ZONAL INSTITUTE OF EDUCATION AND TRAINING Bhubaneswar

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ZONAL INSTITUTE OF EDUCATION AND TRAINING Bhubaneswar"

Transcription

1 KENDRIYA VIDYALAYA SANGATHAN ZONAL INSTITUTE OF EDUCATION AND TRAINING Bhubaneswar STUDY MATERIAL CLASS XI ECONOMICS PATRON : Ms Usha Aswath Iyer MATERIAL PRODUCTION: Mr. Parsuram Shukla [ 1 ]

2 [ ]

3 [ 3 ]

4 X X N X X A A N d ' d i N X X X fx f A or N fd fd' A N fm f i 0 X X X X X X A [ 4 ]

5 N 1 M Size of th N Size of th M l1 N c. f F i [ 5 ]

6 N 4 1 N 4 N 4 th th 1 th N 4 c. f f i N 4 th N 3 4 f c. f i [ 6 ]

7 Z f1 f0 L1 f f 1 0 f i [ 7 ]

8 X M Z X M Z X M Z X M Z X M Z X [ 8 ]

9 11, Rs. 0 N X X M Z [ 9 ]

10 X M X M Z Z [ 10 ]

11 [ 11 ]

12 [ 1 ]

13 L S L S [ 13 ]

14 Q Q 3 Q1 3 Q 3 Q 1 Q 1 D MD N f MD N MD MD X or M D [ 14 ]

15 i s t h e s q u a r e o f t h e s t a n d a r d d e v i a t i o n i. e, V a r i a n c e = ( S. D.) X X N n d d n d n ' n d ' i X X n X X n n X X F n [ 15 ]

16 f d n fd n f d' fd ' n n C f n X fx n 1 1 n 1 [ 16 ]

17 100 X [ 17 ]

18 [ 18 ]

19 [ 19 ]

20 [ 0 ]

21 r XY X. Y r X X Y Y X X Y Y [ 1 ]

22 r N. N dx dxdy dx. dy dx N. dy dy dx = X Ax, dy = Y Ay. r N. dx N dx ' ' ' dx dy dx. dy dx' N. dy' dy ' dx dy ', ix ' dy iy ' ' r N. x N xy x. y x N. y y r r xy yx [ ]

23 R 6 N 1 3 D N R 6 D M M 1 N N... [ 3 ]

24 C o m p u t e k a r l [ 4 ]

25 [ 5 ]

26 [ 6 ]

27 P1 PO P P 01 I 100 P0 P 1 P 0 [ 7 ]

28 Price relative( P 01 CurrentYearPrice ) BaseYearPrice P P P 01 P P N P1 relatives P 100 Pr ice. 0 N = P = 1 = P [ 8 ]

29 P0 q0 P P q 100 p 1 q 0 p0 p 0 q 0 p 1 q 0 p 0 q 0 0 q [ 9 ]

30 P0 q1 P P q 100 p 1 q 1 p 0 q 1 p 1 q 1 p 0 q 1 P 01 Pq 1 P q Pq 1 P q [ 30 ]

31 [ 31 ]

32 p1q 0 p0q0 100 P 1 P O q 0 p 0 q 0 p p 1 q 0 p 0 q 0 1 q 0 RW W R W [ 3 ]

33 RW W W [ 33 ] RW

34 0 100 [ 34 ] q q 1 W W

35 [ 35 ]

36 [ 36 ]

37 [ 37 ]

Math 432 HW 2.5 Solutions

Math 432 HW 2.5 Solutions Math 432 HW 2.5 Solutions Assigned: 1-10, 12, 13, and 14. Selected for Grading: 1 (for five points), 6 (also for five), 9, 12 Solutions: 1. (2y 3 + 2y 2 ) dx + (3y 2 x + 2xy) dy = 0. M/ y = 6y 2 + 4y N/

More information

The Greatest Common Factor; Factoring by Grouping

The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

CIE Subject Fees Schedule:

