Discrete Mathematics Lecture 5. Harper Langston New York University

Size: px
Start display at page:

Download "Discrete Mathematics Lecture 5. Harper Langston New York University"

Transcription

1 Discrete Mathematics Lecture 5 Harper Langston New York University

2 Empty Set S = {x R, x 2 = -1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of any set There is exactly one empty set Properties of empty set: A = A, A = A A c =, A A c = U U c =, c = U

3 Set Partitioning Two sets are called disjoint if they have no elements in common Theorem: A B and B are disjoint A collection of sets A 1, A 2,, A n is called mutually disjoint when any pair of sets from this collection is disjoint A collection of non-empty sets {A 1, A 2,, A n } is called a partition of a set A when the union of these sets is A and this collection consists of mutually disjoint sets

4 Power Set Power set of A is the set of all subsets of A Example on board Theorem: if A B, then P(A) P(B) Theorem: If set X has n elements, then P(X) has 2 n elements (proof in Section 5.3 will show if have time)

5 Cartesian Products Ordered n-tuple is a set of ordered n elements. Equality of n-tuples Cartesian product of n sets is a set of n- tuples, where each element in the n-tuple belongs to the respective set participating in the product

6 Set Properties Inclusion of Intersection: A B A and A B B Inclusion in Union: A A B and B A B Transitivity of Inclusion: (A B B C) A C Set Definitions: x X Y x X y Y x X Y x X y Y x X Y x X y Y x X c x X (x, y) X Y x X y Y

7 Set Identities Commutative Laws: A B = A B and A B = B A Associative Laws: (A B) C = A (B C) and (A B) C = A (B C) Distributive Laws: A (B C) = (A B) (A C) and A (B C) = (A B) (A C) Intersection and Union with universal set: A U = A and A U = U Double Complement Law: (A c ) c = A Idempotent Laws: A A = A and A A = A De Morgan s Laws: (A B) c = A c B c and (A B) c = A c B c Absorption Laws: A (A B) = A and A (A B) = A Alternate Representation for Difference: A B = A B c Intersection and Union with a subset: if A B, then A B = A and A B = B

8 Proving Equality First show that one set is a subset of another (what we did with examples before) To show this, choose an arbitrary particular element as with direct proofs (call it x), and show that if x is in A then x is in B to show that A is a subset of B Example (step through all cases)

9 Disproofs, Counterexamples and Algebraic Proofs Is is true that (A B) (B C) = A C? (No via counterexample) Show that (A B) C = (A C) (B C) (Can do with an algebraic proof, slightly different)

10 Boolean Algebra A Boolean Algebra is a set of elements together with two operations denoted as + and * and satisfying the following properties: Commutative: a + b = b + a, a * b = b * a Associative: (a + b) + c = a + (b + c), (a * b) *c = a * (b * c) Distributive: a + (b * c) = (a + b) * (a + c), a * (b + c) = (a * b) + (a * c) Identity: a + 0 = a, a * 1 = a for some distinct unique 0 and 1 Complement: a + ã = 1, a * ã = 0

11 Russell s Paradox Set of all integers, set of all abstract ideas Consider S = {A, A is a set and A A} Is S an element of S? Barber puzzle: a male barber shaves all those men who do not shave themselves. Does the barber shave himself? Consider S = {A U, A A}. Is S S? Godel: No way to rigorously prove that mathematics is free of contradictions. ( This statement is not provable is true but not provable) (consistency of an axiomatic system is not provable within that system)

12 Halting Problem There is no computer algorithm that will accept any algorithm X and data set D as input and then will output halts or loops forever to indicate whether X terminates in a finite number of steps when X is run with data set D. Proof is by contradiction

13 Counting and Probability Coin tossing Random process Sample space is the set of all possible outcomes of a random process. An event is a subset of a sample space Probability of an event is the ratio between the number of outcomes that satisfy the event to the total number of possible outcomes P(E) = N(E)/N(S) for event E and sample space S Rolling a pair of dice and card deck as sample random processes

14 Possibility Trees Teams A and B are to play each other repeatedly until one wins two games in a row or a total three games. What is the probability that five games will be needed to determine the winner? Suppose there are 4 I/O units and 3 CPUs. In how many ways can I/Os and CPUs be attached to each other when there are no restrictions?

