Chapter 30 Inductance

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 30 Inductance"

Transcription

1 Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken a length of copper wire and wrapping it around a cylinder to form a coil. If a changing current is applied to the coil it induces an emf in adjacent coils (mutual inductance) or itself (self-inductance). A second property of inductors is that it stores energy in its solenoidal magnetic field. Similar to a fully-charged capacitor where the energy is stored in the electric field, an inductor, supplied with a steady current, also stores energy in the form of a magnetic field. 1 Mutual inductance Consider two neighboring coils of wire as shown in the figure. A current flowing in coil 1 produces a magnetic field B and hence a magnetic flux through coil 2. If the current in coil 1 changes, the flux through coil 2 changes as well; and according to Faraday s law, this induces an emf in coil 2. As a result, a change in the current in one circuit can induce a current in a second circuit. Figure 1: The current i 1 in coil 1 gives rise to a magnetic flux through coil 2. 1

2 E 2 = N 2 dφ B2 dt We would like to write an equation that expresses the relationship between the flux in the 2nd coil in terms of the current i 1 in the first coil. N 2 Φ B2 = M 21 i 1 where Φ B2 is the flux for a single turn of coil 2, and M 21 is the mutual inductance of the two coils. Using this equation, we have a working definition for the mutual inductance Unit of Inductance M 21 = N 2 Φ B2 i 1 (Mutual Inductance) (1) 1 H = 1 W b/a = 1 V s/a The emf produced in the 2nd coil E 2 is N 2 dφ B2 /dt, so, we can write the following: E 2 = M 21 di 1 dt (2) 1.1 Calculating Mutual Inductance B 1 = µ o n 1 i 1 = µ o N 1 i 1 l The flux through a cross section of the solenoid equals B 1 A. This also equals the flux Φ B2 through each turn of the outer coil, independent of its cross-section area. M = N 2 Φ B2 i 1 In the example in the book, M = 25 µh. = N 2 B 1 A = N 2 µ o N 1 i 1 A = µ o A N 1 N 2 i 1 i 1 l l 2

3 Figure 2: A long solenoid with cross-sectional area A and N 1 turns is surrounded at its center by a coil with N 2 turns. 2 Self-Inductance and Inductors Figure 3: The current i in the circuit causes a magnetic field B in the coil and hence a flux through the coil. Self-induced emfs can occur in any circuit, since there is always some magnetic flux through the closed loop of a current-carrying circuit. However, the effect is enhanced if the circuit includes a coil with N turns of wire. As a result of the current i, there is an average magnetic flux Φ B through each turn of the coil. Similar to the mutual inductance defined earlier, we can define the self-inductance as: L = NΦ B i (Self-Inductance) (3) 3

4 From Faraday s law for a coil with N turns, the self-induced emf is E = N dφ B /dt, so it follows that: E = L di dt (4) 2.1 Inductors as Circuit Elements According to Faraday s Law E = E d l = dφb /dt E n d l = L di dt Figure 4: A circuit containing an emf source and an inductor. The emf source is variable, so the current i and its rate of change di/dt can be varied. 4

5 Figure 5: The potential difference across a resistor depends on the current, whereas the potential difference across an inductor (b), (c), (d) depends on the rate of change of the current. 5

6 2.2 Calculating Self-Inductance Figure 6: Determining the self-inductance of a closely wound toroidal solenoid. Only a few turns of the winding are shown. Part of the toroid is cut away to show the cross-sectional area A and radius r. 3 Magnetic-Field Energy Figure 7: A resistor is a device in which energy is irrecoverably dissipated. By contrast, energy stored in a current-carrying inductor can be recovered when the current decreases to zero. 3.1 Magnetic Energy Density 4 The R-L Circuit 6

7 Current Growth in an R-L Circuit Figure 8: An R-L circuit. 7

8 Figure 9: Graph of i versus t for growth of current in an R-L circuit with an emf in series. The final current is I = E/R; after one time constant τ, the current is 1 1/e of this value. 8

9 Current Decay in an R-L Circuit Figure 10: Graph of i versus t for decay of current in an R-L circuit. After one time constant τ, the current is 1/e of its initial value. 9

10 5 The L-C Circuit Figure 11: In an oscillating L-C circuit, the charge on the capacitor and the current through the inductor both vary sinusoidally with time. Energy is transferred between magnetic energy in the inductor (U B ) and electrical energy in the capacitor (U E ). As in simple harmonic motion, the total energy E remains constant. 5.1 Electrical Oscillations in an L-C Circuit 5.2 Energy in an L-C Circuit 6 the L-R-C Series Circuit 10

11 Figure 12: Graphs showing the capacitor charge as a function of time in an L-R-C series circuit with initial charge Q. 11