CIE Subject Fees Schedule: Late Entry fees Late Fees - Stage 1 (Subject fee plus) R561.50 4 August 2015 25 August 2015 Late Fees - Stage 2 (Subject fee plus) N/A Late fees Stage 3 (Subject fee plus) R2103.50 26 August 21 September

More information

Multivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk

Multivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk Multivariable Calculus Practice Midterm Solutions Prof. Fedorchuk. ( points) Let f(x, y, z) xz + e y x. a. (4 pts) Compute the gradient f. b. ( pts) Find the directional derivative D,, f(,, ). c. ( pts)

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p iii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=4 New

More information

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

More information

x + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c

x + 5 x 2 + x 2 dx Answer: ln x ln x 1 + c . Evaluate the given integral (a) 3xe x2 dx 3 2 e x2 + c (b) 3 x ln xdx 2x 3/2 ln x 4 3 x3/2 + c (c) x + 5 x 2 + x 2 dx ln x + 2 + 2 ln x + c (d) x sin (πx) dx x π cos (πx) + sin (πx) + c π2 (e) 3x ( +

More information

Polynomials. 4-4 to 4-8

Polynomials. 4-4 to 4-8 Polynomials 4-4 to 4-8 Learning Objectives 4-4 Polynomials Monomials, binomials, and trinomials Degree of a polynomials Evaluating polynomials functions Polynomials Polynomials are sums of these "variables

More information

( ) ( ) 1. Let F = ( 1yz)i + ( 3xz) j + ( 9xy)k. Compute the following: A. div F. F = 1yz x. B. curl F. i j k. = 6xi 8yj+ 2zk F = z 1yz 3xz 9xy

( ) ( ) 1. Let F = ( 1yz)i + ( 3xz) j + ( 9xy)k. Compute the following: A. div F. F = 1yz x. B. curl F. i j k. = 6xi 8yj+ 2zk F = z 1yz 3xz 9xy . Let F = ( yz)i + ( 3xz) j + ( 9xy)k. Compute the following: A. div F F = yz x B. curl F + ( 3xz) y + ( 9xy) = 0 + 0 + 0 = 0 z F = i j k x y z yz 3xz 9xy = 6xi 8yj+ 2zk C. div curl F F = 6x x + ( 8y)

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information

Solutions to Final Practice Problems

Solutions to Final Practice Problems s to Final Practice Problems Math March 5, Change the Cartesian integral into an equivalent polar integral and evaluate: I 5 x 5 5 x ( x + y ) dydx The domain of integration for this integral is D {(x,

More information

7 Quadratic Expressions

7 Quadratic Expressions 7 Quadratic Expressions A quadratic expression (Latin quadratus squared ) is an expression involving a squared term, e.g., x + 1, or a product term, e.g., xy x + 1. (A linear expression such as x + 1 is

More information

ZIET MUMBAI MINIMUM LEVEL OF LEARNING FOR CLASS XII ECONOMICS

ZIET MUMBAI MINIMUM LEVEL OF LEARNING FOR CLASS XII ECONOMICS KENDRIYA VIDYALAYA SANGATHAN ZIET MUMBAI MINIMUM LEVEL OF LEARNING FOR CLASS XII ECONOMICS pg. 1 UNDER THE GUIDENCE OF DEPUTY COMMISSIONER & DIRECTOR ZIET MUMBAI Ms. USHA ASWATH IYER COMPILED & PREPARED

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).

Math 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z). Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field

More information

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

27.3. Introduction. Prerequisites. Learning Outcomes

27.3. Introduction. Prerequisites. Learning Outcomes olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect

More information

1 Lecture 19: Implicit differentiation

1 Lecture 19: Implicit differentiation Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

Preferences and Utility Functions. Underlying the demand function is consumers choice of goods and services that are most preferred.