15 Multiplication Rule Multiplication rule: if an operation consists of k steps each of which can be performed in n i ways (i = 1, 2,, k), then the entire operation can be performed in n i ways. Number of PINs Number of elements in a Cartesian product Number of PINs without repetition Number of Input/Output tables for a circuit with n input signals Number of iterations in nested loops

16 Multiplication Rule Three officers a president, a treasurer and a secretary are to be chosen from four people: Alice, Bob, Cindy and Dan. Alice cannot be a president, Either Cindy or Dan must be a secretary. How many ways can the officers be chosen?

17 Permutations A permutation of a set of objects is an ordering of these objects The number of permutations of a set of n objects is n! (Examples) An r-permutation of a set of n elements is an ordered selection of r elements taken from a set of n elements: P(n, r) (Examples) P(n, r) = n! / (n r)! Show that P(n, 2) + P(n, 1) = n 2

18 Addition Rule If a finite set A is a union of k mutually disjoint sets A 1, A 2,, A k, then n(a) = Σn(A i ) Number of words of length no more than 3 Number of 3-digit integers divisible by 5

19 Difference Rule If A is a finite set and B is its subset, then n(a B) = n(a) n(b) How many PINS contain repeated symbols? So, P(A c ) = 1 P(A) (Example for PINS) How many students are needed so that the probability of two of them having the same birthday equals 0.5?

20 Inclusion/Exclusion Rule Page 327 for 2 sets 3 sets

21 Combinations An r-combination of a set of n elements is a subset of r elements: C(n, r) Permutation is an ordered selection, combination is an unordered selection Quantitative relationship between permutations and combinations: P(n, r) = C(n, r) * r! Permutations of a set with repeated elements Double counting

22 Team Selection Problems There are 12 people, 5 men and 7 women, to work on a project: How many 5-person teams can be chosen? If two people insist on working together (or not working at all), how many 5-person teams can be chosen? If two people insist on not working together, how many 5-person teams can be chosen? How many 5-person teams consist of 3 men and 2 women? How many 5-person teams contain at least 1 man? How many 5-person teams contain at most 1 man?

23 Poker Problems What is a probability to contain one pair? What is a probability to contain two pairs? What is a probability to contain a triple? What is a probability to contain royal flush? What is a probability to contain straight flush? What is a probability to contain straight? What is a probability to contain flush? What is a probability to contain full house?

24 Combinations with Repetition An r-combination with repetition allowed is an unordered selection of elements where some elements can be repeated The number of r-combinations with repetition allowed from a set of n elements is C(r + n 1, r) Soft drink example

25 Algebra of Combinations and Pascal s Triangle The number of r-combinations from a set of n elements equals the number of (n r)- combinations from the same set. Pascal s triangle: C(n + 1, r) = C(n, r 1) + C(n, r) C(n,r) = C(n,n-r)

26 Binomial Formula (a + b) n = ΣC(n, k)a k b n-k Show that ΣC(n, k) = 2 n Show that Σ(-1) k C(n, k) = 0 Express ΣkC(n, k)3 k in the closed form

Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

More information

1.1 Logical Form and Logical Equivalence 1

1.1 Logical Form and Logical Equivalence 1 Contents Chapter I The Logic of Compound Statements 1.1 Logical Form and Logical Equivalence 1 Identifying logical form; Statements; Logical connectives: not, and, and or; Translation to and from symbolic

More information

Some Definitions about Sets

Some Definitions about Sets Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

More information

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

More information

A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

A set is a Many that allows itself to be thought of as a One. (Georg Cantor) Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

More information

Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim 6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

More information

Math 421: Probability and Statistics I Note Set 2

Math 421: Probability and Statistics I Note Set 2 Math 421: Probability and Statistics I Note Set 2 Marcus Pendergrass September 13, 2013 4 Discrete Probability Discrete probability is concerned with situations in which you can essentially list all the

More information

1 Introduction. 2 Basic Principles. 2.1 Multiplication Rule. [Ch 9] Counting Methods. 400 lecture note #9

1 Introduction. 2 Basic Principles. 2.1 Multiplication Rule. [Ch 9] Counting Methods. 400 lecture note #9 400 lecture note #9 [Ch 9] Counting Methods 1 Introduction In many discrete problems, we are confronted with the problem of counting. Here we develop tools which help us counting. Examples: o [9.1.2 (p.

