Edge-betweenness index calculation

Size: px
Start display at page:

Download "Edge-betweenness index calculation"

Transcription

1 BIOINF R Supplementary Material Edge-betweenness index calculation This supplementary material aims to briefly explain the edge betweenness calculation by illustrating the key steps. The example network shown below is taken from an illustration on page 596 (Figure 24.6) of (Cormen et al. 200) First, the shortest paths between each pair of vertices is calculated (Brandes 200). There are two required inputs: an adjacency matrix (Adj) and an edge weight matrix (W). Both are square matrices of dimension n, where n is the number of vertices in the original graph. In these matrices, the row and column indexes specify the vertex numbers. For example, the element in row and column 2 of Adj represents a directed link from vertex to 2. Likewise, Adj(,4) represents a directed link from vertex to 4. Adj = W = In Step of the algorithm, these two input matrices are used to compute the following three n n matrices: a shortest paths number matrix (Ssigma=[ω ij ], denoting the number of shortest paths from i to j), a predecessor matrix (Ppred = [π ij ], where π ij is 0 if either i = j or there is no path from i to j; otherwise, π ij is the predecessor of j on the shortest path from i), and a shortest distance matrix (Ddist=[d ij ], denoting the length of the shortest path from i to j). For the above example, these matrices are Ssigma = Ppred = Ddist =

2 BIOINF R Supplementary Material The next step is to identify the head and leaf nodes of each shortest path network described by the above three matrices to calculate edge-betweenness values (Newman and Girvan 2004). A path is described by a sequence of predecessor nodes and a corresponding set of shortest weighted distances, which are given by Ppred and Ddist, respectively. In the current example (see top figure on page ), the five rows of Ppred specify five directed graphs, each with a different head node. The illustrations below show the graphs and corresponding head nodes (Case ~ 5). Each of these graphs reflect the shortest weighted path distances shown in Ddist. For example, row of Ppred establishes that node 4 precedes node 2 (column 2), which precedes node 3 (column 3). Node (head node) precedes node 4 (column 4), which also precedes node 5 (column 5). The corresponding row of Ddist shows that shortest weighted path from node to 4 has length 5. In the same example, the shortest weighted path from node to 3 (via 4 and 2) has length 9. Head node Case Case 2 Case 3 Case 4 Case 5 From the above diagrams, it is clear that a different set of leaf nodes is found for each head node. To apply the edge-betweenness analysis algorithm, the pathway directions are reversed such that the paths begin at the leaf nodes and at the head node. The reversed graphs of the example network are shown below. Head node Leaf node Case Case 2 Case 3 Case 4 Case 5 2

3 BIOINF R Supplementary Material The edge-betweenness analysis steps are illustrated below for Case. These calculations correspond to Step 2 of the algorithm described in the application note text. The row entries of the three shortest path information matrices are: Ssigma(,:) = [ ]; vector entries are the number of shortest paths from the head node (in this case, vertex ) to the other vertices. Ppred(,:) = [ ]; vector entries specify the predecessor node for each of the vertices. Ddist(,:) = [ ]; vector entries are the shortest weighted distances between the head node (in this case, vertex ) and the other vertices Note that the column indexes specify the vertex numbers. ind = [ ] Ppred (,:) = [ ] Case The edge-betweenness index values are collected into an edgebc matrix through the following steps:. Initialize the Anew and edgebc matrices. For example, edgebc (:,:,) and Anew(:,:,) refer to Case ; Anew = zeros(n,n,n); // Anew(:,:,) = edgebc=zeros(n,n,n); 2. Calculate the edge weights as described by (Newman and Girvan 2004). To find (a) leaf node(s), substitute the element (ind, Ppred(,:)) of Anew(:,:,) with if there is a predecessor; 3

4 BIOINF R Supplementary Material Anew(:,:,) // Adj matrix for Case // The zero columns indicate that the corresponding vertices are leaf nodes, which are nodes 3 & 5 for Case. 3. Build the edgebc matrix; First, identify the node of maximum distance from the head node (a leaf node). For Case, this is node 3 (ind = 3). Secondly, identify the predecessor of this leaf node, which in this case is node 2 (col = 2): max (Ddist (,:)) = [ ] ind = [ ] col = ind = Substitute the element in edgebc(:,:,) that is specified by (ind,col) with the calculated edge-betweenness score; col = ind = Case 4

