Sum of Exterior Angles of Polygons TEACHER NOTES

Size: px
Start display at page:

Download "Sum of Exterior Angles of Polygons TEACHER NOTES"

Transcription

1 Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary). Studets will determie that if oe exterior agle is draw at each vertex of a covex polygo, the the sum of the measures of those exterior agles is 360. Studets will determie a formula for the measure of oe exterior agle of a regular polygo ad use this to discover a alterative form for the formula that is typically used to calculate the measure of the iterior agle of a regular polygo. Vocabulary exterior agle of a polygo regular polygo iterior agle of a polygo irregular polygo About the Lesso This lesso ivolves movig a arrow alog the side of regular ad irregular polygos to form a exterior agle with the adjacet side of the polygo. As a result studets will: Discover that a iterior ad exterior agle of a polygo form a liear pair. Determie that the sum of the measures of the exterior agles of ay covex polygo is 360. Determie that a exterior agle of a regular -go must measure 360 ad that the measure of the iterior agle of 360 a regular polygo ca be foud by the formula TI-Nspire Navigator Live Preseter Quick Poll Class Capture Activity Materials Compatible TI Techologies: TI-Nspire Apps for ipad, TI-Nspire CX Hadhelds, TI-Nspire Software Tech Tips: This activity icludes scree captures from the TI-Nspire CX hadheld. It is also appropriate for use with the TI-Nspire family of products icludig TI-Nspire software ad TI-Nspire App. Slight variatios to these directios may be required if usig other techologies besides the hadheld. Watch for additioal Tech Tips throughout the activity for the specific techology you are usig. Access free tutorials at ators/pd/us/olie- Learig/Tutorials Lesso Materials: Studet Activity Sum_of_Exterior_Agles_of_ Polygos_Studet.PDF Sum_of_Exterior_Agles_of_ Polygos_Studet.DOC TI-Nspire documet Sum_of_Exterior_Agles_of_ Polygos.ts Visit for lesso updates ad tech tip videos Texas Istrumets Icorporated 1 educatio.ti.com

2 Sum of Exterior Agles of Polygos TEACHER NOTES Discussio Poits ad Possible Aswers Tech Tip: If studets experiece difficulty draggig the poit, check to make sure that they have moved the arrow util it becomes a had ( ) gettig ready to grab the poit. Press / x to grab the poit ad close the had ({). Move to page The figure o page 1.2 is a regular petago. Teacher Tip: You may wat to demostrate ad have studets follow you o the first rotatio. a. Move the arrow by draggig poit T alog the side of the petago. What appears whe the arrow reaches the vertex? Aswer: A dotted ray appears. This ray forms a exterior agle with the ext side of the polygo. The measure of the iterior agle appears. The measure of the agle betwee the arrow ad the dotted ray appears. Sice the arrow is lied up with the dotted ray, this measure is 0. b. Make a cojecture about the umber of degrees eeded to rotate the arrow for it to lie up with the ext side of the petago. What mathematical relatioship betwee the exterior ad iterior agles could help you determie the umber of degrees eeded to rotate the arrow? Aswer: Aswers may vary. If studets cojecture correctly, they will determie that they should rotate the vector 72. Studets should ote that sice the iterior agle ad the exterior agle at that vertex form a liear pair, they are supplemetary ad the sum of their measures is 180. Therefore, you must rotate the arrow Texas Istrumets Icorporated 2 educatio.ti.com

3 Sum of Exterior Agles of Polygos TEACHER NOTES c. Press d. Test your cojecture by grabbig poit T ad rotatig the arrow so that it "saps" to the ext side. What do you otice about the sum of the exterior agle ad the adjacet iterior agle? Aswer: Their sum is 180. They are supplemetary agles. Teacher Tip: After pressig d, grab the arrow ad rotate to the side. It should sap to the side, but this may take a little practice. If studets have trouble, have them move the poit a little closer to the ext vertex ad try agai. The poit will jump slightly whe it saps ito place. Tech Tip: To release poit T, tap the white space outside of the polygo. TI-Nspire Navigator Opportuity: Live Preseter See Note 1 at the ed of this lesso. d. Press d. Move poit T to the ext vertex ad complete the eeded rotatio for the arrow to lie up with the ext side of the polygo. Explai the ew exterior agle sum. Aswer: The ew sum is 144 because of aother rotatio of 72. e. Repeat steps a d to cotiue movig ad rotatig the arrow util You re doe! appears o the scree. How does the Exterior Agle Sum relate to the arrow s movemet aroud the petago? Aswer: As the arrow moved aroud the petago, the Exterior Agle Sum icreased by the amout that the arrow was rotated at each vertex. The sum vector rotated the same amout as the arrow o the petago, but the Exterior Agle Sum shows the total amout the arrow was rotated as it moved aroud the petago. The exterior agle sum is 360. Teacher Tip: Studets may wish to udo their moves at some poit. If so, have them use / d to udo their work, or close ad reope the documet Texas Istrumets Icorporated 3 educatio.ti.com

