# Lecture 4: Probability Spaces

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 EE5110: Probability Foundations for Electrical Engineers July-November 2015 Lecture 4: Probability Spaces Lecturer: Dr. Krishna Jagannathan Scribe: Jainam Doshi, Arjun Nadh and Ajay M 4.1 Introduction Just as a point is not defined in elementary geometry, probability theory begins with two entities that are not defined. These undefined entities are a Random Experiment and its Outcome. These two concepts are to be understood intuitively, as suggested by their respective English meanings. We use these undefined terms to define other entities. Definition 4.1 The Sample Space Ω of a random experiment is the set of all possible outcomes of a random experiment. An outcome (or elementary outcome) of the random experiment is usually denoted by ω. Thus, when a random experiment is performed, the outcome ω Ω is picked by the Goddess of Chance or Mother Nature or your favourite genie. Note that the sample space Ω can be finite or infinite. Indeed, depending on the cardinality of Ω, it can be classified as follows: 1. Finite sample space 2. Countably infinite sample space 3. Uncountable sample space It is imperative to note that for a given random experiment, its sample space is defined depending on what one is interested in observing as the outcome. We illustrate this using an example. Consider a person tossing a coin. This is a random experiment. Now consider the following three cases: Suppose one is interested in knowing whether the toss produces a head or a tail, then the sample space is given by, Ω = {H, T }. Here, as there are only two possible outcomes, the sample space is said to be finite. Suppose one is interested in the number of tumbles before the coin hits the ground, then the sample space is the set of all natural numbers. In this case, the sample space is countably infinite and is given by, Ω = N. Suppose one is interested in the speed with which the coin strikes ground, then the set of positive real numbers forms the sample space. This is an example of an uncountable sample space, which is given by, Ω = R

2 4-2 Lecture 4: Probability Spaces Thus we see that for the same experiment, Ω can be different based on what the experimenter is interested in. Let us now have a look at one more example where the sample space can be different for the same experiment and you can get different answers based on which sample space you decide to choose. Bertrand s Paradox: Consider a circle of radius r. What is the probability that the length of a chord chosen at random is greater than the length of the side of an equilateral triangle inscribed in the circle? This is an interesting paradox and gives different answers based on different sample spaces. description of Bertrand s Paradox can be found in [1]. The entire Definition 4.2 (Informal) An event is a subset of the sample space, to which probabilities will be assigned. An event is a subset of the sample space, but we emphasise that not all subsets of the sample space are necessarily considered events, for reasons that will be explained later. Until we are ready to give a more precise definition, we can consider events to be those interesting subsets of Ω, to which we will eventually assign probabilities. We will see later that whenever Ω is finite or countable, all subsets of the sample space can be considered as events, and be assigned probabilities. However, when Ω is uncountable, it is often not possible to assign probabilities to all subsets of Ω, for reasons that will not be clear now. The way to handle uncountable sample spaces will be discussed later. Definition 4.3 An event A is said to occur if the outcome ω, of the random experiment is an element of A, i.e., if ω A. Let us take an example. Say the random experiment is choosing a card at random from a pack of playing cards. What is the sample space in this case? It is a 52 element set as each card is a possible outcome. As the sample space is finite, any subset of the sample space can be considered as an event. As a result there will be 2 52 events (Power set of n elements has 2 n elements). An event can be any subset of the sample space which includes the empty set, all the singleton sets (containing one outcome) and collection of more than one outcomes. Listed below are a few events: The 7 of Hearts (1 element) A face Card (12 elements) A 2 and a 7 at the same time (0 element) An ace of any color (4 elements) A diamond card (13 elements) Next, let us look at some nice properties that we would expect events to satisfy: Since the sample space Ω always occurs, we would like to have Ω as an event. If A is an event (i.e., a nice subset of the sample space to which we would like to assign a probability), it is reasonable to expect A c to be an event as well. If A and B are two events, we are interested in the occurrence of at least one of them (A or B) as well as the occurrence of both of them (A and B). Hence, we would like to have A B and A B to be events as well. The above three properties motivate a mathematical structure of subsets, known as an algebra.