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Sections 2.1, 2.2 and 2.4

Sections 2.1, 2.2 and 2.4 SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting

Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Colin Stirling Informatics Slides originally by Kousha Etessami Colin Stirling (Informatics) Discrete Mathematics (Chapter 6) Today 1 /

More information

Sets and set operations

Sets and set operations CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

More information

Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

More information

Discrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations

Discrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations Discrete Mathematics Philippa Gardner This course is based on previous lecture notes by Iain Phillips. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill 1995. J.L. Gersting. Mathematical

More information

Lecture 11: Probability models

Lecture 11: Probability models Lecture 11: Probability models Probability is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model we need the following ingredients A sample

More information

Elements of probability theory

Elements of probability theory 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

More information

The Language of Mathematics

The Language of Mathematics CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

More information

Chapter 1. Sigma-Algebras. 1.1 Definition

Chapter 1. Sigma-Algebras. 1.1 Definition Chapter 1 Sigma-Algebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is

More information

NOTES ON COUNTING KARL PETERSEN

NOTES ON COUNTING KARL PETERSEN NOTES ON COUNTING KARL PETERSEN It is important to be able to count exactly the number of elements in any finite set. We will see many applications of counting as we proceed (number of Enigma plugboard

More information

A set is an unordered collection of objects.

A set is an unordered collection of objects. Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain

More information

MATH 3070 Introduction to Probability and Statistics Lecture notes Probability

MATH 3070 Introduction to Probability and Statistics Lecture notes Probability Objectives: MATH 3070 Introduction to Probability and Statistics Lecture notes Probability 1. Learn the basic concepts of probability 2. Learn the basic vocabulary for probability 3. Identify the sample

More information

Math/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta

Math/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta Math/CSE 1019: Discrete Mathematics for Computer Science Fall 2011 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/1019 1

More information

2.1 The Algebra of Sets

2.1 The Algebra of Sets Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations

More information

Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU

Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU Department of Computer Science Sun Yat-sen University Feb. 2016 http://www.cs.sysu.edu.cn/ zxc isszxc@mail.sysu.edu.cn Xiaocong ZHOU

More information

Lecture 6: Probability. If S is a sample space with all outcomes equally likely, define the probability of event E,

Lecture 6: Probability. If S is a sample space with all outcomes equally likely, define the probability of event E, Lecture 6: Probability Example Sample Space set of all possible outcomes of a random process Flipping 2 coins Event a subset of the sample space Getting exactly 1 tail Enumerate Sets If S is a sample space

More information

Lecture 2 : Basics of Probability Theory

Lecture 2 : Basics of Probability Theory Lecture 2 : Basics of Probability Theory When an experiment is performed, the realization of the experiment is an outcome in the sample space. If the experiment is performed a number of times, different

More information

Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22

Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES Contents 1. Probabilistic experiments 2. Sample space 3. Discrete probability

More information

Section 6.4: Counting Subsets of a Set: Combinations

Section 6.4: Counting Subsets of a Set: Combinations Section 6.4: Counting Subsets of a Set: Combinations In section 6.2, we learnt how to count the number of r-permutations from an n-element set (recall that an r-permutation is an ordered selection of r

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

More information

Math 117 Chapter 7 Sets and Probability

Math 117 Chapter 7 Sets and Probability Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a well-defined collection of specific objects. Each item in the set is called an element or a member. Curly

More information

+ Section 6.2 and 6.3

+ Section 6.2 and 6.3 Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities

More information

Sets and Subsets. Countable and Uncountable

Sets and Subsets. Countable and Uncountable Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788-792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There

More information

(Refer Slide Time: 1:41)

(Refer Slide Time: 1:41) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

More information

COUNTING SUBSETS OF A SET: COMBINATIONS

COUNTING SUBSETS OF A SET: COMBINATIONS COUNTING SUBSETS OF A SET: COMBINATIONS DEFINITION 1: Let n, r be nonnegative integers with r n. An r-combination of a set of n elements is a subset of r of the n elements. EXAMPLE 1: Let S {a, b, c, d}.

