Functional equation for GL 2 and cuspidal local constants

Size: px
Start display at page:

Download "Functional equation for GL 2 and cuspidal local constants"

Transcription

1 Functional equation for GL 2 and cuspidal local constants Johan M. Commelin November 12, 2014 Let π be an irreducible smooth representation of G = GL 2 (F ). We want to attach an L-function L(π, s), and a so called local constant ε(π, s, φ) to π. We give the definition for general smooth representations of G. Further, we compute these invariants in the cuspidal case. The non-cuspidal case will be done by Julius. The main results of this talk are: (1) If π is cuspidal, the L-function is constant 1. (2) Let (, J, Λ) be a cuspidal type. Set π = c-ind G J Λ. The epsilon factor is determined by ε(π, 1 2, ψ) = qa trλ (cx)ψ (cx), x for some c J and q a that will be described later. To arrive at our destination, we will have to (i) define Fourier transforms of coefficients of G; (ii) define L-functions/functional equation/local constants (including a review of the GL 1 case); (iii) work our way through some technical results with strata and cuspidal types. 1 Fourier transforms We simultaneously define the Fourier transform for the case GL 1 and GL 2. Notation: n Either 1 or 2. F be a non-archimedean local field. be the ring M n (F ). M M n (o), the integral part of. G be the group GL n (F ) =. µ be a Haar measure on. ψ ˆF, ψ 1, a non-trivial character of F. ψ = ψ tr. 1

2 C c () be the space of locally constant functions C that have compact support. Given Φ C c (), the Fourier transform ˆΦ (relative to µ and ψ) is given by ˆΦ = Φ(y)ψ (xy) dµ(y). Lemma 1 (a) The function ˆΦ is an element of C c (). (b) There is a positive real number c (depending on µ and ψ) such that ˆΦ = cφ( x), Φ C c (), x. (1) (c) Fixing ψ, there is a unique µ ψ so that this c is equal to 1. This measure satisfies µ ψ (M) = q ln2 /2, where l is the level of ψ. (d) For a F, we have µ aψ = a n2 /2 µ ψ. Proof First note that Cc () is spanned by the characteristic functions (indicator functions) of the sets a + p j M (for a and j Z). One then proves the first two items for the characteristic functions of the sets p j M. The next step is proving it for their translations. Consequently the first two items hold for all Φ Cc (). For these characteristic functions one computes c = µ(m) 2 q ln2. It is immediate from (1) that scaling µ with b > 0 has the effect of scaling c with b 2. Hence, it is clear that there exists a measure with c = 1, and since µ is determined by µ(m), it is unique. This proves the third item. The fourth item is an immediate consequence. The measure µ ψ is the self-dual Haar measure (with respect to ψ). 2 Introducing the main actors 2.1 The L-function Let (π, V ) be an irreducible smooth representation of G. Let C(π) be the space of coefficients of π. It is the space of smooth functions on G generated by functions of the form γˇv v : G C g ˇv, π(g)v Given Φ C c () and f C(π), we define a function on the complex plane ζ(φ, f, s) = Φ(x)f(x) det x s dµ (x) G where dµ is a Haar measure on G. There is one small little problem: the integral does not converge in general. Lemma 2 (p148) There exists an s 0 R such that the integral converges, absolutely and uniformly in vertical strips in the region Rs > s 0, for all Φ and f. The integral represents a rational function in q s. 2