3 Lecture 4: Probability Spaces Algebra, F 0 Let Ω be the sample space and let F 0 be a collection of subsets of Ω. Then, F 0 is said to be an algebra (or a field) if i. F 0. ii. A F 0, implies A c F 0. iii. A F 0 and B F 0 implies A B F 0. It can be shown that an algebra is closed under finite union and finite intersection (see Exercise 1(a)). However, a natural question that arises at this point is Is the structure of an algebra enough to study events of typical interest? Consider the following example: Example:- Toss a coin repeatedly until the first heads shows. Here, Ω = {H, TH, TTH,... }. Let us say that we are interested in determining if the number of tosses before seeing a head is even. It is easy to see that this event of interest will not be included in the algebra. This is because an algebra contains only finite unions of subsets, but the event of interest entails a countably infinite union. This motivates the definition of a σ-algebra. 4.3 Sigma Algebra, F A collection F of subsets of Ω is called a σ-algebra (or σ-field) if i. F. ii. A F, implies A c F. iii. If A 1, A 2, A 3,... is a countable collection of subsets in F, then Ai F. Note that unlike an algebra, a σ-algebra is closed under countable union and countable intersection (see Exercise 1(b)). Some examples of σ-algebra are: i. {, Ω} ii. {, A, A c, Ω} iii. Power set of Ω, denoted by 2 Ω. The 2-tuple (Ω, F) is called a measurable space. Also, every member of the σ-algebra F is called an F- measurable set in the context of measure theory. In the specific context of probability theory, F-measurable sets are called events. Thus, whether or not a subset of Ω is considered an event depends on the σ-algebra that is under consideration. 4.4 Measure We now proceed to define measures and measure spaces. We will see that a probability space is indeed a special case of a measure space.

4 4-4 Lecture 4: Probability Spaces Definition 4.4 Let (Ω, F) be a measurable space. A measure on (Ω, F) is a function µ: F [0, ] such that i. µ( ) = 0. ii. If {A i, i 1} is a sequence of disjoint sets in F, then the measure of the union (of countably infinite disjoint sets) is equal to the sum of measures of individual sets, i.e., ( ) µ A i = µ(a i ) (4.1) The second property stated above is known as the countable additivity property of measures. From the definition, it is clear that a measure can only be assigned to elements of F. The triplet (Ω, F, µ) is called a measure space. µ is said to be a finite measure if µ(ω) < ; otherwise, µ is said to be an infinite measure. In particular, if µ(ω) = 1, then µ is said to be a probability measure. Next, we state this explicitly for pedagogical completeness. 4.5 Probability Measure A probability measure is a function P: F [0,1] such that i. P( ) = 0. ii. P(Ω) = 1. iii. (Countable additivity:) If {A i, i 1} is a sequence of disjoint sets in F, then ( ) P A i = P(A i ) The triplet (Ω, F, P) is called a probability space, and the three properties, stated above, are sometimes referred to as the axioms of probability. Note:- It is clear from the definition that probabilities are defined only to elements of F, and not necessarily to all subsets of Ω. In other words, probability measures are assigned only to events. Even when we speak of the probability of an elementary outcome ω, it should be interpreted as the probability assigned to the singleton set {ω} (assuming of course, that the singleton is an event). 4.6 Exercises 1. a) Let A 1, A 2,..., A n be a finite collection of subsets of Ω such that A i F 0 (an algebra), 1 i n. Show that n A i F 0 and n A i F 0. Hence, infer that an algebra is closed under finite union and finite intersection. b) Suppose A 1, A 2, A 3,... is a countable collection of subsets in the σ-algebra F, then show that A i F.