More information

Notes on counting finite sets

Notes on counting finite sets Notes on counting finite sets Murray Eisenberg February 26, 2009 Contents 0 Introduction 2 1 What is a finite set? 2 2 Counting unions and cartesian products 4 2.1 Sum rules......................................

More information

The Mathematics Driving License for Computer Science- CS10410

The Mathematics Driving License for Computer Science- CS10410 The Mathematics Driving License for Computer Science- CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science Venn-Euler

More information

Chapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.

Chapter 15. Definitions: experiment: is the act of making an observation or taking a measurement. MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.

More information

Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for C. F. Miller Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

More information

Finite and discrete probability distributions

Finite and discrete probability distributions 8 Finite and discrete probability distributions To understand the algorithmic aspects of number theory and algebra, and applications such as cryptography, a firm grasp of the basics of probability theory

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

94 Counting Solutions for Chapter 3. Section 3.2

94 Counting Solutions for Chapter 3. Section 3.2 94 Counting 3.11 Solutions for Chapter 3 Section 3.2 1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed. (a How many length-4 lists are there? Answer: 6 6 6 6 = 1296. (b

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/01, Winter term 2015/2016 About this file This file is meant to be a guideline for the lecturer. Many

More information

Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Probability is concerned with quantifying the likelihoods of various events in situations involving elements of randomness or uncertainty.

Probability is concerned with quantifying the likelihoods of various events in situations involving elements of randomness or uncertainty. Chapter 1 Probability Spaces 11 What is Probability? Probability is concerned with quantifying the likelihoods of various events in situations involving elements of randomness or uncertainty Example 111

More information

Worked examples Basic Concepts of Probability Theory

Worked examples Basic Concepts of Probability Theory Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one

More information

More Mathematical Induction. October 27, 2016

More Mathematical Induction. October 27, 2016 More Mathematical Induction October 7, 016 In these slides... Review of ordinary induction. Remark about exponential and polynomial growth. Example a second proof that P(A) = A. Strong induction. Least

More information

NOTES ON ELEMENTARY PROBABILITY

NOTES ON ELEMENTARY PROBABILITY NOTES ON ELEMENTARY PROBABILITY KARL PETERSEN 1. Probability spaces Probability theory is an attempt to work mathematically with the relative uncertainties of random events. In order to get started, we

More information

We give a basic overview of the mathematical background required for this course.

We give a basic overview of the mathematical background required for this course. 1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The

More information

SETS. Chapter Overview

SETS. Chapter Overview Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations

More information

2.1.1 Examples of Sets and their Elements

2.1.1 Examples of Sets and their Elements Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define

More information

Math 1320 Chapter Seven Pack. Section 7.1 Sample Spaces and Events. Experiments, Outcomes, and Sample Spaces. Events. Complement of an Event

Math 1320 Chapter Seven Pack. Section 7.1 Sample Spaces and Events. Experiments, Outcomes, and Sample Spaces. Events. Complement of an Event Math 1320 Chapter Seven Pack Section 7.1 Sample Spaces and Events Experiments, Outcomes, and Sample Spaces An experiment is an occurrence with a result, or outcome, that is uncertain before the experiment

More information

Basics of Probability

Basics of Probability Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.

More information

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker) Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.

More information

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850 Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.