3 Next we define Z(π) = {ζ(φ, f, s ) Φ C c (), f C(π)} C(q ±s ). It turns out that Z(π) is a principal fractional ideal. Lemma 3 (p148) There is a unique polynomial P π (X) C[X], with P π (0) = 1, and Z(π) = P π (q s ) 1 }{{} The L-function! C[q ±s ]. Moreover, this polynomial does not depend on µ. Finally, we define the L-function L(π, s) = P π (q s ) The local constant and the functional equation So far we haven t applied the Fourier transform yet. It is about time to change that. Observe that if f C(π), then lies in C(ˇπ). Moreover, ˇf : G C g f(g 1 ) C(π) C(ˇπ) f ˇf is a linear isomorphism. We use this duality to obtain a relation between the L-function of π and ˇπ. Fix a non-trivial ψ ˆF, and use the Haar measure that is self-dual with respect to ψ. Theorem 1 (p148) There is a unique rational function γ(π, s, ψ) C(q s ) such that ζ(ˆφ, ˇf, 3 2 s) = γ(π, s, ψ)ζ(φ, f, s), for all Φ and f. This rational function allows us to define the local constant. It is L(π, s) ε(π, s, φ) = γ(π, s, ψ) L(ˇπ, 1 s). Observe that ε(π, s, ψ)ε(ˇπ, 1 s, ψ) = γ(π, s, ψ)γ(ˇπ, 1 s, ψ). Using the theorem, we compute ζ(ˆφ, f, s) =γ(ˇπ, 1 s, ψ)ζ(ˆφ, ˇf, 3 2 s) =γ(ˇπ, 1 s, ψ)γ(π, s, ψ)ζ(φ, f, s) and since we are dealing with the self-dual Haar measure, we derive ε(π, s, ψ)ε(ˇπ, 1 s, ψ) = γ(ˇπ, 1 s, ψ)γ(π, s, ψ) = ω π ( 1) 3

4 Lemma 4 There exist a C and b Z such that ε(π, s, ψ) = aq bs. We now investigate how the γ- and ε-factors depend on ψ. We compute ζ(ˆφ, ˇf, 3 2 s) = ˆΦ(x) ˇf(x) det x 3 2 s dµ (x) G = Φ(y)aψ (xy) dµ aψ (y) ˇf(x) det x 3 2 s dµ (x) G = Φ(y)ψ (axy) a 2 dµ ψ (y) ˇf(x) det x 3 2 s dµ (x) G = Φ(y)ψ (ty) a 2 dµ ψ (y) ˇf(a 1 t) det ta s dµ (t) G = a 2 Φ(y)ψ (ty) dµ ψ (y)ω π (a) ˇf(t) a 2s 3 det t 3 2 s dµ (t) G =ω π (a) a 2s 1 Φ(y)ψ (ty) dµ ψ (y) ˇf(t) det t 3 2 s dµ (t) from which we derive G γ(π, s, aψ) =ω π (a) a 2s 1 γ(π, s, ψ), ε(π, s, aψ) =ω π (a) a 2s 1 ε(π, s, ψ). Using certain truncations of ζ(φ, f, s) we build approximations Z(Φ, f, X) which are formal Laurent series. With these the book tackles the following proposition. Proposition 1 Let (π, V ) be an irreducible cuspidal representation of G. Then Z(π) = C[X, X 1 ]. s an immediate consequence, the L-function of an irreducible cuspidal representation is the constant function 1. 3 Technical results concerning the local constants So, the upshot of Maarten s talks was the following theorem. Theorem 2 (p108) The map (, J, Λ) π Λ = c-ind G J Λ induces a bijection between the set of conjugacy classes of cuspidal types in G and the set of equivalence classes of irreducible cuspidal representations of G. In a similar spirit is the following proposition. Proposition 2 (p110) The map (, Ξ) π Ξ = c-ind G K Ξ induces a bijection between the set of G-conjugacy classes of cuspidal inducing data in G and the set of equivalence classes of irreducible cuspidal representations of G. 4

5 Recall that a cuspidal inducing datum in G is a pair (, Ξ), where is a chain order, and Ξ an irreducible smooth representation of K of the form Ξ = Ind K J Λ for some cuspidal type (, J, Λ). (Oh, and K is the group {g G gg 1 = }; J is a subgroup of K ; and Λ a representation of J.) Now that everyone is back on track (including me), we can introduce the main tool for the calculations of this section. It is the so-called non-abelian Gauss sum. Write P for the Jacobson radical of. Let W be the space underlying the representation Ξ. Define an element of End C ( ˇW ), T (Ξ, ψ) = ˇΞ(cx)ψ (cx), where c K satisfies c = P n. x U /U n+1 Lemma 5 The sum T (Ξ, ψ) does not depend on the choices of coset representatives x, nor on the choice of c. Moreover, the endomorphism is scalar. Write τ(ξ, ψ) for the complex number satisfying T (Ξ, ψ) = τ(ξ, ψ)1 ˇW. The number τ(ξ, ψ) C is the non-abelian Gauss sum of Ξ. Observe that τ(ξ, ψ) = 1 tr (T (Ξ, ψ)) dim(ξ) = 1 dim(ξ) x U /U n+1 tr(ˇξ(cx))ψ (cx). We formulate the first computational results with τ(ξ, ψ). Let (π, V ) be an irreducible cuspidal representation of G. From now on, fix ψ ˆF, a character of level one. Recall that l(π) denotes { } there exists a chain order such that min n/e π contains the trivial character of U n+1 Theorem 3 We have ε(π, s, ψ) =(P n : ) ( 1 2 s)/2 τ(ξ, ψ) ( : P n+1 ) 1 2 =q 2l(π)( 1 2 s) τ(ξ, ψ) ( : P n+1 ) 1. 2 The next thing we want to do is translate the formalism of Gauss sums from inducing data back to cuspidal types. Let (, J, Λ) be a cuspidal type that induces Ξ. Lemma 6 The Gauss sum τ(ξ, ψ) is the unique eigenvalue of the scalar operator ˇΛ(cx)ψ (cx), x J U /U n+1 for any c J such that c = P n. 5