5 Lecture 4: Probability Spaces [σ-algebra : Properties and Construction]. (a) Show that a σ-algebra is also an algebra. (b) Given a sample space Ω and a σ-algebra F of the subsets of Ω, show that if A, B F, A \ B and A B, the symmetric difference of A and B are present in F. (c) Consider the random experiment of throwing a die. If a statistician is interested in the occurrence of either an odd or an even outcome, construct a sample space and a σ-algebra of subsets of this sample space. (d) Let A 1, A 2,..., A n be arbitrary subsets of Ω. Describe (explicitly) the smallest σ-algebra F containing A 1, A 2,..., A n. How many sets are there in F? (Give an upper bound that is attainable under certain conditions). List all the sets in F for n = Let F and G be two σ-algebras of subsets of Ω. (a) Is F G, the collection of subsets of Ω lying in either F or G a σ-algebra? (b) Show that F G, the collection of subsets of Ω lying in both F and G is a σ-algebra. (c) Generalize (b) to arbitrary intersections as follows. Let I be an arbitrary index set (possibly uncountable), and let {F i } i I be a collection of σ-algebras on Ω. Show that F i is also a σ-algebra. 4. Let F be a σ-algebra of subsets of Ω, and let B F. Show that is a σ-algebra of subsets of B. G = {A B A F} 5. Let X and Y be two sets and let f : X Y be a function. If F is a σ-algebra over the subsets of Y and G = { A B F such that f 1 (B) = A }, does G form a σ-algebra of subsets of X? Note that f 1 (N) is the notation used for the pre-image of set N under the function f for some N Y. That is, f 1 (N) = {x X f(x) N} for some N Y. 6. Let Ω be an arbitrary set. (a) Is the collection F 1 consisting of all finite subsets of Ω an algebra? (b) Let F 2 consist of all finite subsets of Ω, and all subsets of Ω having a finite complement. Is F 2 an algebra? (c) Is F 2 a σ-algebra? (d) Let F 3 consist of all countable subsets of Ω, and all subsets of Ω having a countable complement. Is F 3 a σ-algebra? i I References [1] Sheldon Ross, A First Course in Probability, Pearson, 8th Edition.

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES Contents 1. Probabilistic experiments 2. Sample space 3. Discrete probability

### Basics of Probability

Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.

### Probabilities and Random Variables

Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so

### Math 421: Probability and Statistics I Note Set 2

Math 421: Probability and Statistics I Note Set 2 Marcus Pendergrass September 13, 2013 4 Discrete Probability Discrete probability is concerned with situations in which you can essentially list all the

### Set theory, and set operations

1 Set theory, and set operations Sayan Mukherjee Motivation It goes without saying that a Bayesian statistician should know probability theory in depth to model. Measure theory is not needed unless we

### Notes 2 for Honors Probability and Statistics

Notes 2 for Honors Probability and Statistics Ernie Croot August 24, 2010 1 Examples of σ-algebras and Probability Measures So far, the only examples of σ-algebras we have seen are ones where the sample

### MATHEMATICS 117/E-217, SPRING 2012 PROBABILITY AND RANDOM PROCESSES WITH ECONOMIC APPLICATIONS Module #5 (Borel Field and Measurable Functions )

MATHEMATICS 117/E-217, SPRING 2012 PROBABILITY AND RANDOM PROCESSES WITH ECONOMIC APPLICATIONS Module #5 (Borel Field and Measurable Functions ) Last modified: May 1, 2012 Reading Dineen, pages 57-67 Proof

### Probability II (MATH 2647)

Probability II (MATH 2647) Lecturer Dr. O. Hryniv email Ostap.Hryniv@durham.ac.uk office CM309 http://maths.dur.ac.uk/stats/courses/probmc2h/probability2h.html or via DUO This term we shall consider: Review

