ficienc yof TaqMan Gene Expression Assays Assays tested extensively for qpcr efficiency Key factors that affect efficiency Efficiency

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice. Supplementary Guidelines

Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice. Supplementary Guidelines Assuring the Quality of Next-Generation Sequencing in Clinical Laboratory Practice Next-generation Sequencing: Standardization of Clinical Testing (Nex-StoCT) Workgroup Principles and Guidelines Supplementary

More information

Human Genome Organization: An Update. Genome Organization: An Update

Human Genome Organization: An Update. Genome Organization: An Update Human Genome Organization: An Update Genome Organization: An Update Highlights of Human Genome Project Timetable Proposed in 1990 as 3 billion dollar joint venture between DOE and NIH with 15 year completion

More information

escience and Post-Genome Biomedical Research

escience and Post-Genome Biomedical Research escience and Post-Genome Biomedical Research Thomas L. Casavant, Adam P. DeLuca Departments of Biomedical Engineering, Electrical Engineering and Ophthalmology Coordinated Laboratory for Computational

More information

Text file One header line meta information lines One line : variant/position

Text file One header line meta information lines One line : variant/position Software Calling: GATK SAMTOOLS mpileup Varscan SOAP VCF format Text file One header line meta information lines One line : variant/position ##fileformat=vcfv4.1! ##filedate=20090805! ##source=myimputationprogramv3.1!

More information

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison

RETRIEVING SEQUENCE INFORMATION. Nucleotide sequence databases. Database search. Sequence alignment and comparison RETRIEVING SEQUENCE INFORMATION Nucleotide sequence databases Database search Sequence alignment and comparison Biological sequence databases Originally just a storage place for sequences. Currently the

More information

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Using Galaxy for NGS Analysis. Daniel Blankenberg Postdoctoral Research Associate The Galaxy Team http://usegalaxy.org

Using Galaxy for NGS Analysis. Daniel Blankenberg Postdoctoral Research Associate The Galaxy Team http://usegalaxy.org Using Galaxy for NGS Analysis Daniel Blankenberg Postdoctoral Research Associate The Galaxy Team http://usegalaxy.org Overview NGS Data Galaxy tools for NGS Data Galaxy for Sequencing Facilities Overview

More information

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu. Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.au What is Gene Expression & Gene Regulation? 1. Gene Expression

More information

Advances in RainDance Sequence Enrichment Technology and Applications in Cancer Research. March 17, 2011 Rendez-Vous Séquençage

Advances in RainDance Sequence Enrichment Technology and Applications in Cancer Research. March 17, 2011 Rendez-Vous Séquençage Advances in RainDance Sequence Enrichment Technology and Applications in Cancer Research March 17, 2011 Rendez-Vous Séquençage Presentation Overview Core Technology Review Sequence Enrichment Application

More information

Simplifying Data Interpretation with Nexus Copy Number

Simplifying Data Interpretation with Nexus Copy Number Simplifying Data Interpretation with Nexus Copy Number A WHITE PAPER FROM BIODISCOVERY, INC. Rapid technological advancements, such as high-density acgh and SNP arrays as well as next-generation sequencing

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE Q5B INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE QUALITY OF BIOTECHNOLOGICAL PRODUCTS: ANALYSIS

More information

Introduction To Real Time Quantitative PCR (qpcr)

Introduction To Real Time Quantitative PCR (qpcr) Introduction To Real Time Quantitative PCR (qpcr) SABiosciences, A QIAGEN Company www.sabiosciences.com The Seminar Topics The advantages of qpcr versus conventional PCR Work flow & applications Factors

More information

Introduction to Bioinformatics 3. DNA editing and contig assembly

Introduction to Bioinformatics 3. DNA editing and contig assembly Introduction to Bioinformatics 3. DNA editing and contig assembly Benjamin F. Matthews United States Department of Agriculture Soybean Genomics and Improvement Laboratory Beltsville, MD 20708 matthewb@ba.ars.usda.gov

More information

Comparative genomic hybridization Because arrays are more than just a tool for expression analysis

Comparative genomic hybridization Because arrays are more than just a tool for expression analysis Microarray Data Analysis Workshop MedVetNet Workshop, DTU 2008 Comparative genomic hybridization Because arrays are more than just a tool for expression analysis Carsten Friis ( with several slides from

More information

How-To: SNP and INDEL detection

How-To: SNP and INDEL detection How-To: SNP and INDEL detection April 23, 2014 Lumenogix NGS SNP and INDEL detection Mutation Analysis Identifying known, and discovering novel genomic mutations, has been one of the most popular applications

More information

Single Nucleotide Polymorphisms (SNPs)

Single Nucleotide Polymorphisms (SNPs) Single Nucleotide Polymorphisms (SNPs) Additional Markers 13 core STR loci Obtain further information from additional markers: Y STRs Separating male samples Mitochondrial DNA Working with extremely degraded

More information

Methods, tools, and pipelines for analysis of Ion PGM Sequencer mirna and gene expression data

Methods, tools, and pipelines for analysis of Ion PGM Sequencer mirna and gene expression data WHITE PAPER Ion RNA-Seq Methods, tools, and pipelines for analysis of Ion PGM Sequencer mirna and gene expression data Introduction High-resolution measurements of transcriptional activity and organization

More information

Understanding West Nile Virus Infection

Understanding West Nile Virus Infection Understanding West Nile Virus Infection The QIAGEN Bioinformatics Solution: Biomedical Genomics Workbench (BXWB) + Ingenuity Pathway Analysis (IPA) Functional Genomics & Predictive Medicine, May 21-22,

More information

ACMG clinical laboratory standards for next-generation sequencing

ACMG clinical laboratory standards for next-generation sequencing American College of Medical Genetics and Genomics ACMG Practice Guidelines ACMG clinical laboratory standards for next-generation sequencing Heidi L. Rehm, PhD 1,2, Sherri J. Bale, PhD 3, Pinar Bayrak-Toydemir,

More information