Preferences and Utility Functions. Underlying the demand function is consumers choice of goods and services that are most preferred. Preferences and Utility Functions Underlying the demand function is consumers choice of goods and services that are most preferred. Early economists thought that utility is a physical property that can

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

GOVERNMENT OF NATIONAL CAPn AL TERRITORY OF DELHI DIRECTORATE OF EDUCATION: SCHOOL BRANCH OLD SECRETARIAT DELHI-UOOS4 CIRCULAR

GOVERNMENT OF NATIONAL CAPn AL TERRITORY OF DELHI DIRECTORATE OF EDUCATION: SCHOOL BRANCH OLD SECRETARIAT DELHI-UOOS4 CIRCULAR GOVERNMENT OF NATIONAL CAPn AL TERRITORY OF DELHI DIRECTORATE OF EDUCATION: SCHOOL BRANCH OLD SECRETARIAT DELHI-UOOS4 No. DE.23(455)/Sch.Br.iNGOM/57 } ISQ'1 Dated:-l-. II). I> CIRCULAR Subjects- Regarding

More information

To give it a definition, an implicit function of x and y is simply any relationship that takes the form:

To give it a definition, an implicit function of x and y is simply any relationship that takes the form: 2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to

More information

Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems. Matthew Staley Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

More information

10 BIVARIATE DISTRIBUTIONS

10 BIVARIATE DISTRIBUTIONS BIVARIATE DISTRIBUTIONS After some discussion of the Normal distribution, consideration is given to handling two continuous random variables. The Normal Distribution The probability density function f(x)

More information

Consumer Theory. The consumer s problem

Consumer Theory. The consumer s problem Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Chapter 5 - Polynomials and Polynomial Functions

Chapter 5 - Polynomials and Polynomial Functions Math 233 - Spring 2009 Chapter 5 - Polynomials and Polynomial Functions 5.1 Addition and Subtraction of Polynomials Definition 1. A polynomial is a finite sum of terms in which all variables have whole

More information

FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c

FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".

More information

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100 TOPPER Sample Paper - I Class : XI MATHEMATICS Questions Time Allowed : 3 Hrs Maximum Marks: 100 1. All questions are compulsory.. The question paper consist of 9 questions divided into three sections

More information

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere

Recitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

CBSE/ACAD/JS&I/C(A&T)/2015 26 th November 2015 Circular No. Acad-78/2015 All Heads of Institutions affiliated to CBSE/recognized State Boards

CBSE/ACAD/JS&I/C(A&T)/2015 26 th November 2015 Circular No. Acad-78/2015 All Heads of Institutions affiliated to CBSE/recognized State Boards E-mail: directoracad.cbse@nic.in Website: www.cbseacademic.in Tel: 011-23212603 CBSE/ACAD/JS&I/C(A&T)/2015 26 th November 2015 Circular No. Acad-78/2015 All Heads of Institutions affiliated to CBSE/recognized

More information

THE COLLEGES OF OXFORD UNIVERSITY MATHEMATICS, JOINT SCHOOLS AND COMPUTER SCIENCE. Sample Solutions for Specimen Test 2

THE COLLEGES OF OXFORD UNIVERSITY MATHEMATICS, JOINT SCHOOLS AND COMPUTER SCIENCE. Sample Solutions for Specimen Test 2 THE COLLEGES OF OXFORD UNIVERSITY MATHEMATICS, JOINT SCHOOLS AND COMPUTER SCIENCE Sample Solutions for Specimen Test. A. The vector from P (, ) to Q (8, ) is PQ =(6, 6). If the point R lies on PQ such

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations 3 rd year JMC group project Summer Term 2004 Supervisor: Prof. Jeff Cash Saeed Amen Paul Bilokon Adam Brinley Codd Minal Fofaria Tejas Shah Agenda Adam: Differential

More information

MATH 52 FINAL EXAM SOLUTIONS (AUTUMN 2003)

MATH 52 FINAL EXAM SOLUTIONS (AUTUMN 2003) MATH 5 FINAL EXAM OLUTION (AUTUMN 3). Evaluate the integral by reversing the order of integration olution. 3 3y e x dxdy = = 3 3y 3 x/3 3 = ex 3 [ e x y e x dxdy. e x dxdy ] y=x/3 y= = e9 dx =. Rewrite

