A set is an unordered collection of objects.


 Sybil Kelly
 1 years ago
 Views:
Transcription
1 Section 2.1
2 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain its elements. The notation a A denotes that a is an element of the set A. If a is not a member of A, write a A
3 Describing a Set: Roster Method S = {a,b,c,d} Order not important S = {a,b,c,d} = {b,c,a,d} Each distinct object is either a member or not; listing more than once does not change the set. S = {a,b,c,d} = {a,b,c,b,c,d} Elipses ( ) may be used to describe a set without listing all of the members when the pattern is clear. S = {a,b,c,d,,z }
4 Roster Method Set of all vowels in the English alphabet: V = {a,e,i,o,u} Set of all odd positive integers less than 10: O = {1,3,5,7,9} Set of all positive integers less than 100: S = {1,2,3,..,99} Set of all integers less than 0: S = {., 3,2,1}
5 Some Important Sets N = natural numbers = {0,1,2,3.} Z = integers = {,3,2,1,0,1,2,3, } Z + = positive integers = {1,2,3,..} R = set of real numbers R + = set of positive real numbers C = set of complex numbers. Q = set of rational numbers
6 SetBuilder Notation Specify the property or properties that all members must satisfy: S = {x x is a positive integer less than 100} O = {x x is an odd positive integer less than 10} O = {x Z + x is odd and x < 10} A predicate may be used: S = {x P(x)} Example: S = {x Prime(x)} Positive rational numbers: Q= {x R x = p/q, for some positive integers p,q}
7 Interval Notation [a,b] = {x a x b} [a,b) = {x a x < b} (a,b] = {x a < x b} (a,b) = {x a < x < b} closed interval [a,b] open interval (a,b)
8 Universal Set and Empty Set The universal set U is the set containing everything currently under consideration. Sometimes implicit Sometimes explicitly stated. Contents depend on the context. The empty set is the set with no elements. Symbolized, but {} also used.
9 Russell s Paradox Let S be the set of all sets which are not members of themselves. A paradox results from trying to answer the question Is S a member of itself? Related Paradox: Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question Does Henry shave himself?
10 Some things to remember Sets can be elements of sets. {{1,2,3},a, {b,c}} {N, Z, Q, R} The empty set is different from a set containing the empty set. { }
11 Set Equality Definition: Two sets are equal if and only if they have the same elements. Therefore if A and B are sets, then A and B are equal if and only if. We write A = B if A and B are equal sets. {1,3,5} = {3, 5, 1} {1,5,5,5,3,3,1} = {1,3,5}
12 Venn Diagrams shows all possible logical relations between a finite collection of sets U U A B A B C
13 Subsets Definition: The set A is a subset of B, if and only if every element of A is also an element of B. The notation A B is used to indicate that A is a subset of the set B. A B holds if and only if is true. 1. Because a is always false, S,for every set S. 2. Because a S a S, S S, for every set S.
14 Showing a Set is or is not a Subset of Another Set Showing that A is a Subset of B: To show that A B, show that if x belongs to A, then x also belongs to B. Showing that A is not a Subset of B: To show that A is not a subset of B, A B, find an element x A with x B. (Such an x is a counterexample to the claim that x A implies x B.) Examples: 1. The set of all computer science majors at your school is a subset of all students at your school. 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.
15 Another look at Equality of Sets Recall that two sets A and B are equal, denoted by A = B, if and only if Using logical equivalences we have that A = B if and only if This is equivalent to A B and B A
16 Proper Subsets Definition: If A B, but A B, then we say A is a proper subset of B, denoted by A B. If A B, then is true. Venn Diagram B A U
17 Set Cardinality Definition: If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is finite. Otherwise it is infinite. Definition: The cardinality of a finite set A, denoted by A, is the number of (distinct) elements of A. Examples: 1. ø = 0 2. Let S be the letters of the English alphabet. Then S = {1,2,3} = 3 4. {ø} = 1 5. The set of integers is infinite.
18 Power Sets Definition: The set of all subsets of a set A, denoted P(A), is called the power set of A. Example: If A = {a,b} then P(A) = {ø, {a},{b},{a,b}} If a set has n elements, then the cardinality of the power set is 2ⁿ. (In Chapters 5 and 6, we will discuss different ways to show this.)
19 Tuples The ordered ntuple (a 1,a 2,..,a n ) is the ordered collection that has a 1 as its first element and a 2 as its second element and so on until a n as its last element. Two ntuples are equal if and only if their corresponding elements are equal. 2tuples are called ordered pairs. The ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.