5 BIOINF R Supplementary Material The edge-betweenness value is ω col /ω ind (from Ssigma=[ω ij ]), if ind is a leaf node; otherwise the value is given by [+ ( edge-betweenness scores of the neighboring edges directly below the node )] ω col /ω ind [3]. 4. Repeat the above steps 3 for all head nodes // for s=:n 5. Sum all of the edgebc(s) and transpose the summed matrix to recover the original path directions. edgebetcen = sum (edgebc,3); // the result is the edgebc of the directed network of Case edgebetcen = edgebetcen ; Note that when there is more than one shortest path between the same pair of vertices, Ssigma (= [ω ij ]) will contain non-unit entries. In this case, a separate Ppred matrix needs to be calculated for each different shortest path. The effects of the multiplicity of shortest paths on the overall edge-betweenness centrality will dep on the numerical values of the elements of Ssigma and Ddist. Regardless of the multiplicity, the edge-betweenness values of the edges connected to a head node should sum to the total number of other vertices that are reachable from this reference vertex. For Case, this number is 4. References Brandes, U. (200) A faster algorithm for betweenness centrality. J Math Soci, 25, Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (200) Introduction to algorithms, 2nd edn. The MIT press, Cambridge, Massachusetts. Newman, M.E. and Girvan, M. (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 69,

6 BIOINF R Supplementary Material The following is the full code, as opposed to pseudo-code, implementing the described algorithm, written in MATLAB, version (MathWorks, Natick, MA). function [Adj,edgeBetCen]=fEdge_directed_Dij_AppNotes(A,W) function [Adj,edgeBetCen]=fEdge_directed_Dij_AppNotes(A,W) Input: A - Adjacency matrix, A (n x n), where n is the number of vertices. W - Positive weight matrix, W (n x n) corresponding to the A matrix. Output: Adj - Original adjacency matrix. edgebetcen - Edge betweenness values for all edges in the network. Description: This algorithm performs a shortest path-based edge-betweenness centrality calculation. The algorithm can be applied to any directed and positively weighted graph. By Jeong-Ah Yoon, May 2006 Chemical and Biological Engineering, Tufts University n=size(a,); Adj=A; Step. Dijkstra's algorithm to calculate the shortest paths in a directed and weighted graph Ddist=[]; Ssigma=[]; Ppred=[]; for s=:n, Initialization sigma=zeros(,n); number of shortest path from source vertex P = -*ones(,n); predecessors on any shortest paths distd=(-)*ones(,n); distance from source vertex P(s)=0; sigma(s)=; S=[]; 6

7 BIOINF R Supplementary Material PQi=zeros(,n); Dijkstra s queue Step : PQ.insert(s,0); PQi(,s)=; distd(,s)=0; while isempty(find(pqi~=0))~=, 'find(pqi~=0)' returns the indices of nonzero elements Step 2: PQ.del_min(); [ud,ind] = min(distd(find(pqi~=0))); u=find((ud==distd)& (PQi~=0)); if size(u,2)~=, u=u(,); PQi(,u)=0; S = [S u]; du=distd(u); for j=:n, if A(u,j) ==, v=j; du_we=du+w(u,v); obtain du from the referenced node if sigma(v) == 0, check whether there are any shortest paths sigma is the number of shortest paths Step 3: PQ.insert(v,du_we) PQi(,v)=; distd(,v)=du_we; else relax the if condition if du_we < distd(v), Step 4: PQ.decrease_p(v,du_we) distd(,v)=du_we; sigma(v)=0; 7

8 BIOINF R Supplementary Material else if du_we > distd(v), continue; do not increase the number of shortest paths sigma(v)=sigma(v)+sigma(u); P(v) = u; of if statement of for loop of while loop Ddist = [Ddist; distd]; the length of shortest paths Ssigma=[Ssigma; sigma]; numbers of shortest paths for all pairs of vertices Ppred = [Ppred; P]; predecessors of every node in the (directed and weighted) graph of Dijkstra's algorithm Step 2. Edge betweenness centrality index calculation Initialization of Anew and edgebc Anew = zeros(n,n,n); i=; for k=:n, for each path for j=:n, if Ppred(i,j)<=0, Anew(i,i,k)=0; else Anew(j,Ppred(i,j),k)=; i=i+; edgebc = zeros(n,n,n); 8

