ScienceDirect. Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank

Size: px
Start display at page:

Download "ScienceDirect. Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank"

Transcription

1 Available online at ScienceDirect Procedia Engineering 144 (2016 ) th International Conference on Vibration Problems, ICOVP 2015 Pressure Based Eulerian Approach for Investigation of Sloshing in Rectangular Water Tank Kalyan Kumar Mandal a *, Damodar Maity a a Department of Civil Engineering, Indian Institute Technology, Kharagpur, India, Abstract The present paper deals with the finite element analysis of the water tanks in Eulerian approach. In the governing equations of fluid in a container, pressure is considered to be the independent nodal variables. The sloshing behaviour of fluid due to harmonic excitation for different tank lengths is investigated. The free surface of the fluid gets higher elevation when the length of the tank is equal to the height of the water in the tank. The hydrodynamic pressure along the wall increases with the decrease of length of the tank. The fluid with in the tank has tendency to rotate for comparatively lower tank length which enhances the hydrodynamic pressure on tank walls The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) The Authors. Published by Elsevier Ltd. Peer-review under under responsibility responsibility of the of organizing the organizing committee committee of ICOVP of ICOVP Keywords: Lagrangian approach, Eulerian approach, Irrotational motion, Inviscid. 1. Introduction The sloshing behavior is of important concern in the design of liquid containers. The clear understanding of sloshing characteristics is essential for the determination of the required freeboard to prevent overflow of the contaminated cooling water. The sloshing motion can affect the stability of the free-standing spent fuels during earthquakes and it may vary considerably depending on the size of the tank. In general, the two classical descriptions of motion, Lagrangian and Eulerian, are used in the problem of fluid-structure interaction involving finite deformation. * Corresponding author. Tel.: +91(033) address: The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of ICOVP 2015 doi: /j.proeng

2 1188 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) However, Lagrangian approach is generally not suitable when the fluid undergoes large displacements since the mesh will become highly distorted and the Eulerian description is desirable when the fluid experiences large distortions. Out of the different Eulerian approaches, displacement potential and velocity potential based approaches are very common in modelling of fluid in tank [1-3]. However, requirement of computational time becomes higher as number of unknown parameters gets increased. In these cases, the analysis procedure also needs large computer storage. On the other hand, the pressure formulation has certain advantages in the computational aspect, as the number of unknown per node is only one. In the present study, a pressure based Eulerian approach is used to model the water. Water in the tank is assumed to be compressible and is discretized by eight node isoperimetric elements. A computer code in MATLAB environment has been developed to obtain hydrodynamic pressure and sloshed displacement of water in tanks. The sloshing characteristic of fluid is investigated for different frequencies of harmonic excitation. The sloshed behavior is also studied for different lengths of the tank. 2. Theoretical formulation Assuming water to be linearly compressible and inviscid with small amplitude irrotational motion, the hydrodynamic pressure distribution due external excitation is given as 2 1 p( x, y,t ) p( x, y,t ) (1) 2 C Where, C is the acoustic wave velocity in the water. The pressure distribution in the fluid domain is obtained by solving eq. (1) with the following boundary conditions. The geometry of the tank is shown in Fig. 1 Y Surface I Surface II Point A H Fluid Surface III Surface IV 2.5 m X L Fig.1. Geometry of tank-water system 1 p At surface I p + = 0 g y p i t At surface II and IV (0, y, t) = f ae n i t Where, ae is the horizontal component of the ground acceleration and f is the mass density. p At surface III x, 0,t 00. n (2) (3) (4)

3 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) Finite element formulation for fluid domain 1 2 Nrj Nri pi N 0 2 ri pi d c (5) Where, N rj is the interpolation function for the reservoir and Ω is the region under consideration. Using Green's theorem eq. (5) may be transformed to Nrj N N ri rj N pi x x y y ri pi d 1 Nrj 2 Nrj Nri d pi Nrj d pi c n (6) in which i varies from 1 to total number of nodes and Γ represents the boundaries of the fluid domain. The last term of the above equation may be written as N p d n B rj (7) The whole system of equation (6) may be written in a matrix form as 0 E P G P F (8) Where, 1 T E 2 Nr Nrd C (9) T T G Nr Nr Nr Nrd x x y y (10) T p F Nr dfi FII FIII FIV n (11) Here the subscript I to IV stand for different surfaces as shown in Fig. 1. For surface wave, the eq. (2) may be written in finite element form as 1 F I Rf p g (12) In which, f r r f T R N N d (13) At the fluid-structure interface (surface II and surface IV) if {a} is the vector of nodal accelerations of generalized coordinates, {Ffs} may be expressed as FII R fs a (14) F R a IV fs (15)