4 Sum of Exterior Agles of Polygos TEACHER NOTES Move to page The figure o page 2.1 is a irregular hexago. a. Fid the fial exterior agle sum for the irregular hexago. Before you begi, do you thik the fial exterior agle sum for the irregular hexago will be the same as it was for the regular petago? Why or why ot? Aswer: Aswers may vary. Studets may assume correctly that the total will agai be 360, but may may icorrectly assume that the total will ot be 360 because the shape is irregular. b. At each vertex, explai how you ca determie the umber of degrees eeded to rotate the arrow for it to lie up with the ext side. Aswer: The amout eeded to rotate the arrow to the ext side will always be 180 mius the measure of the iterior agle at that vertex. TI-Nspire Navigator Opportuity: Quick Poll See Note 2 at the ed of this lesso. c. Cotiue movig the arrow util the message You re doe! appears o the scree. Observe the fial exterior agle sum. How do the results compare to your expectatios i part 2a? Aswer: Aswers may vary, but studets should see that the total is ideed 360. Depedig o their aswers to part 2a, they will make differet comparisos. Teacher Tip: Studets will eed to drop T ad grab it agai alog each side util they have made it all the way aroud the polygo. d. Based o your fidigs, what do you thik is true for the exterior agle sum of ay regular or irregular polygo? Aswer: The sum of the exterior agles of ay regular or irregular polygo is Texas Istrumets Icorporated 4 educatio.ti.com

5 Sum of Exterior Agles of Polygos TEACHER NOTES TI-Nspire Navigator Opportuity: Quick Poll See Note 3 at the ed of this lesso. 3. O page 3.1, there is a polygo with a exterior agle at each vertex. a. Drag poit P. What do you observe about the exterior agles as the polygo chages size? Aswer: The exterior agles do ot chage. b. Drag poit P so that the polygo shriks to a poit. What do you observe about the exterior agles? Aswer: They seem to meet at a poit like radii of a circle (or spokes of a wheel). c. Do some more experimets by movig poit P. Click the up ad dow arrows at the top of the scree to chage the umber of sides of the polygo. Drag the ope circle at the bottom of the scree to chage the polygo from regular to irregular. What do you observe about the exterior agles? Aswer: Whe you drag poit P so that the polygo shriks to a poit, it does ot matter how may sides the polygo has, or whether it is regular or irregular. The exterior agles always meet at a poit like radii of a circle, ad thus their sum is always 360. TI-Nspire Navigator Opportuity: Class Capture See Note 4 at the ed of this lesso Texas Istrumets Icorporated 5 educatio.ti.com

6 Sum of Exterior Agles of Polygos TEACHER NOTES d. Based o your fidigs, what is the sum of the measures of the exterior agles of ay polygo? Aswer: 360 e. What is the sum of the exterior agles of a dodecago (12-sided polygo)? Aswer: a. If you kow the sum of the exterior agles of ay regular -go, what formula could you use to determie the measure of oe of its exterior agles? Aswer: The polygo is regular, so each iterior agle must have the same measure. Therefore, each exterior agle would have the same measure. Sice the sum of the exterior agles of the -go is 360, the measure of oe of the exterior agles is 360. b. If you kow the measure of a exterior agle of a regular -go, what formula could you use to determie the measure of oe of its iterior agles? 360 Aswer: The iterior agle would have to measure ( ) c. How does the formula i part 4b relate to a commo formula - measure of the iterior agle of a regular -go? that is give for the Aswer: Studets will eed to use their algebra skills to show that the formulas are equivalet. ( ) = = - = Teacher Tip: Possible extesios for studets could iclude the exploratio of the sum of the exterior agles of cocave polygos Texas Istrumets Icorporated 6 educatio.ti.com