### MATH41112/61112 Ergodic Theory Lecture Measure spaces

8. Measure spaces 8.1 Background In Lecture 1 we remarked that ergodic theory is the study of the qualitative distributional properties of typical orbits of a dynamical system and that these properties

### Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

### Chapter 1. Probability Theory: Introduction. Definitions Algebra. RS Chapter 1 Random Variables

Chapter 1 Probability Theory: Introduction Definitions Algebra Definitions: Semiring A collection of sets F is called a semiring if it satisfies: Φ F. If A, B F, then A B F. If A, B F, then there exists

### Structure of Measurable Sets

Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

### Lecture 2 : Basics of Probability Theory

Lecture 2 : Basics of Probability Theory When an experiment is performed, the realization of the experiment is an outcome in the sample space. If the experiment is performed a number of times, different

7 Probability Copyright Cengage Learning. All rights reserved. 7.1 Sample Spaces and Events Copyright Cengage Learning. All rights reserved. Sample Spaces 3 Sample Spaces At the beginning of a football

### Extension of measure

1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard.

### f(x) is a singleton set for all x A. If f is a function and f(x) = {y}, we normally write

Math 525 Chapter 1 Stuff If A and B are sets, then A B = {(x,y) x A, y B} denotes the product set. If S A B, then S is called a relation from A to B or a relation between A and B. If B = A, S A A is called

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

### CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

### Solutions to Tutorial 2 (Week 3)

THE UIVERSITY OF SYDEY SCHOOL OF MATHEMATICS AD STATISTICS Solutions to Tutorial 2 (Week 3) MATH3969: Measure Theory and Fourier Analysis (Advanced) Semester 2, 2016 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

### Descriptive Set Theory

Martin Goldstern Institute of Discrete Mathematics and Geometry Vienna University of Technology Ljubljana, August 2011 Polish spaces Polish space = complete metric separable. Examples N = ω = {0, 1, 2,...}.

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### Definition of Random Variable A random variable is a function from a sample space S into the real numbers.

.4 Random Variable Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a for agree and 0 for disagree, the sample space

### Probability Review. ICPSR Applied Bayesian Modeling

Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### PROBABILITY NOTIONS. Summary. 1. Random experiment

PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non

### NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

### P (A) = lim P (A) = N(A)/N,

1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or non-deterministic experiments. Suppose an experiment can be repeated any number of times, so that we

### Sigma Field Notes for Economics 770 : Econometric Theory

1 Sigma Field Notes for Economics 770 : Econometric Theory Jonathan B. Hill Dept. of Economics, University of North Carolina 0. DEFINITIONS AND CONVENTIONS The following is a small list of repeatedly used

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### Math 507/420 Homework Assignment #1: Due in class on Friday, September 20. SOLUTIONS

Math 507/420 Homework Assignment #1: Due in class on Friday, September 20. SOLUTIONS 1. Show that a nonempty collection A of subsets is an algebra iff 1) for all A, B A, A B A and 2) for all A A, A c A.

### Ching-Han Hsu, BMES, National Tsing Hua University c 2014 by Ching-Han Hsu, Ph.D., BMIR Lab

Lecture 2 Probability BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 2014 by Ching-Han Hsu, Ph.D., BMIR Lab 2.1 1 Sample Spaces and Events Random

### STAT 571 Assignment 1 solutions

STAT 571 Assignment 1 solutions 1. If Ω is a set and C a collection of subsets of Ω, let A be the intersection of all σ-algebras that contain C. rove that A is the σ-algebra generated by C. Solution: Let

### Mathematical foundations of Econometrics

Mathematical foundations of Econometrics G.Gioldasis, UniFe & prof. A.Musolesi, UniFe April 7, 2016.Gioldasis, UniFe & prof. A.Musolesi, UniFe Mathematical foundations of Econometrics April 7, 2016 1 /

### 1. Sigma algebras. Let A be a collection of subsets of some fixed set Ω. It is called a σ -algebra with the unit element Ω if. lim sup. j E j = E.