9 BIOINF R Supplementary Material for s=::n, for every source vertex (head node) initialization of leaf node matrix T=[]; for j=:n, for every vertex other than the source vertex each node of Ddist(i,j) find the maximum value element in each row vector of Ddist [vmax, ind] = max(ddist(s,:)); if vmax == 0, break; proceed with the next iteration of the for loop use find(edgebc(ind,:)>0) to look for columns with index = col=find(anew(ind,:,s)>0); if size(col,2) >, col=col(); if the outermost edge (leaf node) has been reached if length(find(anew(:,ind,s)==0)) == n, T=[T ind]; leaf nodes if Ssigma (s,ind)~=0 edgebc(ind,col,s)=ssigma(s,col)/ssigma(s,ind); else prv=find(edgebc(:,ind,s)>0); find all connecting edges if Ssigma (s,ind)~=0 edgebc(ind,col,s)=(+sum(edgebc(prv,ind,s)))*ssigma(s,col)/ssigma(s,ind); find the next maximum row element Ddist(s,ind)=0; of for loop Sum all edgebc matrices 9

10 BIOINF R Supplementary Material edgebetcen=sum(edgebc,3); edgebetcen=edgebetcen'; 0

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Cluster detection algorithm in neural networks

Cluster detection algorithm in neural networks Cluster detection algorithm in neural networks David Meunier and Hélène Paugam-Moisy Institute for Cognitive Science, UMR CNRS 5015 67, boulevard Pinel F-69675 BRON - France E-mail: {dmeunier,hpaugam}@isc.cnrs.fr

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

1 Introduction. Dr. T. Srinivas Department of Mathematics Kakatiya University Warangal 506009, AP, INDIA tsrinivasku@gmail.com

1 Introduction. Dr. T. Srinivas Department of Mathematics Kakatiya University Warangal 506009, AP, INDIA tsrinivasku@gmail.com A New Allgoriitthm for Miiniimum Costt Liinkiing M. Sreenivas Alluri Institute of Management Sciences Hanamkonda 506001, AP, INDIA allurimaster@gmail.com Dr. T. Srinivas Department of Mathematics Kakatiya

More information

SECTIONS 1.5-1.6 NOTES ON GRAPH THEORY NOTATION AND ITS USE IN THE STUDY OF SPARSE SYMMETRIC MATRICES

SECTIONS 1.5-1.6 NOTES ON GRAPH THEORY NOTATION AND ITS USE IN THE STUDY OF SPARSE SYMMETRIC MATRICES SECIONS.5-.6 NOES ON GRPH HEORY NOION ND IS USE IN HE SUDY OF SPRSE SYMMERIC MRICES graph G ( X, E) consists of a finite set of nodes or vertices X and edges E. EXMPLE : road map of part of British Columbia

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

An Introduction to APGL

An Introduction to APGL An Introduction to APGL Charanpal Dhanjal February 2012 Abstract Another Python Graph Library (APGL) is a graph library written using pure Python, NumPy and SciPy. Users new to the library can gain an

More information

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION

OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION OPTIMAL DESIGN OF DISTRIBUTED SENSOR NETWORKS FOR FIELD RECONSTRUCTION Sérgio Pequito, Stephen Kruzick, Soummya Kar, José M. F. Moura, A. Pedro Aguiar Department of Electrical and Computer Engineering

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Graph Processing and Social Networks

Graph Processing and Social Networks Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

Graph Theory Topics in Computer Networking

Graph Theory Topics in Computer Networking Graph Theory Topics in Computer Networking By Chad Hart Spring 2013 In Partial Fulfillment of Math 4395 - Senior Project Department of Computer and Mathematical Sciences Faculty Advisor: Dr. Timothy Redl:

More information

COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS

COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA aburstein@howard.edu Sergey Kitaev Mathematics

More information

A Review And Evaluations Of Shortest Path Algorithms

A Review And Evaluations Of Shortest Path Algorithms A Review And Evaluations Of Shortest Path Algorithms Kairanbay Magzhan, Hajar Mat Jani Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem. This will help in minimizing

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239

STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. Clarificationof zonationprocedure described onpp. 238-239 STATISTICS AND DATA ANALYSIS IN GEOLOGY, 3rd ed. by John C. Davis Clarificationof zonationprocedure described onpp. 38-39 Because the notation used in this section (Eqs. 4.8 through 4.84) is inconsistent

More information

Fast Sequential Summation Algorithms Using Augmented Data Structures

Fast Sequential Summation Algorithms Using Augmented Data Structures Fast Sequential Summation Algorithms Using Augmented Data Structures Vadim Stadnik vadim.stadnik@gmail.com Abstract This paper provides an introduction to the design of augmented data structures that offer

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

A permutation can also be represented by describing its cycles. What do you suppose is meant by this?