4 1190 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) In which, T fs r d R N T N d fs Where, [T] is the transformation matrix at fluid structure interface and Nd is the shape function of dam. At surface III F (17) 0 III After substitution all terms the eq. (6) becomes Where, EPGP F (18) F R a r fs For any given acceleration at the fluid-structure interface, the eq. (18) is solved to obtain the hydrodynamic pressure within the fluid Computation of velocity and displacement of fluid The accelerations of the fluid particles can be calculated after computing the hydrodynamic pressure in reservoir. The velocity of the fluid particle may be calculated from the known values of acceleration at any instant of time using Gill s time integration scheme [4] which is a step-by-step integration procedure based on Runge-Kutta method [5]. This procedure is advantageous over other available methods as (i) it needs less storage registers; (ii) it controls the growth of rounding errors and is usually stable and (iii) it is computationally economical. At any instant of time t, velocity will be (16) (19) V V tv (20) t tt t Velocity vectors in the reservoir may be plotted based on velocities computed at the Gauss points of each individual point. Similarly, the displacement of fluid particles in the reservoir, U at every time instant can also computed as U U tv (21) t tt t This section describes the normal structure of a manuscript. For formatting reasons sometimes it is desired to break a line without starting a new paragraph. Line breaks can be inserted in MS Word by simultaneously hitting Shift-Enter. Table 1 summarized the font attributes for different parts of the manuscript. Normal text should be justified to both the left and right margins. 3. Results and Discussion 3.1. Validation of the Proposed Algorithm In this section proposed algorithm is validated by comparing fundamental time period from present study and a bench marked problem solved Virella et al. [6]. The geometric and material properties of the water with in the tank are considered as follows: height of water in the tank (H)= 6.10 m, length of tank = 30.5 m, density of water = 983 kg/m 3, aquatic wave velocity = 1451 m/s. Here, the fluid is discretized by 4 8 (i.e., N h= 4 and N v = 8). The first

5 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) three time periods of the fluid in the tank are listed and compared in Table 1. The tabulated results show the accuracy of the present method. Table 1 First three natural time periods of the fluid in the tank Mode number Natural Time period in sec Present Study Virella et al. [6] Responses of water in tanks In order to investigate the sloshing characteristic of water in rectangular tanks, water tank with following properties are considered: depth (H) = 1.6 m, acoustic speed (C) = 1440 m/sec, mass density (ρ f) = 1000 kg/m 3. The analysis is carried out for different tank length (L), i.e, 1.6 m and 2.4 m and fluid domain is discretized by 8 8 (i.e., N h = 8 and N v = 8) and 12 8 (i.e., N h = 12 and N v = 8) respectively. The tank walls are assumed to be rigid. The number of time steps per cycle of excitation for solution of tank by the Newmark s, N t is considered as 32 at which the results are found to converge sufficiently. Thus, the time step ( Δt) for the analysis of water tank is taken as T/32. The responses of fluid in tanks such as sloshed displacement, velocity within the fluid, hydrodynamic pressure are determined due to the harmonic excitation (TC/H f=100) with amplitude of 1.0g. Maximum hydrodynamic pressure for different tank lengths is presented in Table 2. From Table 2, it is noted that the hydrodynamic pressure is increased with the decrease of tank length. The time history of sloshed displacements for different length of the tank at the middle of the free surface are compared in Figure 2. This comparison depicts that more free board is required for comparatively lower tank because the free surface for lower tank length gets higher elevation due to external excitation (Figure 3). It is also observed from Figure 3 that the length L 1.5H is higher than the length L H. This may the main reasons for getting higher hydrodynamic pressure at lower tank length (Figures 4-5). The velocity vectors in the water domain are plotted in Fig. 6. The vertical axis represents the height of the water and the horizontal axis represents the length between two vertical walls of the tank. Figs. 6 (a) clearly show that the fluid generates a tendency to rotate more in case of lower tank length and this rotating tendency increases the hydrodynamic pressure. However, for L=1.5H, rotation water is only at the upper part of the tank. Table 2 Pressure coefficient at point A for tank with different lengths L/H Pressure coefficient (p/(aρh)