7 Wrap Up Sum of Exterior Agles of Polygos TEACHER NOTES Upo completio of the discussio, the teacher should esure that studets uderstad: At ay vertex of a polygo, the exterior agle ad the iterior agle are supplemetary. If oe exterior agle is draw at each vertex of ay covex polygo, the sum of the measures of these exterior agles is 360. The measure of a exterior agle of a regular -go is The measure of the iterior agle of a regular -go is TI-Nspire Navigator Note 1 Questio 1c, Live Preseter: Make a studet the Live Preseter ad have the studet demostrate how to pull poit T out alog the side of the polygo, release it, ad the grab it agai to rotate it i towards the ext side. Note 2 Questio 2b, Quick Poll: Oe of the iterior agles of a petago measures 118. What is the measure of the exterior agle at the same vertex? Aswer: 62 Note 3 Questio 2d, Quick Poll: Four of the exterior agles of a petago measure 95, 100, 70, ad 65. What is the measure of the fifth exterior agle? Aswer: 30 Note 4 Questio 3c, Class Capture: As studets chage the value of ad switch from regular to irregular o page 3.1, use Class Capture so that they ca see results for a variety of -gos Texas Istrumets Icorporated 7 educatio.ti.com

Figure 40.1. Figure 40.2

Figure 40.1. Figure 40.2 40 Regular Polygos Covex ad Cocave Shapes A plae figure is said to be covex if every lie segmet draw betwee ay two poits iside the figure lies etirely iside the figure. A figure that is ot covex is called

More information

Lesson 2.4: Angle Properties in Polygons, page 99

Lesson 2.4: Angle Properties in Polygons, page 99 Lesso 2.4: Agle Properties i Polygos, page 99 1. a) S(12) = 180 (12 2) S(12) = 180 (10) S(12) = 1800 A dodecago has 12 sides, so is 12. The sum of the iterior agles i a regular dodecago is 1800. S(12)

More information

Intro to Sequences / Arithmetic Sequences and Series Levels

Intro to Sequences / Arithmetic Sequences and Series Levels Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

Transformations: Rotations

Transformations: Rotations Math Objectives Students will identify a rotation as an isometry, also called a congruence transformation. Students will identify which properties (side length, angle measure, perimeter, area, and orientation)

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12 WidWise Educatio T rasformig the Eergy of Wid ito Powerful Mids A Curriculum for Grades 6 12 Notice Except for educatioal use by a idividual teacher i a classroom settig this work may ot be reproduced

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

G r a d e. 5 M a t h e M a t i c s. Patterns and relations

G r a d e. 5 M a t h e M a t i c s. Patterns and relations G r a d e 5 M a t h e M a t i c s Patters ad relatios Grade 5: Patters ad Relatios (Patters) (5.PR.1) Edurig Uderstadigs: Number patters ad relatioships ca be represeted usig variables. Geeral Outcome:

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

G r a d e 6 M a t h e m a t i c s. Shape and Space

G r a d e 6 M a t h e m a t i c s. Shape and Space G r a d e 6 M a t h e m a t i c s Shape ad Space Grade 6: Shape ad Space (Measuremet) (6.SS.1, 6.SS.2) Edurig Uderstadig(s): All measuremets are comparisos. The uit of measure must be of the same ature

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Chapter 9: Correlation and Regression: Solutions

Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Fourier Series and the Wave Equation Part 2

Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

Area Formulas TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Area Formulas TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to describe how the area of a parallelogram relates to the area of a rectangle with the same base and height. Students will be able to describe how the area of a triangle

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

regular polygon Wkbj :37:30

regular polygon Wkbj :37:30 regular polygo Wkbj79 2013-03-21 13:37:30 A regular polygo is a polygo such that all of its sides are cogruet ad all of its iterior agles are cogruet; that is, a polygo which is both equilateral ad equiagular.

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

The frequency relationship can also be written in term of logarithms

The frequency relationship can also be written in term of logarithms Pitch ad Frequecy by Mark Frech Departmet of Mechaical Egieerig Techology Purdue Uiversity rmfrech@purdue.edu There are two differet kids of scales importat to a guitar player, eve tempered ad diatoic.

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Introductory Explorations of the Fourier Series by

Introductory Explorations of the Fourier Series by page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will use symbols to represent unknowns and variables. Students will look for patterns and represent generalizations Students will represent relationships among quantities using

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability).