6 For some reason (currently unknown to me) we can choose c J such that Λ [n/2]+1 U is a multiple of ψ c. Proposition 3 The Gauss sum τ(ξ, ψ) is the unique eigenvalue of the scalar operator ( : P (n+1)/2 ) ˇΛ(cy)ψ (cy). y U (n+1)/2 /U n/2+1 The theorem, lemma and proposition together give the following corollary. Corollary 1 Let (, J, Λ) be a cuspidal type in G. Let n be the least integer 0 such that U n+1 KerΛ. Choose c J such that Λ [n/2]+1 U is a multiple of ψ c. If π = c-ind G J Λ, then ε(π, 1 2, ψ) = qa x trˇλ(cx)ψ (cx), where x ranges over U (n+1)/2 /U n/2+1 and { q a 1 if n is odd, dim Λ = ( : P) 1/2 if n is even. 6

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

POSTECH SUMMER SCHOOL 2013 LECTURE 4 INTRODUCTION TO THE TRACE FORMULA

POSTECH SUMMER SCHOOL 2013 LECTURE 4 INTRODUCTION TO THE TRACE FORMULA POSTECH SUMMER SCHOOL 2013 LECTURE 4 INTRODUCTION TO THE TRACE FORMULA 1. Kernel and the trace formula Beginning from this lecture, we will discuss the approach to Langlands functoriality conjecture based

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2

Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Sign changes of Hecke eigenvalues of Siegel cusp forms of degree 2 Ameya Pitale, Ralf Schmidt 2 Abstract Let µ(n), n > 0, be the sequence of Hecke eigenvalues of a cuspidal Siegel eigenform F of degree

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Irreducible Representations of Wreath Products of Association Schemes

Irreducible Representations of Wreath Products of Association Schemes Journal of Algebraic Combinatorics, 18, 47 52, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Irreducible Representations of Wreath Products of Association Schemes AKIHIDE HANAKI

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

3. Prime and maximal ideals. 3.1. Definitions and Examples.

3. Prime and maximal ideals. 3.1. Definitions and Examples. COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Spherical representations and the Satake isomorphism

Spherical representations and the Satake isomorphism Spherical representations and the Satake isomorphism Last updated: December 10, 2013. Topics: otivation for the study of spherical representations; Satake isomorphism stated for the general case of a connected

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

ON FOCK-GONCHAROV COORDINATES OF THE ONCE-PUNCTURED TORUS GROUP

ON FOCK-GONCHAROV COORDINATES OF THE ONCE-PUNCTURED TORUS GROUP ON FOCK-GONCHAROV COORDINATES OF THE ONCE-PUNCTURED TORUS GROUP YUICHI KABAYA Introduction In their seminal paper [3], Fock and Goncharov defined positive representations of the fundamental group of a

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

A Sublinear Bipartiteness Tester for Bounded Degree Graphs

A Sublinear Bipartiteness Tester for Bounded Degree Graphs A Sublinear Bipartiteness Tester for Bounded Degree Graphs Oded Goldreich Dana Ron February 5, 1998 Abstract We present a sublinear-time algorithm for testing whether a bounded degree graph is bipartite

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl) Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

More information

Character degrees and random walks in finite groups of Lie type

Character degrees and random walks in finite groups of Lie type Character degrees and random walks in finite groups of Lie type Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Aner Shalev Institute of Mathematics Hebrew University