6 1192 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) Fig. 2. Comparison of sloshed displacement at middle point of free surface LH L1.5H Fig. 3. Comparison of sloshed displacement of free surface Fig. 4. Hydrodynamic pressure along tank wall

7 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) Fig. 5. Variation of Hydrodynamic pressure at point A (a) (b) Fig. 6. Comparison of velocity plot (a) L=1.0H (b) L=1.5H 4. Conclusions A pressure based Eulerian approach in analysis of water tank with different lengths is presented. The sloshed displacement decreases with the increase of length of tank. The fluid in lower tank length has a tendency to rotate more. This higher sloshed displacement and higher rotating tendency are responsible for higher hydrodynamic pressure on the tank wall for comparatively lower tank length.

8 1194 Kalyan Kumar Mandal and Damodar Maity / Procedia Engineering 144 ( 2016 ) References [1] Kianoush MR, Chen JZ (2006), Effect of vertical acceleration on response of concrete rectangular liquid storage tanks. Journal of Engineering Structures, 28, [2] Tung CC (1979), Hydrodynamic forces on submerged vertical circular cylindrical tanks underground excitation. Appl. Ocean Res, 1, [3] Liu WK (1981), Finite element procedures for fluid-structure interactions and applications to liquid storage tanks. Nucl. Eng. Des., 65, [4] Gill S (1951), A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of the Cambridge Philosophical Society,47, [5] Ralston A, Wilf HS (1965), Mathematical Models for Digital Computers. Wiley1965,New York. [6] Virella JC, Prato CA, Godoy LA (2008). Linear and nonlinear 2D finite element analysis of sloshing modes and pressures in rectangular tanks subject to horizontal harmonic motions. Journal of Sound and Vibration, 312,

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS

TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS TRAVELING WAVE EFFECTS ON NONLINEAR SEISMIC BEHAVIOR OF CONCRETE GRAVITY DAMS H. Mirzabozorg 1, M. R. Kianoush 2 and M. Varmazyari 3 1,3 Assistant Professor and Graduate Student respectively, Department

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

Acoustics Analysis of Speaker

Acoustics Analysis of Speaker Acoustics Analysis of Speaker 1 Introduction ANSYS 14.0 offers many enhancements in the area of acoustics. In this presentation, an example speaker analysis will be shown to highlight some of the acoustics

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh

More information

A Design Procedure for Concrete Rectangular Liquid Storage Tanks Using Generalized SDOF System

A Design Procedure for Concrete Rectangular Liquid Storage Tanks Using Generalized SDOF System A Design Procedure for Concrete Rectangular iquid Storage Tanks Using Generalized SDOF System J. Z. Chen, CHM HI Canada, Toronto, Ontario, Canada M. R. Kianoush Ryerson University, Toronto, Ontario, Canada

More information

Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method

Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method Numerical modeling of dam-reservoir interaction seismic response using the Hybrid Frequency Time Domain (HFTD) method Graduation Committee: Prof. Dr. A.V. Metrikine Dr. Ir. M.A.N. Hriks Dr. Ir. E.M. Lourens

More information

SEISMIC ANALYSIS OF GROUND SUPPORTED WATER TANK WITH DIFFERENT ASPECT RATIOS

SEISMIC ANALYSIS OF GROUND SUPPORTED WATER TANK WITH DIFFERENT ASPECT RATIOS SEISMIC ANALYSIS OF GROUND SUPPORTED WATER TANK WITH DIFFERENT ASPECT RATIOS Kalyani Vanjari 1, Dr.Prof.R.S.Talikoti 2 1 PG Student, Department of Civil Engineering, Late G.N.Sapkal College of Engineering,

More information

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Engineering MECHANICS, Vol. 15, 2008, No. 1, p. 3 11 3 MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Mohamed Hussien Taha, Samir Abohadima* A simplified mathematical model for free vibrations

More information

Parallel MPS Method for Violent Free Surface Flows

Parallel MPS Method for Violent Free Surface Flows 2013 International Research Exchange Meeting of Ship and Ocean Engineering (SOE) in Osaka Parallel MPS Method for Violent Free Surface Flows Yuxin Zhang and Decheng Wan State Key Laboratory of Ocean Engineering,