20 Cartesian Product Definition: The Cartesian Product of two sets A and B, denoted by A B is the set of ordered pairs (a,b) where a A and b B. Example: A = {a,b} B = {1,2,3} A B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)} Definition: A subset R of the Cartesian product A B is called a relation from the set A to the set B. (Relations will be covered in depth in Chapter 9. )
21 Cartesian Product Definition: The cartesian products of the sets A 1,A 2,,A n, denoted by A 1 A 2 A n, is the set of ordered ntuples (a 1,a 2,,a n ) where a i belongs to A i for i = 1, n. Example: What is A B C where A = {0,1}, B = {1,2} and C = {0,1,2} Solution: A B C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1), (0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)}
22 Truth Sets of Quantifiers Given a predicate P and a domain D, we define the truth set of P to be the set of elements in D for which P(x) is true. The truth set of P(x) is denoted by Example: The truth set of P(x) where the domain is the integers and P(x) is x = 1 is the set {1,1}
Sections 2.1, 2.2 and 2.4
SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete
More informationAnnouncements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets
CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.32.6 Homework 2 due Tuesday Recitation 3 on Friday
More informationSets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.
Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in
More informationSets and set operations
CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used
More information2.1 Sets, power sets. Cartesian Products.
Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects.  used to group objects together,  often the objects with similar properties This description of a set (without
More informationThe Language of Mathematics
CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,
More informationSome Definitions about Sets
Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish
More information4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.
Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,
More information2.1 Symbols and Terminology
2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:
More informationA set is a Many that allows itself to be thought of as a One. (Georg Cantor)
Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains
More information2.1 The Algebra of Sets
Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations
More information(Refer Slide Time: 1:41)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must
More informationSETS, RELATIONS, AND FUNCTIONS
September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four
More informationWhat is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13
What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll
More informationCmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B
CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences
More informationMath/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta
Math/CSE 1019: Discrete Mathematics for Computer Science Fall 2011 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 4167362100 ext 77875 Course page: http://www.cse.yorku.ca/course/1019 1
More informationNotes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.
Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction
More informationDiscrete Mathematics Set Operations
Discrete Mathematics 13. Set Operations Introduction to Set Theory A setis a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
More informationLecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More information1 / Basic Structures: Sets, Functions, Sequences, and Sums  definition of a set, and the use of the intuitive notion that any property whatever there
C H A P T E R Basic Structures: Sets, Functions, Sequences, and Sums.1 Sets. Set Operations.3 Functions.4 Sequences and Summations Much of discrete mathematics is devoted to the study of discrete structures,
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationMath 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationLogic, Sets, and Proofs
Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical
More informationIf f is a 11 correspondence between A and B then it has an inverse, and f 1 isa 11 correspondence between B and A.
Chapter 5 Cardinality of sets 51 11 Correspondences A 11 correspondence between sets A and B is another name for a function f : A B that is 11 and onto If f is a 11 correspondence between A and B,
More information2.1.1 Examples of Sets and their Elements
Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define
More informationChapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since
Chapter 2 1. Prove or disprove: A (B C) = (A B) (A C)., since A ( B C) = A B C = A ( B C) = ( A B) ( A C) = ( A B) ( A C). 2. Prove that A B= A B by giving a containment proof (that is, prove that the
More information3(vi) B. Answer: False. 3(vii) B. Answer: True
Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)
More informationBasic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
More informationClicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES
MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.11.7 Exercises: Do before next class; not to hand in [J] pp. 1214:
More informationDiscrete Mathematics Lecture 5. Harper Langston New York University
Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = 1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of
More informationSets and Cardinality Notes for C. F. Miller
Sets and Cardinality Notes for 620111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationLESSON SUMMARY. Set Operations and Venn Diagrams
LESSON SUMMARY CXC CSEC MATHEMATICS UNIT Three: Set Theory Lesson 4 Set Operations and Venn Diagrams Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volumes 1 and 2. (Some helpful exercises
More informationSets and set operations: cont. Functions.
CS 441 Discrete Mathematics for CS Lecture 8 Sets and set operations: cont. Functions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Set Definition: set is a (unordered) collection of objects.
More informationSETS. Chapter Overview
Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations
More informationCS 2336 Discrete Mathematics
CS 2336 Discrete Mathematics Lecture 2 Logic: Predicate Calculus 1 Outline Predicates Quantifiers Binding Applications Logical Equivalences 2 Predicates In mathematics arguments, we will often see sentences
More informationSet Theory Basic Concepts and Definitions
Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric
More informationDefinition 14 A set is an unordered collection of elements or objects.