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials

MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from

More information

CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY

CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY ANDREW T. CARROLL Notes for this talk come primarily from two sources: M. Barot, ICTP Notes Representations of Quivers,

More information

Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

BABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS

BABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS BABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS SETH SHELLEY-ABRAHAMSON Abstract. These are notes for a talk in the MIT-Northeastern Spring 2015 Geometric Representation Theory Seminar. The main source

More information

COMMUTATIVITY DEGREE, ITS GENERALIZATIONS, AND CLASSIFICATION OF FINITE GROUPS

COMMUTATIVITY DEGREE, ITS GENERALIZATIONS, AND CLASSIFICATION OF FINITE GROUPS COMMUTATIVITY DEGREE, ITS GENERALIZATIONS, AND CLASSIFICATION OF FINITE GROUPS ABSTRACT RAJAT KANTI NATH DEPARTMENT OF MATHEMATICS NORTH-EASTERN HILL UNIVERSITY SHILLONG 793022, INDIA COMMUTATIVITY DEGREE,

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

COHOMOLOGY OF GROUPS

COHOMOLOGY OF GROUPS Actes, Congrès intern. Math., 1970. Tome 2, p. 47 à 51. COHOMOLOGY OF GROUPS by Daniel QUILLEN * This is a report of research done at the Institute for Advanced Study the past year. It includes some general

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Short Programs for functions on Curves

Short Programs for functions on Curves Short Programs for functions on Curves Victor S. Miller Exploratory Computer Science IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 May 6, 1986 Abstract The problem of deducing a function

More information

Integer Sequences and Matrices Over Finite Fields

Integer Sequences and Matrices Over Finite Fields Integer Sequences and Matrices Over Finite Fields arxiv:math/0606056v [mathco] 2 Jun 2006 Kent E Morrison Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93407 kmorriso@calpolyedu

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Fiber sums of genus 2 Lefschetz fibrations

Fiber sums of genus 2 Lefschetz fibrations Proceedings of 9 th Gökova Geometry-Topology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

Allen Back. Oct. 29, 2009

Allen Back. Oct. 29, 2009 Allen Back Oct. 29, 2009 Notation:(anachronistic) Let the coefficient ring k be Q in the case of toral ( (S 1 ) n) actions and Z p in the case of Z p tori ( (Z p )). Notation:(anachronistic) Let the coefficient

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

THE DIMENSION OF A VECTOR SPACE

THE DIMENSION OF A VECTOR SPACE THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS

GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex

More information

First and raw version 0.1 23. september 2013 klokken 13:45

First and raw version 0.1 23. september 2013 klokken 13:45 The discriminant First and raw version 0.1 23. september 2013 klokken 13:45 One of the most significant invariant of an algebraic number field is the discriminant. One is tempted to say, apart from the

More information

Algebraic Structures II

Algebraic Structures II MAS 305 Algebraic Structures II Notes 12 Autumn 2006 Factorization in integral domains Lemma If a, b, c are elements of an integral domain R and ab = ac then either a = 0 R or b = c. Proof ab = ac a(b

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP

THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP THE AVERAGE DEGREE OF AN IRREDUCIBLE CHARACTER OF A FINITE GROUP by I. M. Isaacs Mathematics Department University of Wisconsin 480 Lincoln Dr. Madison, WI 53706 USA E-Mail: isaacs@math.wisc.edu Maria

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

GROUP ACTIONS KEITH CONRAD

GROUP ACTIONS KEITH CONRAD GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Chapter 7: Products and quotients

Chapter 7: Products and quotients Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products

More information

Algebra 3: algorithms in algebra

Algebra 3: algorithms in algebra Algebra 3: algorithms in algebra Hans Sterk 2003-2004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems

More information

Non-unique factorization of polynomials over residue class rings of the integers

Non-unique factorization of polynomials over residue class rings of the integers Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization

More information

( ) which must be a vector

( ) which must be a vector MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

Generic Polynomials of Degree Three

Generic Polynomials of Degree Three Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem

More information

DECOMPOSING SL 2 (R)

DECOMPOSING SL 2 (R) DECOMPOSING SL 2 R KEITH CONRAD Introduction The group SL 2 R is not easy to visualize: it naturally lies in M 2 R, which is 4- dimensional the entries of a variable 2 2 real matrix are 4 free parameters

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Chapter 7. Permutation Groups

Chapter 7. Permutation Groups Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral

More information