More information

CFD Analysis of Sloshing Within Tank

CFD Analysis of Sloshing Within Tank Roshan Ambade 1, Rajesh Kale 2 P.G. Student, Department of Mechanical Engineering, RGIT, Mumbai, India 1 Associate Professor, Department of Mechanical Engineering, RGIT, Mumbai, India 2 Abstract Tanker

More information

Response to Harmonic Excitation Part 2: Damped Systems

Response to Harmonic Excitation Part 2: Damped Systems Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

SEISMIC ANALYSIS OF A VERTICAL WATER TANK

SEISMIC ANALYSIS OF A VERTICAL WATER TANK SISOM 20 and Session of the Commission of Acoustics, Bucharest 25-26 May SEISMIC ANALYSIS OF A VERTICAL WATER TANK Nicolae ZEMTEV * AMEC NUCLEAR RO e-mail: nicolae.zemtev@amecnuclear.ro The calculation

More information

CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods

CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods Two-story shear building A shear building is the building whose floor systems are rigid in flexure

More information

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe-2015-0009 pissn: 2092-6782, eissn: 2092-6790 Simplified formulas of heave added mass coefficients at high frequency

More information

Seismic Analysis and Design of Steel Liquid Storage Tanks

Seismic Analysis and Design of Steel Liquid Storage Tanks Vol. 1, 005 CSA Academic Perspective 0 Seismic Analysis and Design of Steel Liquid Storage Tanks Lisa Yunxia Wang California State Polytechnic University Pomona ABSTRACT Practicing engineers face many

More information

Fig. 9: an immersed body in a fluid, experiences a force equal to the weight of the fluid it displaces.

Fig. 9: an immersed body in a fluid, experiences a force equal to the weight of the fluid it displaces. Buoyancy Archimedes s 1 st laws of buoyancy: A body immersed in a fluid experiences a vertical buoyant force equal to the weight of the fluid it displaces, see Fig. 9 and 10. Fig. 9: an immersed body in

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

ScienceDirect. The Numerical Analysis of the Joint of the Steel Beam to the Timber Girder

ScienceDirect. The Numerical Analysis of the Joint of the Steel Beam to the Timber Girder Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 91 (2014 ) 160 164 XXIII R-S-P seminar, Theoretical Foundation of Civil Engineering (23RSP) (TFoCE 2014) The Numerical Analysis

More information

Seismic Design of Shallow Foundations

Seismic Design of Shallow Foundations Shallow Foundations Page 1 Seismic Design of Shallow Foundations Reading Assignment Lecture Notes Other Materials Ch. 9 FHWA manual Foundations_vibrations.pdf Homework Assignment 10 1. The factored forces

More information

Response to Harmonic Excitation

Response to Harmonic Excitation Response to Harmonic Excitation Part 1 : Undamped Systems Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. The response of a system to harmonic excitation

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

MODELING RAIL WHEEL-FLAT DYNAMICS

MODELING RAIL WHEEL-FLAT DYNAMICS MODELING RAIL WHEEL-FLAT DYNAMICS NS Vyas & AK Gupta Indian Institute of Technology, Kanpur 208 016, India Abstract: Development of flats on the wheels of railway engines and wagons is one of the major

More information

ScienceDirect. Available online at Procedia Materials Science 5 (2014 )

ScienceDirect. Available online at  Procedia Materials Science 5 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 5 (2014 ) 1424 1433 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

More information

CH-205: Fluid Dynamics

CH-205: Fluid Dynamics CH-05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g

More information

Fluid-Structure-Soil Interaction Effects on Seismic Behaviour of Elevated Water Tanks

Fluid-Structure-Soil Interaction Effects on Seismic Behaviour of Elevated Water Tanks Available online at www.sciencedirect.com Procedia Engineering 51 ( 2013 ) 84 91 Non-Circuit Branches of the 3 rd Nirma University International Conference on Engineering (NUiCONE 2012) Fluid-Structure-Soil

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

11 Vibration Analysis

11 Vibration Analysis 11 Vibration Analysis 11.1 Introduction A spring and a mass interact with one another to form a system that resonates at their characteristic natural frequency. If energy is applied to a spring mass system,

More information

Chapter 3 Ideal Fluid Flow

Chapter 3 Ideal Fluid Flow 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 7 2.20 - Marine Hydrodynamics Lecture 7 Chapter 3 Ideal Fluid Flow The structure of Lecture 7 has as follows: In paragraph 3.0 we introduce the concept

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) Lecture 1 The Direct Stiffness Method and the Global StiffnessMatrix Dr. J. Dean 1 Introduction The finite element method (FEM) is a numerical technique