Real Analysis, course outline Denis Labutin 1 Measure theory I 1. Sigma algebras. Let A be a collection of subsets of some fixed set Ω. It is called a σ -algebra with the unit element Ω if (a), Ω A ; (b)

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

### Measure Theory and Probability

Chapter 2 Measure Theory and Probability 2.1 Introduction In advanced probability courses, a random variable (r.v.) is defined rigorously through measure theory, which is an in-depth mathematics discipline

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Events. Independence. Coin Tossing. Random Phenomena

Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,

### SETS, RELATIONS, AND FUNCTIONS

September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### Statistics in Geophysics: Introduction and Probability Theory

Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the

### Example. Two fair dice are tossed and the two outcomes recorded. As is familiar, we have

Lectures 9-10 jacques@ucsd.edu 5.1 Random Variables Let (Ω, F, P ) be a probability space. The Borel sets in R are the sets in the smallest σ- field on R that contains all countable unions and complements

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### CHAPTER 5. Product Measures

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### Basic Probability Concepts

page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### MATH INTRODUCTION TO PROBABILITY FALL 2011

MATH 7550-01 INTRODUCTION TO PROBABILITY FALL 2011 Lecture 4. Measurable functions. Random variables. I have told you that we can work with σ-algebras generated by classes of sets in some indirect ways.

### Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

### MAT 235A / 235B: Probability

MAT 235A / 235B: Probability Instructor: Prof. Roman Vershynin 2007-2008 Contents 0.1 Generating σ-algebras........................ 8 1 Probability Measures 9 1.1 Continuity of Probability Measures.................

### POSITIVE INTEGERS, INTEGERS AND RATIONAL NUMBERS OBTAINED FROM THE AXIOMS OF THE REAL NUMBER SYSTEM

MAT 1011 TECHNICAL ENGLISH I 03.11.2016 Dokuz Eylül University Faculty of Science Department of Mathematics Instructor: Engin Mermut Course assistant: Zübeyir Türkoğlu web: http://kisi.deu.edu.tr/engin.mermut/

### 3. Probability Measure

Virtual Laboratories > 1. Probability Spaces > 1 2 3 4 5 6 7 3. Probability Measure Definitions and Interpretations Suppose that we have a random experiment with sample space S. Intuitively, the probability

### Chapter 1. Open Sets, Closed Sets, and Borel Sets

1.4. Borel Sets 1 Chapter 1. Open Sets, Closed Sets, and Borel Sets Section 1.4. Borel Sets Note. Recall that a set of real numbers is open if and only if it is a countable disjoint union of open intervals.

### Elements of Probability Distribution Theory

Chapter 1 Elements of Probability Distribution Theory 1.1 Introductory Definitions Statistics gives us methods to make inference about a population based on a random sample representing this population.

### Probability Foundations for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras

Probability Foundations for Electrical Engineers Prof. Krishna Jagannathan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 9 Borel Sets and Lebesgue Measure -1 (Refer

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### Math/Stat 370: Engineering Statistics, Washington State University

Math/Stat 370: Engineering Statistics, Washington State University Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2 Haijun Li Math/Stat 370: Engineering Statistics,

### BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS. Proof. We shall define inductively a decreasing sequence of infinite subsets of N

BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS SIMON THOMAS 1. The Finite Basis Problem Definition 1.1. Let C be a class of structures. Then a basis for C is a collection B C such that for

### Chapter 1. Sigma-Algebras. 1.1 Definition

Chapter 1 Sigma-Algebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is

### In general, we will not be concerned with the probability of individual outcomes of an experiment, but with collections of outcomes, called events. Fo

1 Introduction A Probability Refresher The word probability evokes (in most people) nebulous concepts related to uncertainty, randomness", etc. Probability is also a concept which is hard to characterize