More information

CIE GCE Subject List for Private Candidates Oct-Nov 2013

CIE GCE Subject List for Private Candidates Oct-Nov 2013 CIE GCE Subject List for Private Candidates Oct-Nov 2013 GCE O Level Subject Codes Visit the website www.cie.org.uk for subject syllabus for 2013. S Islamiyat * Not to be taken with 2056, 8053, 9013 Pakistan

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

Drug Hypersensitivity Reactions: Pathomechanism and Clinical Symptoms

Drug Hypersensitivity Reactions: Pathomechanism and Clinical Symptoms D yvy R: P Sy W J P, MD,, *, Jq A, MS, B D, MS, T G, MS, Mk K, PD, D Yy, PD KEYWRDS P G S IE Ty IV Ex M yvy F T y v, w v y y w v y P x y, y (w, y vy S,, v y vy T w y v wy y w, yy q, w D v y A y B : Ty

More information

HAROLD CAMPING i ii iii iv v vi vii viii ix x xi xii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

More information

CBSE/ACAD/JS&I/C(A&T)/2015 28 th September, 2015 Circular No. Acad-64/2015 All Heads of Institutions affiliated to CBSE/recognized State Boards

CBSE/ACAD/JS&I/C(A&T)/2015 28 th September, 2015 Circular No. Acad-64/2015 All Heads of Institutions affiliated to CBSE/recognized State Boards E-mail: directoracad.cbse@nic.in Website: www.cbseacademic.in Tel: 011-23212603 CBSE/ACAD/JS&I/C(A&T)/2015 28 th September, 2015 Circular No. Acad-64/2015 All Heads of Institutions affiliated to CBSE/recognized

More information

Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto

Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ATheoryofTimedAutomata1 Abstract.Weproposetimed(nite)automatatomodelthebehaviorofrealtimesystemsovertime.Ourdenitionprovidesasimple,andyetpowerful,wayto ComputercienceDepartment,tanfordUniversity RajeevAlur2

More information

Unit H Mark scheme

Unit H Mark scheme AQA Qualifications GCSE Mathematics Unit 2 43602H Mark scheme 43602H June 2015 Version 1.0 Final Mark Scheme Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

Cork Institute of Technology Bachelor of Engineering in Civil Engineering - Award. Autumn 2009 Mathematics & Computing old syllabus (Time: 3 Hours)

Cork Institute of Technology Bachelor of Engineering in Civil Engineering - Award. Autumn 2009 Mathematics & Computing old syllabus (Time: 3 Hours) Cork Institute of Technology Bachelor of Engineering in Civil Engineering - Award (NFQ Level 7) Autumn 009 Mathematics & Computing old syllabus (Time: 3 Hours) Any FIVE questions are to be answered. Examiners:

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

MHR Principles of Mathematics 10 Solutions 1

MHR Principles of Mathematics 10 Solutions 1 Chapter 5 Quadratic Expressions Chapter 5 Get Ready Chapter 5 Get Ready Question 1 Page 08 a 3y has one term. It is a monomial. 3 b 5+ 6a has two terms. It is a binomial. c 6 x + x 1 has three terms. It

More information

STAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case

STAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case STAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case Pengyuan (Penelope) Wang June 20, 2011 Joint density function of continuous Random Variable When X and Y are two continuous

More information

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx.

Definition: Let S be a solid with cross-sectional area A(x) perpendicular to the x-axis at each point x [a, b]. The volume of S is V = A(x)dx. Section 7.: Volume Let S be a solid and suppose that the area of the cross-section of S in the plane P x perpendicular to the x-axis passing through x is A(x) for a x b. Consider slicing the solid into

More information

Differential Equations

Differential Equations Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx

More information

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule. Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

More information

MATHEMATICS. QUESTION BANK for. Summative Assessment -I CLASS X CHAPTER WISE COVERAGE IN THE FORM MCQ WORKSHEETS AND PRACTICE QUESTIONSS