More information

ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK

ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK Luis A. Godoy and Sandra Lopez-Bobonis Department of Civil Engineering, University of Puerto Rico, Mayagüez, PR 00681-9041, Puerto Rico ABSTRACT The

More information

3 Numerical Methods for Convection

3 Numerical Methods for Convection 3 Numerical Methods for Convection The topic of computational fluid dynamics (CFD) could easily occupy an entire semester indeed, we have such courses in our catalog. The objective here is to eamine some

More information

Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM

Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM Proceedings of the rd IASME / WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES'9) Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM REZA TARINEJAD* and MOHAMMAD

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Introduction to basic principles of fluid mechanics

Introduction to basic principles of fluid mechanics 2.016 Hydrodynamics Prof. A.H. Techet Introduction to basic principles of fluid mechanics I. Flow Descriptions 1. Lagrangian (following the particle): In rigid body mechanics the motion of a body is described

More information

Wave Hydro Dynamics Prof. V. Sundar Department of Ocean Engineering Indian Institute of Technology, Madras

Wave Hydro Dynamics Prof. V. Sundar Department of Ocean Engineering Indian Institute of Technology, Madras Wave Hydro Dynamics Prof. V. Sundar Department of Ocean Engineering Indian Institute of Technology, Madras Module No. # 02 Wave Motion and Linear Wave Theory Lecture No. # 03 Wave Motion II We will today

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

More information

Chapter 2 What is wave motion?

Chapter 2 What is wave motion? Chapter 2 What is wave motion? 2.1 What is a wave? As surprising as it may sound, there is no simple answer to this question. Better not ask what a wave is, but ask what can be said about a wave, explains

More information

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc. Chapter 15 Wave Motion Characteristics of Wave Motion Types of Waves: Transverse and Longitudinal Energy Transported by Waves Mathematical Representation of a Traveling Wave The Wave Equation Units of

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Types of Elements

Types of Elements chapter : Modeling and Simulation 439 142 20 600 Then from the first equation, P 1 = 140(0.0714) = 9.996 kn. 280 = MPa =, psi The structure pushes on the wall with a force of 9.996 kn. (Note: we could

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 6. Flow of Fluid and Bernoulli s Equation 7.

More information

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 21-31, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

Similitude Distortion Compensation for a Small Scale Model of a Knee Braced Steel Frame

Similitude Distortion Compensation for a Small Scale Model of a Knee Braced Steel Frame American Journal of Engineering and Applied Sciences Original Research Paper Similitude Distortion Compensation for a Small Scale Model of a Knee Braced Steel Frame 1 Nouredine Bourahla and 2 Anthony Blakeborough

More information

Figure 12 1 Short columns fail due to material failure

Figure 12 1 Short columns fail due to material failure 12 Buckling Analysis 12.1 Introduction There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is often called buckling.

More information

FLUID STRUCTURE INTERACTION TO PREDICT LINER VIBRATIONS IN AN INDUSTRIAL COMBUSTION SYSTEM

FLUID STRUCTURE INTERACTION TO PREDICT LINER VIBRATIONS IN AN INDUSTRIAL COMBUSTION SYSTEM FLUID STRUCTURE INTERACTION TO PREDICT LINER VIBRATIONS IN AN INDUSTRIAL COMBUSTION SYSTEM Rob A. Huls, Jaap F. van Kampen, Jim B.W. Kok and André de Boer University of Twente P.O. Box 217, 75 AE Enschede,

More information

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL

AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL M3 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, JUNE AFTERNOON,.00 to 4.30 Six questions to be answered. All questions carry equal marks.

More information

The Sponge Layer Method in FLOW-3D

The Sponge Layer Method in FLOW-3D Flow Science Report 07-15 The Sponge Layer Method in FLOW-3D Gengsheng Wei Flow Science, Inc. October 2015 I. Theory and Method In coastal and ocean engineering applications, a computational domain with

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Frequency-domain and stochastic model for an articulated wave power device

Frequency-domain and stochastic model for an articulated wave power device Frequency-domain stochastic model for an articulated wave power device J. Cândido P.A.P. Justino Department of Renewable Energies, Instituto Nacional de Engenharia, Tecnologia e Inovação Estrada do Paço

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 28 In the earlier lectures, we have seen formulation for 3 node linear triangular