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability). INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Spss Lab 7: T-tests Section 1

Spss Lab 7: T-tests Section 1 Spss Lab 7: T-tests Sectio I this lab, we will be usig everythig we have leared i our text ad applyig that iformatio to uderstad t-tests for parametric ad oparametric data. THERE WILL BE TWO SECTIONS FOR

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will represent data on a scatter plot, and they will analyze the relationship between the variables. Students will fit a linear function to a scatter plot and analyze the fit by

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

A Guide to the Pricing Conventions of SFE Interest Rate Products

A Guide to the Pricing Conventions of SFE Interest Rate Products A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios

More information

Desktop Management. Desktop Management Tools

Desktop Management. Desktop Management Tools Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teachig Issues ad Experimets i Ecology - Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013

More information

Power Function Inverses

Power Function Inverses Math Objectives For power functions of the form f(x)=x n, where n is a positive integer and the domain is all real numbers, students will be able to identify which functions are invertible (odd powers)

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will describe the relationship between the unit circle and the sine and cosine functions. Students will describe the shape of the sine and cosine curves after unwrapping the unit

More information

hp calculators HP 12C Platinum Statistics - correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient

hp calculators HP 12C Platinum Statistics - correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient HP 1C Platium Statistics - correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics - correlatio coefficiet

More information

CALCULUS. Taimur Khalid

CALCULUS. Taimur Khalid CALCULUS Taimur Khalid 5/20/2015 Chapter 1 What is Calculus? What is it? I m sure you ve all already heard about what calculus is from the other studets i my calculus class, but just i case you eed a refresher,

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Standard Form of Quadratic Functions

Standard Form of Quadratic Functions Math Objectives Students will be able to predict how a specific change in the value of a will affect the shape of the graph of the quadratic ax bxc. Students will be able to predict how a specific change

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will predict and identify the shapes of two-dimensional cross-sections are formed when three-dimensional figures are cut by horizontal and vertical planes. Students will draw,

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Sample. Activity Library: Volume II. Activity Collections. Featuring real-world context collections:

Sample. Activity Library: Volume II. Activity Collections. Featuring real-world context collections: Activity Library: Volume II Sample Activity Collectios Featurig real-world cotext collectios: Arithmetic II Fractios, Percets, Decimals III Fractios, Percets, Decimals IV Geometry I Geometry II Graphig

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Question 2: How is a loan amortized?

Question 2: How is a loan amortized? Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

More information

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

Linear Algebra II. Notes 6 25th November 2010

Linear Algebra II. Notes 6 25th November 2010 MTH6140 Liear Algebra II Notes 6 25th November 2010 6 Quadratic forms A lot of applicatios of mathematics ivolve dealig with quadratic forms: you meet them i statistics (aalysis of variace) ad mechaics

More information

Ma/CS 6b Class 17: Extremal Graph Theory

Ma/CS 6b Class 17: Extremal Graph Theory //06 Ma/CS 6b Class 7: Extremal Graph Theory Paul Turá By Adam Sheffer Extremal Graph Theory The subfield of extremal graph theory deals with questios of the form: What is the maximum umber of edges that

More information

RADICALS AND SOLVING QUADRATIC EQUATIONS

RADICALS AND SOLVING QUADRATIC EQUATIONS RADICALS AND SOLVING QUADRATIC EQUATIONS Evaluate Roots Overview of Objectives, studets should be able to:. Evaluate roots a. Siplify expressios of the for a b. Siplify expressios of the for a. Evaluate

More information

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov Witer Camp 202 Sequeces Alexader Remorov Sequeces Alexader Remorov alexaderrem@gmail.com Warm-up Problem : Give a positive iteger, cosider a sequece of real umbers a 0, a,..., a defied as a 0 = 2 ad =

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

How to set up your GMC Online account

How to set up your GMC Online account How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum or

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9 Coutig II Sometimes we will wat to choose objects from a set of objects, ad we wo t be iterested i orderig them. For example, if you are leavig for vacatio ad you wat to pac your suitcase with three of

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

Understanding Rational Exponents and Radicals

Understanding Rational Exponents and Radicals x Locker LESSON. Uderstadig Ratioal Expoets ad Radicals Name Class Date. Uderstadig Ratioal Expoets ad Radicals Essetial Questio: How are radicals ad ratioal expoets related? A..A simplify umerical radical

More information

Bridging Units: Resource Pocket 4

Bridging Units: Resource Pocket 4 Bridgig Uits: Resource Pocket 4 Iterative methods for solvig equatios umerically This pocket itroduces the cocepts of usig iterative methods to solve equatios umerically i cases where a algebraic approach

More information

Law of Cosines TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Law of Cosines TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will be able to state the Law of Cosines Students will be able to apply the Law of Cosines to find missing sides and angles in a triangle Students will understand why the Law of

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

The Field of Complex Numbers

The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE and R 2 THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

More information