A permutation can also be represented by describing its cycles. What do you suppose is meant by this? Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs

More information

Linear Programming. April 12, 2005

Linear Programming. April 12, 2005 Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

AN APPROACH FOR TESTING THE DESIGN OF WEBSITE

AN APPROACH FOR TESTING THE DESIGN OF WEBSITE AN APPROACH FOR TESTING THE DESIGN OF WEBSITE Vandana Khatkar, MPhil Scholar Chaudhary Devi Lal University Sirsa, Haryana (INDIA) ABSTRACT In this paper, a new approach has been described that models a

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Any two nodes which are connected by an edge in a graph are called adjacent node.

Any two nodes which are connected by an edge in a graph are called adjacent node. . iscuss following. Graph graph G consist of a non empty set V called the set of nodes (points, vertices) of the graph, a set which is the set of edges and a mapping from the set of edges to a set of pairs

More information

GRID SEARCHING Novel way of Searching 2D Array

GRID SEARCHING Novel way of Searching 2D Array GRID SEARCHING Novel way of Searching 2D Array Rehan Guha Institute of Engineering & Management Kolkata, India Abstract: Linear/Sequential searching is the basic search algorithm used in data structures.

More information

Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.

CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92. Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014 Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices

Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Matrices 2. Solving Square Systems of Linear Equations; Inverse Matrices Solving square systems of linear equations; inverse matrices. Linear algebra is essentially about solving systems of linear equations,

More information

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7

(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7 (67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition

More information

Part 2: Community Detection

Part 2: Community Detection Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

More information

CSE 4351/5351 Notes 7: Task Scheduling & Load Balancing

CSE 4351/5351 Notes 7: Task Scheduling & Load Balancing CSE / Notes : Task Scheduling & Load Balancing Task Scheduling A task is a (sequential) activity that uses a set of inputs to produce a set of outputs. A task (precedence) graph is an acyclic, directed

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

The Assignment Problem and the Hungarian Method

The Assignment Problem and the Hungarian Method The Assignment Problem and the Hungarian Method 1 Example 1: You work as a sales manager for a toy manufacturer, and you currently have three salespeople on the road meeting buyers. Your salespeople are

More information

Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course

Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-

More information

SGL: Stata graph library for network analysis

SGL: Stata graph library for network analysis SGL: Stata graph library for network analysis Hirotaka Miura Federal Reserve Bank of San Francisco Stata Conference Chicago 2011 The views presented here are my own and do not necessarily represent the

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Suk-Geun Hwang and Jin-Woo Park

Suk-Geun Hwang and Jin-Woo Park Bull. Korean Math. Soc. 43 (2006), No. 3, pp. 471 478 A NOTE ON PARTIAL SIGN-SOLVABILITY Suk-Geun Hwang and Jin-Woo Park Abstract. In this paper we prove that if Ax = b is a partial signsolvable linear

More information

An Introduction to The A* Algorithm

An Introduction to The A* Algorithm An Introduction to The A* Algorithm Introduction The A* (A-Star) algorithm depicts one of the most popular AI methods used to identify the shortest path between 2 locations in a mapped area. The A* algorithm

More information

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit

Home Page. Data Structures. Title Page. Page 1 of 24. Go Back. Full Screen. Close. Quit Data Structures Page 1 of 24 A.1. Arrays (Vectors) n-element vector start address + ielementsize 0 +1 +2 +3 +4... +n-1 start address continuous memory block static, if size is known at compile time dynamic,

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) SFWR 4C03: Computer Networks & Computer Security Jan 31-Feb 4, 2005 Lecturer: Kartik Krishnan Lecture 13-16 Internet Control Message Protocol (ICMP) The operation of the Internet is closely monitored by

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

Linear Algebra and TI 89

Linear Algebra and TI 89 Linear Algebra and TI 89 Abdul Hassen and Jay Schiffman This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In the first section, we will go over the editing

More information

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

More information

Load balancing in a heterogeneous computer system by self-organizing Kohonen network

Load balancing in a heterogeneous computer system by self-organizing Kohonen network Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.