More information

Stochastic Doppler shift and encountered wave period distributions in Gaussian waves

Stochastic Doppler shift and encountered wave period distributions in Gaussian waves Ocean Engineering 26 (1999) 507 518 Stochastic Doppler shift and encountered wave period distributions in Gaussian waves G. Lindgren a,*, I. Rychlik a, M. Prevosto b a Department of Mathematical Statistics,

More information

Simulation of Offshore Structures in Virtual Ocean Basin (VOB)

Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Simulation of Offshore Structures in Virtual Ocean Basin (VOB) Dr. Wei Bai 29/06/2015 Department of Civil & Environmental Engineering National University of Singapore Outline Methodology Generation of

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Rigid boundary conditions for staggered-grid modelling

Rigid boundary conditions for staggered-grid modelling Rigid boundary conditions for staggered-grid modelling Zaiming Jiang, John C. Bancroft, and Laurence R. Lines Rigid boundary conditions ABSTRACT Staggered-grid modelling methods have been shown previously

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Engineering optimization example

Engineering optimization example Engineering optimization example The title of example: Number of example: Level of example: Short description of the example: Shape optimization of a 3D part using CAE system OPT-BME-5 intermediate In

More information

A quadrilateral 2-D finite element based on mixed interpolation of tensorial

A quadrilateral 2-D finite element based on mixed interpolation of tensorial A quadrilateral 2-D finite element based on mixed interpolation of tensorial components Eduardo N. Dvorkin and Sara I. Vassolo* Instituto de Materiales y Estructuras, Facultad de Ingenieria, Universidad

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University

More information

Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness

Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness Jon M. Collis a and William L. Siegmann Rensselaer Polytechnic Institute110 8th Street,

More information

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Pipe Vibration and Pressure Detection

Pipe Vibration and Pressure Detection Briiel & Kjaer ffi]j W i l Pipe Vibration and Pressure Detection 13-069 I CONTENTS Page Pipe Vibration Literature 1 Detection of Pressure Variations in Thin Walled Pipes by Vibration Measurement 3 Pipe

More information

EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA

EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA EVALUATION OF PERFORMANCE OF INTAKE TOWER DAM FOR RECENT EARTHQUAKE IN INDIA Chethan kumar B 1, M.R Suresh 2, Ravikumar HS 3, B Sivakumara swamy 4 1 Postgraduate student, Structural engineering, Dept of

More information

Finite Elements for 2 D Problems

Finite Elements for 2 D Problems Finite Elements for 2 D Problems General Formula for the Stiffness Matrix Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions Ni as follows,

More information

Chapter 18 4/14/11. Superposition Principle. Superposition and Interference. Superposition Example. Superposition and Standing Waves

Chapter 18 4/14/11. Superposition Principle. Superposition and Interference. Superposition Example. Superposition and Standing Waves Superposition Principle Chapter 18 Superposition and Standing Waves If two or more traveling waves are moving through a medium, the resultant value of the wave function at any point is the algebraic sum

More information

STRESS ANALYSIS OF STANDARD TRUCK CHASSIS DURING RAMPING ON BLOCK USING FINITE ELEMENT METHOD

STRESS ANALYSIS OF STANDARD TRUCK CHASSIS DURING RAMPING ON BLOCK USING FINITE ELEMENT METHOD STRESS ANALYSIS OF STANDARD TRUCK CHASSIS DURING RAMPING ON BLOCK USING FINITE ELEMENT METHOD Haval Kamal Asker 1, Thaker Salih Dawood 1 and Arkan Fawzi Said 2 1 Mechanical Engineering, University of Duhok,

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Simulation to Analyze Two Models of Agitation System in Quench Process

Simulation to Analyze Two Models of Agitation System in Quench Process 20 th European Symposium on Computer Aided Process Engineering ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors) 2010 Elsevier B.V. All rights reserved. Simulation to Analyze Two Models of Agitation

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A transverse wave is propagated in a string stretched along the x-axis. The equation

More information

SOLUTION OF DAM-FLUID INTERACTION USING ADAD-IZIIS SOFTWARE

SOLUTION OF DAM-FLUID INTERACTION USING ADAD-IZIIS SOFTWARE SOLUTION OF DAM-FLUID INTERACTION USING ADAD-IZIIS SOFTWARE Prof. dr. Violeta Mircevska 1, dr. Simon Schnabl, Prof. dr. Mihail Garevski 3, dr. Ivana Bulajić 4 1Institute of Earthquake Engineering and Engineering