Chapter 4 Set Theory Definition 14 A set is an unordered collection of elements or objects. Primitive Notation EXAMPLE {1, 2, 3} is a set containing 3 elements: 1, 2, and 3. EXAMPLE {1, 2, 3} = {3, 2,
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 20
CS 70 Discrete Mathematics and Probability Theory Fall 009 Satish Rao, David Tse Note 0 Infinity and Countability Consider a function (or mapping) f that maps elements of a set A (called the domain of
More informationCHAPTER 2. Set, Whole Numbers, and Numeration
CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A
More informationIntroduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim
6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationThe set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;
Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method
More information4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style
ets 4.1 Introduction If we can identify a property which is common to several objects, it is often useful to group them together. uch a grouping is called a set. Engineers for example, may wish to study
More informationINTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS
INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28
More informationDISCRETE MATHEMATICS W W L CHEN
DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free
More informationDISCRETE MATH: LECTURE 4
DISCRETE MATH: LECTURE 4 DR. DANIEL FREEMAN 1. Chapter 3.1 Predicates and Quantified Statements I A predicate is a sentence that contains a finite number of variables and becomes a statement when specific
More informationTHE LANGUAGE OF SETS AND SET NOTATION
THE LNGGE OF SETS ND SET NOTTION Mathematics is often referred to as a language with its own vocabulary and rules of grammar; one of the basic building blocks of the language of mathematics is the language
More informationDiscrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations
Discrete Mathematics Philippa Gardner This course is based on previous lecture notes by Iain Phillips. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill 1995. J.L. Gersting. Mathematical
More informationnot to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations
SETS Chapter 1 In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but
More informationMath 166  Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Week in Review #4 Sections A.1 and A.2  Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that
More informationAutomata and Formal Languages
Automata and Formal Languages Winter 20092010 Yacov HelOr 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationReview for Final Exam
Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters
More informationFinite Sets. Theorem 5.1. Two nonempty finite sets have the same cardinality if and only if they are equivalent.
MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we
More informationLecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties
Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an
More informationSection 3.3 Equivalence Relations
1 Section 3.3 Purpose of Section To introduce the concept of an equivalence relation and show how it subdivides or partitions a set into distinct categories. Introduction Classifying objects and placing
More informationRelations and Functions
Section 5. Relations and Functions 5.1. Cartesian Product 5.1.1. Definition: Ordered Pair Let A and B be sets and let a A and b B. An ordered pair ( a, b) is a pair of elements with the property that:
More informationLecture 4  Sets, Relations, Functions 1
Lecture 4 Sets, Relations, Functions Pat Place Carnegie Mellon University Models of Software Systems 17651 Fall 1999 Lecture 4  Sets, Relations, Functions 1 The Story So Far Formal Systems > Syntax»
More information31 is a prime number is a mathematical statement (which happens to be true).
Chapter 1 Mathematical Logic In its most basic form, Mathematics is the practice of assigning truth to welldefined statements. In this course, we will develop the skills to use known true statements to
More informationRegular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries  some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
More informationSets and functions. {x R : x > 0}.
Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.
More informationSets, Relations and Functions
Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete
More informationSet (mathematics) From Wikipedia, the free encyclopedia
Set (mathematics) From Wikipedia, the free encyclopedia A set in mathematics is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental
More information7 Relations and Functions
7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,
More informationStudents in their first advanced mathematics classes are often surprised
CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are
More informationThis chapter describes set theory, a mathematical theory that underlies all of modern mathematics.
Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.
More informationMathematical induction & Recursion
CS 441 Discrete Mathematics for CS Lecture 15 Mathematical induction & Recursion Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Proofs Basic proof methods: Direct, Indirect, Contradiction, By Cases,
More informationDiscrete Mathematics
Discrete Mathematics ChihWei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can
More informationProof: A logical argument establishing the truth of the theorem given the truth of the axioms and any previously proven theorems.
Math 232  Discrete Math 2.1 Direct Proofs and Counterexamples Notes Axiom: Proposition that is assumed to be true. Proof: A logical argument establishing the truth of the theorem given the truth of the
More information2.3. Relations. Arrow diagrams. Venn diagrams and arrows can be used for representing
2.3. RELATIONS 32 2.3. Relations 2.3.1. Relations. Assume that we have a set of men M and a set of women W, some of whom are married. We want to express which men in M are married to which women in W.