MATHEMATICS. QUESTION BANK for. Summative Assessment -I CLASS X CHAPTER WISE COVERAGE IN THE FORM MCQ WORKSHEETS AND PRACTICE QUESTIONSS MATHEMATICS QUESTION BANK for Summative Assessment -I CLASS X 014 15 CHAPTER WISE COVERAGE IN THE FORM MCQ WORKSHEETS AND PRACTICE QUESTIONSS Prepared by M. S. KUMARSWAMY, TGT(MATHS) M. Sc. Gold Medallist

More information

Solutions to Practice Final Exam

Solutions to Practice Final Exam Math V22. Calculus IV, ection, pring 27 olutions to Practice Final Exam Problem Consider the integral x 2 2x dy dx + 2x dy dx x 2 x (a) ketch the region of integration. olution: ee Figure. y (2, ) y =

More information

Grafeen: dé kandidaat voor de nieuwe generatie (HF- )elektronica

Grafeen: dé kandidaat voor de nieuwe generatie (HF- )elektronica Nz w (B) Nz w (B) O w Nz y O 4 3 PF RF 6 4 M y 5 P3F wy 8 xy w 6 A k 6. 8... 4 3. y.4. Fqy PRF (B). (Hz) IF (Hz) IF (Hz). y z. - (... - D SO H y O A y O ) 3 ky RF= 4.3 Hz LO= 4. Hz -q C y PRF= B PRF= B.

More information

Math PreCalc 20 Chapter 4 Review of Factoring. Questions to try. 2. x 2 6xy x x x x 2 y + 8xy

Math PreCalc 20 Chapter 4 Review of Factoring. Questions to try. 2. x 2 6xy x x x x 2 y + 8xy Math PreCalc 20 Chapter 4 Review of Factoring Multiplying (Expanding) Type 1: Monomial x Binomial Monomial x Trinomial Ex: 3(x + 4) = 3x + 12-2(x 2 + 2x 1) = -2x 2 4x + 2 Multiply the following: 1. 5(x

More information

Pre-Calculus III Linear Functions and Quadratic Functions

Pre-Calculus III Linear Functions and Quadratic Functions Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

More information

SULIT /2 3472/2 Matematik Tambahan Kertas 2 2 ½ jam Ogos 2008

SULIT /2 3472/2 Matematik Tambahan Kertas 2 2 ½ jam Ogos 2008 SULIT 1 347/ 347/ Matematik Tambahan Kertas ½ jam Ogos 008 SEKTOR SEKOLAH BERASRAMA PENUH BAHAGIAN PENGURUSAN SEKOLAH BERASRAMA PENUH / KLUSTER KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SIJIL

More information

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms. SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Chapter 1 Vectors, lines, and planes

Chapter 1 Vectors, lines, and planes Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

On closed-form solutions to a class of ordinary differential equations

On closed-form solutions to a class of ordinary differential equations International Journal of Advanced Mathematical Sciences, 2 (1 (2014 57-70 c Science Publishing Corporation www.sciencepubco.com/index.php/ijams doi: 10.14419/ijams.v2i1.1556 Research Paper On closed-form

More information

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series 1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

T e s t e xp re s s i o n B o d y o f i f E xi t F i g u re 1 - F l o w c h art o f th e i f s tate m M u l ti S tate m s i n th e i f B o d y : L ik

T e s t e xp re s s i o n B o d y o f i f E xi t F i g u re 1 - F l o w c h art o f th e i f s tate m M u l ti S tate m s i n th e i f B o d y : L ik MQL4 COURSE By Coders guru w w w. f orex -t sd. c om -6- Loops & Decisions Part 2 ---------------------------- We l c o m e t o t h e s ix t h l e s s o n in m y c o u r s e a b o u t M Q L 4. I h o pe

More information

The Convolution Operation

The Convolution Operation The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations

More information

EXAM. Practice Questions for Exam #2. Math 3350, Spring April 3, 2004 ANSWERS

EXAM. Practice Questions for Exam #2. Math 3350, Spring April 3, 2004 ANSWERS EXAM Practice Questions for Exam #2 Math 3350, Spring 2004 April 3, 2004 ANSWERS i Problem 1. Find the general solution. A. D 3 (D 2)(D 3) 2 y = 0. The characteristic polynomial is λ 3 (λ 2)(λ 3) 2. Thus,