More information

WebAssign Lesson 3-3 Applications (Homework)

WebAssign Lesson 3-3 Applications (Homework) WebAssign Lesson 3-3 Applications (Homework) Current Score : / 27 Due : Tuesday, July 15 2014 11:00 AM MDT Jaimos Skriletz Math 175, section 31, Summer 2 2014 Instructor: Jaimos Skriletz 1. /3 points A

More information

AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS

AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS AN INTRODUCTION TO THE FINITE ELEMENT METHOD FOR YOUNG ENGINEERS By: Eduardo DeSantiago, PhD, PE, SE Table of Contents SECTION I INTRODUCTION... 2 SECTION II 1-D EXAMPLE... 2 SECTION III DISCUSSION...

More information

SCATTERED SOUND POWER FROM A RIGID STRUCTURE USING NON-NEGATIVE INTENSITY

SCATTERED SOUND POWER FROM A RIGID STRUCTURE USING NON-NEGATIVE INTENSITY SCATTERED SOUND POWER FROM A RIGID STRUCTURE USING NON-NEGATIVE INTENSITY Daipei Liu, Herwig Peters, Nicole Kessissoglou School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney, NSW

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

ScienceDirect. A Comparative Study of Origami Inspired Folded Plates

ScienceDirect. A Comparative Study of Origami Inspired Folded Plates Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 91 (14 ) 5 XXIII R-S-P seminar Theoretical Foundation of Civil Engineering (RSP) (TFoCE 14) A Comparative Study of Origami Inspired

More information

Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional

More information

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE

THE EFFECTS OF UNIFORM TRANSVERSE MAGNETIC FIELD ON LOCAL FLOW AND VELOCITY PROFILE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 140 151, Article ID: IJCIET_07_02_011 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Vibrations on a String and Resonance

Vibrations on a String and Resonance Vibrations on a String and Resonance Umer Hassan and Muhammad Sabieh Anwar LUMS School of Science and Engineering March 5, 2015 Version 2015-1 How does our radio tune into different channels? Can a music

More information

RIGID PISTON SIMULATIONS OF ACOUSTIC SPACE BASED ON FINITE VOLUME METHOD

RIGID PISTON SIMULATIONS OF ACOUSTIC SPACE BASED ON FINITE VOLUME METHOD RIGID PISTON SIMULATIONS OF ACOUSTIC SPACE BASED ON FINITE VOLUME METHOD HANDLOVIČOVÁ Angela (SK), RIEČANOVÁ Izabela (SK), ROOZEN Nicolaas Bernardus (B) Abstract. The main goal of the paper is to contribute

More information

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah

Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Non-Linear Analysis of Bolted Extended End-Plate Steel Beam-To Column Connection Cut Ainul Mardziah Amir,Redzuan Abdullah Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia redzuan@utm.my

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Simulation of the Forming Process of Liquid Filled Packages Using Coupled Eulerian-Lagrangian Approach

Simulation of the Forming Process of Liquid Filled Packages Using Coupled Eulerian-Lagrangian Approach Simulation of the Forming Process of Liquid Filled Packages Using Coupled Eulerian-Lagrangian Approach Mattias Olsson and Anders Magnusson Tetra Pak Packaging Solutions AB, Ruben Rausings Gata, SE-221

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

PS 320 Classical Mechanics Embry-Riddle University Spring 2010

PS 320 Classical Mechanics Embry-Riddle University Spring 2010 PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: reynodb2@erau.edu web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752

More information

The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data

The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data Hong Xu, Chokri Guetari ANSYS INC. Abstract In a micro-gravity environment liquid can be pumped and positioned by cohesion

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

Acoustic analysis of an induction motor with viscoelastic bearing supports. Abstract. 1. Introduction

Acoustic analysis of an induction motor with viscoelastic bearing supports. Abstract. 1. Introduction The 2002 International Congress and Exposition on Noise Control Engineering Dearborn, MI, USA. August 19-21, 2002 Acoustic analysis of an induction motor with viscoelastic bearing supports H.G. Tillema

More information

Finite Element Method

Finite Element Method 16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture

More information

Rotation: Kinematics

Rotation: Kinematics Rotation: Kinematics Rotation refers to the turning of an object about a fixed axis and is very commonly encountered in day to day life. The motion of a fan, the turning of a door knob and the opening

More information