More informationAppendix A: Numbers, Inequalities, and Absolute Values. Outline
Appendix A: Numbers, Inequalities, and Absolute Values Tom Lewis Fall Semester 2015 Outline Types of numbers Notation for intervals Inequalities Absolute value A hierarchy of numbers Whole numbers 1, 2,
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More information(Refer Slide Time 1.50)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Module 2 Lecture #11 Induction Today we shall consider proof
More informationMAT Discrete Mathematics
RHODES UNIVERSITY Grahamstown 6140, South Africa Lecture Notes CCR MAT 102  Discrete Mathematics Claudiu C. Remsing DEPT. of MATHEMATICS (Pure and Applied) 2005 Mathematics is not about calculations but
More informationSection 1. Statements and Truth Tables. Definition 1.1: A mathematical statement is a declarative sentence that is true or false, but not both.
M3210 Supplemental Notes: Basic Logic Concepts In this course we will examine statements about mathematical concepts and relationships between these concepts (definitions, theorems). We will also consider
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationAll programs that passed test 1 were written in Java.
. Consider the following statements: (S) Programs that passed test also passed test. (S) Programs passed test unless they failed test. (S) Programs passed test only if they passed test. (a) Rewrite statements
More informationWe give a basic overview of the mathematical background required for this course.
1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The
More informationIn mathematics you don t understand things. You just get used to them. (Attributed to John von Neumann)
Chapter 1 Sets and Functions We understand a set to be any collection M of certain distinct objects of our thought or intuition (called the elements of M) into a whole. (Georg Cantor, 1895) In mathematics
More informationMidterm Examination 1 with Solutions  Math 574, Frank Thorne Thursday, February 9, 2012
Midterm Examination 1 with Solutions  Math 574, Frank Thorne (thorne@math.sc.edu) Thursday, February 9, 2012 1. (3 points each) For each sentence below, say whether it is logically equivalent to the sentence
More informationMath 117 Chapter 7 Sets and Probability
Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a welldefined collection of specific objects. Each item in the set is called an element or a member. Curly
More information1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.
1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know
More informationPredicate Logic. Lucia Moura. Winter Predicates and Quantifiers Nested Quantifiers Using Predicate Calculus
Predicate Logic Winter 2010 Predicates A Predicate is a declarative sentence whose true/false value depends on one or more variables. The statement x is greater than 3 has two parts: the subject: x is
More informationIntroduction to mathematical arguments
Introduction to mathematical arguments (background handout for courses requiring proofs) by Michael Hutchings A mathematical proof is an argument which convinces other people that something is true. Math
More informationCHAPTER 3. Mapping Concepts and Mapping Problems for. Scalar Valued Functions of a Scalar Variable
A SERIES OF CLASS NOTES TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS REMEDIAL CLASS NOTES A COLLECTION OF HANDOUTS FOR REMEDIATION IN FUNDAMENTAL CONCEPTS
More informationClimbing an Infinite Ladder
Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,
More informationCARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE
CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationNotes 2 for Honors Probability and Statistics
Notes 2 for Honors Probability and Statistics Ernie Croot August 24, 2010 1 Examples of σalgebras and Probability Measures So far, the only examples of σalgebras we have seen are ones where the sample
More informationMTH 06 LECTURE NOTES (Ojakian) Topic 2: Functions
MTH 06 LECTURE NOTES (Ojakian) Topic 2: Functions OUTLINE (References: Iyer Textbook  pages 4,6,17,18,40,79,80,81,82,103,104,109,110) 1. Definition of Function and Function Notation 2. Domain and Range
More informationCHAPTER 1. Basic Ideas
CHPTER 1 asic Ideas In the end, all mathematics can be boiled down to logic and set theory. ecause of this, any careful presentation of fundamental mathematical ideas is inevitably couched in the language
More informationElementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
More informationChapter Three. Functions. In this section, we study what is undoubtedly the most fundamental type of relation used in mathematics.
Chapter Three Functions 3.1 INTRODUCTION In this section, we study what is undoubtedly the most fundamental type of relation used in mathematics. Definition 3.1: Given sets X and Y, a function from X to
More informationProblems on Discrete Mathematics 1
Problems on Discrete Mathematics 1 ChungChih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from
More informationFormal Languages and Automata Theory  Regular Expressions and Finite Automata 
Formal Languages and Automata Theory  Regular Expressions and Finite Automata  Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
More informationSet Theory. 2.1 Presenting Sets CHAPTER2
CHAPTER2 Set Theory 2.1 Presenting Sets Certain notions which we all take for granted are harder to define precisely than one might expect. In Taming the Infinite: The Story of Mathematics, Ian Stewart
More information