A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome

More information

Probability II (MATH 2647)

Probability II (MATH 2647) Probability II (MATH 2647) Lecturer Dr. O. Hryniv email Ostap.Hryniv@durham.ac.uk office CM309 http://maths.dur.ac.uk/stats/courses/probmc2h/probability2h.html or via DUO This term we shall consider: Review

More information

3.1 Events, Sample Spaces, and Probability

3.1 Events, Sample Spaces, and Probability University of California, Davis Department of Statistics Summer Session II Statistics 13 August 6, 2012 Lecture 3: Probability 3.1 Events, Sample Spaces, and Probability Date of latest update: August 8

More information

POWER SETS AND RELATIONS

POWER SETS AND RELATIONS POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

What is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts

What is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts Basic Concepts Introduction to Probability A probability experiment is any experiment whose outcomes relies purely on chance (e.g. throwing a die). It has several possible outcomes, collectively called

More information

Set theory, and set operations

Set theory, and set operations 1 Set theory, and set operations Sayan Mukherjee Motivation It goes without saying that a Bayesian statistician should know probability theory in depth to model. Measure theory is not needed unless we

More information

Discrete Mathematics Set Operations

Discrete Mathematics Set Operations Discrete Mathematics 1-3. Set Operations Introduction to Set Theory A setis a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Victor Adamchik Fall of 2005 Lecture 1 (out of three) Plan 1. The Principle of Mathematical Induction 2. Induction Examples The Principle of Mathematical Induction Suppose we have

More information

Math 3000 Running Glossary

Math 3000 Running Glossary Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

A1. Basic Reviews PERMUTATIONS and COMBINATIONS... or HOW TO COUNT

A1. Basic Reviews PERMUTATIONS and COMBINATIONS... or HOW TO COUNT A1. Basic Reviews Appendix / A1. Basic Reviews / Perms & Combos-1 PERMUTATIONS and COMBINATIONS... or HOW TO COUNT Question 1: Suppose we wish to arrange n 5 people {a, b, c, d, e}, standing side by side,

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Mathematical induction. Niloufar Shafiei

Mathematical induction. Niloufar Shafiei Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

Sets and set operations: cont. Functions.

Sets and set operations: cont. Functions. CS 441 Discrete Mathematics for CS Lecture 8 Sets and set operations: cont. Functions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Set Definition: set is a (unordered) collection of objects.

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Probability and Counting

Probability and Counting Probability and Counting Basic Counting Principles Permutations and Combinations Sample Spaces, Events, Probability Union, Intersection, Complements; Odds Conditional Probability, Independence Bayes Formula

More information

Probability - Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty.

Probability - Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Probability - Part I Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Definition : The sample space (denoted S) of a random experiment

More information

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13 What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll

More information

Lecture 2: Probability

Lecture 2: Probability Lecture 2: Probability Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 Sample Spaces 3 Event 4 The Probability

More information

This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

More information

33 Probability: Some Basic Terms

33 Probability: Some Basic Terms 33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been

More information

In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events.

In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events. Lecture#4 Chapter 4: Probability In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events. 4-2 Fundamentals Definitions:

More information

Exam 1 Review Math 118 All Sections

Exam 1 Review Math 118 All Sections Exam Review Math 8 All Sections This exam will cover sections.-.6 and 2.-2.3 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There is no time limit. It will consist

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 8

18.312: Algebraic Combinatorics Lionel Levine. Lecture 8 18.312: Algebraic Combinatorics Lionel Levine Lecture date: March 1, 2011 Lecture 8 Notes by: Christopher Policastro Remark: In the last lecture, someone asked whether all posets could be constructed from

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

Module 6: Basic Counting

Module 6: Basic Counting Module 6: Basic Counting Theme 1: Basic Counting Principle We start with two basic counting principles, namely, the sum rule and the multiplication rule. The Sum Rule: If there are n 1 different objects

More information

Introductory Problems

Introductory Problems Introductory Problems Today we will solve problems that involve counting and probability. Below are problems which introduce some of the concepts we will discuss.. At one of George Washington s parties,

More information

STAT 270 Probability Basics

STAT 270 Probability Basics STAT 270 Probability Basics Richard Lockhart Simon Fraser University Spring 2015 Surrey 1/28 Purposes of These Notes Jargon: experiment, sample space, outcome, event. Set theory ideas and notation: intersection,

More information

Sets and functions. {x R : x > 0}.

Sets and functions. {x R : x > 0}. Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

More information

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there C H A P T E R Basic Structures: Sets, Functions, Sequences, and Sums.1 Sets. Set Operations.3 Functions.4 Sequences and Summations Much of discrete mathematics is devoted to the study of discrete structures,

More information

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences

More information

MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

More information