More information

A greedy algorithm for the DNA sequencing by hybridization with positive and negative errors and information about repetitions

A greedy algorithm for the DNA sequencing by hybridization with positive and negative errors and information about repetitions BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0015-0 Varia A greedy algorithm for the DNA sequencing by hybridization with positive and negative

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu

ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a

More information

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables

AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning

More information

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling

Minimum cost maximum flow, Minimum cost circulation, Cost/Capacity scaling 6.854 Advanced Algorithms Lecture 16: 10/11/2006 Lecturer: David Karger Scribe: Kermin Fleming and Chris Crutchfield, based on notes by Wendy Chu and Tudor Leu Minimum cost maximum flow, Minimum cost circulation,

More information

Manifold Learning Examples PCA, LLE and ISOMAP

Manifold Learning Examples PCA, LLE and ISOMAP Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition

More information

Offline 1-Minesweeper is NP-complete

Offline 1-Minesweeper is NP-complete Offline 1-Minesweeper is NP-complete James D. Fix Brandon McPhail May 24 Abstract We use Minesweeper to illustrate NP-completeness proofs, arguments that establish the hardness of solving certain problems.

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Color Histogram Normalization using Matlab and Applications in CBIR. László Csink, Szabolcs Sergyán Budapest Tech SSIP 05, Szeged

Color Histogram Normalization using Matlab and Applications in CBIR. László Csink, Szabolcs Sergyán Budapest Tech SSIP 05, Szeged Color Histogram Normalization using Matlab and Applications in CBIR László Csink, Szabolcs Sergyán Budapest Tech SSIP 05, Szeged Outline Introduction Demonstration of the algorithm Mathematical background

More information

Static Load Balancing

Static Load Balancing Load Balancing Load Balancing Load balancing: distributing data and/or computations across multiple processes to maximize efficiency for a parallel program. Static load-balancing: the algorithm decides

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Mining Social-Network Graphs

Mining Social-Network Graphs 342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

More information

2.8 An application of Dynamic Programming to machine renewal

2.8 An application of Dynamic Programming to machine renewal ex-.6-. Foundations of Operations Research Prof. E. Amaldi.6 Shortest paths with nonnegative costs Given the following graph, find a set of shortest paths from node to all the other nodes, using Dijkstra

More information

Course on Social Network Analysis Graphs and Networks

Course on Social Network Analysis Graphs and Networks Course on Social Network Analysis Graphs and Networks Vladimir Batagelj University of Ljubljana Slovenia V. Batagelj: Social Network Analysis / Graphs and Networks 1 Outline 1 Graph...............................

More information

Instruction Scheduling. Software Pipelining - 2

Instruction Scheduling. Software Pipelining - 2 and Software Pipelining - 2 Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline Simple Basic Block Scheduling

More information

Graph Mining and Social Network Analysis

Graph Mining and Social Network Analysis Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

WAN Wide Area Networks. Packet Switch Operation. Packet Switches. COMP476 Networked Computer Systems. WANs are made of store and forward switches.

WAN Wide Area Networks. Packet Switch Operation. Packet Switches. COMP476 Networked Computer Systems. WANs are made of store and forward switches. Routing WAN Wide Area Networks WANs are made of store and forward switches. To there and back again COMP476 Networked Computer Systems A packet switch with two types of I/O connectors: one type is used

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

More information

6.02 Practice Problems: Routing

6.02 Practice Problems: Routing 1 of 9 6.02 Practice Problems: Routing IMPORTANT: IN ADDITION TO THESE PROBLEMS, PLEASE SOLVE THE PROBLEMS AT THE END OF CHAPTERS 17 AND 18. Problem 1. Consider the following networks: network I (containing

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

NETZCOPE - a tool to analyze and display complex R&D collaboration networks

NETZCOPE - a tool to analyze and display complex R&D collaboration networks The Task Concepts from Spectral Graph Theory EU R&D Network Analysis Netzcope Screenshots NETZCOPE - a tool to analyze and display complex R&D collaboration networks L. Streit & O. Strogan BiBoS, Univ.

More information

Design of LDPC codes

Design of LDPC codes Design of LDPC codes Codes from finite geometries Random codes: Determine the connections of the bipartite Tanner graph by using a (pseudo)random algorithm observing the degree distribution of the code

More information

DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS

DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS DYNAMIC GRAPH ANALYSIS FOR LOAD BALANCING APPLICATIONS by Belal Ahmad Ibraheem Nwiran Dr. Ali Shatnawi Thesis submitted in partial fulfillment of

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information