More information

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

AM 221: Advanced Optimization Spring Prof. Yaron Singer Lecture 8 February 24th, 2014

AM 221: Advanced Optimization Spring Prof. Yaron Singer Lecture 8 February 24th, 2014 AM 221: Advanced Optimization Spring 2014 Prof. Yaron Singer Lecture 8 February 24th, 2014 1 Overview Last week we talked about the Simplex algorithm. Today we ll broaden the scope of the objectives we

More information

Chapter 4. Multivariate Distributions

Chapter 4. Multivariate Distributions 1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab

More information

Gamma distribution. Let us take two parameters α > 0 and β > 0. Gamma function Γ(α) is defined by. 1 = x α 1 e x dx = y α 1 e βy dy 0 0

Gamma distribution. Let us take two parameters α > 0 and β > 0. Gamma function Γ(α) is defined by. 1 = x α 1 e x dx = y α 1 e βy dy 0 0 Lecture 6 Gamma distribution, χ -distribution, Student t-distribution, Fisher F -distribution. Gamma distribution. Let us tae two parameters α > and >. Gamma function is defined by If we divide both sides

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

More information

Factoring Special Polynomials

Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

More information

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College

Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:

More information

Auburn University Style Guide & Identification Standards Manual

Auburn University Style Guide & Identification Standards Manual y E k H PM 28 C 9 C MY M y K v B 10 k 0% : 60 64 % % x 11 C M MY Y K v 6 97 1% : % P PM 17 C 2 M MY Y K v 6 88 6% : % P PM 15 8 PM 17 2 B R G ID E & PM ID P E 15 8 T IC IF T IO PM 17 2 D T R D M L 0 0

More information

7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content

7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content 7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Statistics 100A Homework 6 Solutions

Statistics 100A Homework 6 Solutions Chapter 5 Statistics A Homework Solutions Ryan Rosario 3. The time in hours) required to repair a machine is an exponential distributed random variable with paramter λ. What is Let X denote the time in

More information

ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!

ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d! Math 0, Final Exam, Term 3 IANSWER KEY I I Q II MM I VI I V I V3 I V 4 I : a e b c e a b a c d! 3 a d e d c i 4 a a a e a 5 a e d e c! 6 a a d e c 7 a e c d c 8 a d d b b! 9 a c d b e 0 a c a c a : a a

More information

UNIT - I LESSON - 1 The Solution of Numerical Algebraic and Transcendental Equations

UNIT - I LESSON - 1 The Solution of Numerical Algebraic and Transcendental Equations UNIT - I LESSON - 1 The Solution of Numerical Algebraic and Transcendental Equations Contents: 1.0 Aims and Objectives 1.1 Introduction 1.2 Bisection Method 1.2.1 Definition 1.2.2 Computation of real root

More information

dx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy:

dx x 2 1 x 3 x 1 dx x 2 Integration Review 12/12/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy: AP Calculus Mathematician: Integration Review 1/1/13 Current Integration Strategies: NIKE - Just Do It! Recognize & Memorize! Manipulate 1) Strategy: 3 x 1 ) Strategy: 1 x 3 x 1 x 3) Strategy: 3 x 4 4)

More information

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291) Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

7. Evaluation of answer sheets of all the classes will be done at the Vidyalaya level only.

7. Evaluation of answer sheets of all the classes will be done at the Vidyalaya level only. Ref F.No : 200346/S-3/KVS (GR)/Acad/FA-III/2015-16 The Principal, All Kendriya Vidyalaya, (Except Winter KVs) Subject: Time table for the FA-III - reg. Dated:17/10/2015 information and necessary action

More information

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

`Well, then,' the Gryphon went on, `if you don't know what to uglify is, you are a simpleton.'

`Well, then,' the Gryphon went on, `if you don't know what to uglify is, you are a simpleton.' La Back to the basics: Terms and techniques Rev 1/11/016 Reeling and Writhing, of course, to begin with, the Mock Turtle replied; and then the different branches of arithmetic -- Ambition, Distraction,

More information