### Sample Space and Probability

1 Sample Space and Probability Contents 1.1. Sets........................... p. 3 1.2. Probabilistic Models.................... p. 6 1.3. Conditional Probability................. p. 18 1.4. Total Probability

### The basics of probability theory. Distribution of variables, some important distributions

The basics of probability theory. Distribution of variables, some important distributions 1 Random experiment The outcome is not determined uniquely by the considered conditions. For example, tossing a

### RELATIONS AND FUNCTIONS

008 RELATIONS AND FUNCTIONS Concept 9: Graphs of some functions Graphs of constant function: Let k be a fixed real number. Then a function f(x) given by f ( x) = k for all x R is called a constant function.

### Introducing Functions

Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1

### 33 Probability: Some Basic Terms

33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been

### A Measure Theory Tutorial (Measure Theory for Dummies)

A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008

### 3 σ-algebras. Solutions to Problems

3 σ-algebras. Solutions to Problems 3.1 3.12 Problem 3.1 (i It is clearly enough to show that A, B A = A B A, because the case of N sets follows from this by induction, the induction step being A 1...

### General theory of stochastic processes

CHAPTER 1 General theory of stochastic processes 1.1. Definition of stochastic process First let us recall the definition of a random variable. A random variable is a random number appearing as a result

### 3. Examples of discrete probability spaces.. Here α ( j)

3. EXAMPLES OF DISCRETE PROBABILITY SPACES 13 3. Examples of discrete probability spaces Example 17. Toss n coins. We saw this before, but assumed that the coins are fair. Now we do not. The sample space

### Introduction to probability theory in the Discrete Mathematics course

Introduction to probability theory in the Discrete Mathematics course Jiří Matoušek (KAM MFF UK) Version: Oct/18/2013 Introduction This detailed syllabus contains definitions, statements of the main results

### Outcomes, events, and probability

2 Outcomes, events, and probability The world around us is full of phenomena we perceive as random or unpredictable We aim to model these phenomena as outcomes of some experiment, where you should think

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

### 10.2 Series and Convergence

10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### Exercise 1. Let E be a given set. Prove that the following statements are equivalent.

Real Variables, Fall 2014 Problem set 1 Solution suggestions Exercise 1. Let E be a given set. Prove that the following statements are equivalent. (i) E is measurable. (ii) Given ε > 0, there exists an

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

### MATH 3070 Introduction to Probability and Statistics Lecture notes Probability

Objectives: MATH 3070 Introduction to Probability and Statistics Lecture notes Probability 1. Learn the basic concepts of probability 2. Learn the basic vocabulary for probability 3. Identify the sample

### We give a basic overview of the mathematical background required for this course.

1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The

### Finite Markov Chains and Algorithmic Applications. Matematisk statistik, Chalmers tekniska högskola och Göteborgs universitet

Finite Markov Chains and Algorithmic Applications Olle Häggström Matematisk statistik, Chalmers tekniska högskola och Göteborgs universitet PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

### IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

### Sections 2.1, 2.2 and 2.4

SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

### 6.3 Conditional Probability and Independence

222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

### Lecture 11: Probability models

Lecture 11: Probability models Probability is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model we need the following ingredients A sample

### Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

### Polish spaces and standard Borel spaces

APPENDIX A Polish spaces and standard Borel spaces We present here the basic theory of Polish spaces and standard Borel spaces. Standard references for this material are the books [143, 231]. A.1. Polish

### Chapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.

MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.

### Probability - Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty.

Probability - Part I Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Definition : The sample space (denoted S) of a random experiment

### Statistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then

Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### MEASURE ZERO SETS WITH NON-MEASURABLE SUM

INROADS Real Analysis Exchange Vol. 7(), 001/00, pp. 78 794 Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 6506-610, USA. e-mail: K Cies@math.wvu.edu web page:

### (Refer Slide Time: 1:41)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

### The study of probability has increased in popularity over the years because of its wide range of practical applications.

6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,