12 Figure 13: An L-R-C series circuit. 12

Physics 1214 Chapter 21: Electromagnetic Induction 02/15

Physics 1214 Chapter 21: Electromagnetic Induction 02/15 Physics 1214 Chapter 21: Electromagnetic Induction 02/15 1 Induction Experiments emf or electromotive force: (from Chapter 19) the influence that moves charge from lower to higher potential. induced current:

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Faraday s Law of Induction

Faraday s Law of Induction Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Fall 12 PHY 122 Homework Solutions #10

Fall 12 PHY 122 Homework Solutions #10 Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the

More information

SCS 139 II.3 Induction and Inductance

SCS 139 II.3 Induction and Inductance SCS 139 II.3 Induction and Inductance Dr. Prapun Suksompong prapun@siit.tu.ac.th L d dt di L dt B 1 Office Hours: Library (Rangsit) Mon 16:20-16:50 BKD 3601-7 Wed 9:20-11:20 Review + New Fact Review Force

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

David J. Starling Penn State Hazleton PHYS 212

David J. Starling Penn State Hazleton PHYS 212 and and The term inductance was coined by Oliver Heaviside in February 1886. David J. Starling Penn State Hazleton PHYS 212 and and Objectives (a) Determine the EMF and electric field induced by a changing

More information

Faraday s Law and Inductance

Faraday s Law and Inductance Historical Overview Faraday s Law and Inductance So far studied electric fields due to stationary charges and magentic fields due to moving charges. Now study electric field due to a changing magnetic

More information

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii.

April 1. Physics 272. Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html. Prof. Philip von Doetinchem philipvd@hawaii. Physics 272 April 1 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 164 Summary Gauss's

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance - Mutual Inductance - Self-Inductance and Inductors - Magnetic-Field Energy - The R- Circuit - The -C Circuit - The -R-C Series Circuit . Mutual Inductance - A changing current in

More information

RUPHYS ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

RUPHYS ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272014 ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Course Home Assignments Roster

More information

INTRODUCTION SELF INDUCTANCE. Introduction. Self inductance. Mutual inductance. Transformer. RLC circuits. AC circuits

INTRODUCTION SELF INDUCTANCE. Introduction. Self inductance. Mutual inductance. Transformer. RLC circuits. AC circuits Chapter 13 INDUCTANCE Introduction Self inductance Mutual inductance Transformer RLC circuits AC circuits Magnetic energy Summary INTRODUCTION Faraday s important contribution was his discovery that achangingmagneticflux

More information

Chapter 27 Magnetic Induction. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Chapter 27 Magnetic Induction. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Chapter 27 Magnetic Induction Motional EMF Consider a conductor in a B-field moving to the right. In which direction will an electron in the bar experience a magnetic force? V e - V The electrons in the

More information

Faraday s Law; Inductance

Faraday s Law; Inductance This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, self-inductance, inductance, RL circuits, and energy in a magnetic field, with some

More information

Tuesday, 9 August 2016

Tuesday, 9 August 2016 Tuesday, 9 August 2016 Conceptual Problem 34.10 a When the switch on the left is closed, which direction does current flow in the meter on the right: 1. Right to left 2. Left to right 3. There is no induced

More information

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored.

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

More information

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

More information

* Self-inductance * Mutual inductance * Transformers. PPT No. 32

* Self-inductance * Mutual inductance * Transformers. PPT No. 32 * Self-inductance * Mutual inductance * Transformers PPT No. 32 Inductance According to Faraday s Electromagnetic Induction law, induction of an electromotive force occurs in a circuit by varying the magnetic

More information

Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

More information

ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) The Electric and magnetic fields are inter-related

ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) The Electric and magnetic fields are inter-related EMF Handout 9: Electromagnetic Induction 1 ELECTROMAGNETIC INDUCTION (Y&F Chapters 30, 31; Ohanian Chapter 32) This handout covers: Motional emf and the electric generator Electromagnetic Induction and

More information

Chapter 20.1 Induced EMF and magnetic flux

Chapter 20.1 Induced EMF and magnetic flux Chapter 20.1 nduced EMF and magnetic flux Electric current gives rise to magnetic fields Can a magnetic field give rise to a current? Michael Faraday 1791-1867 The answer is yes as discovered by Michael

More information

Last time : energy storage elements capacitor.

Last time : energy storage elements capacitor. Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because

More information

Unit 8: Electromagnetic Induction

Unit 8: Electromagnetic Induction Unit 8: Electromagnetic nduction Electromagnetic induction phenomena. Faraday s law and enz s law. Examples of Faraday s and enz s laws. Mutual inductance and self-inductance. Stored energy on an inductor.

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Induction and Inductance

Induction and Inductance Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and

More information

Physics 2102 Lecture 19. Physics 2102

Physics 2102 Lecture 19. Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

More information

Objectives for the standardized exam

Objectives for the standardized exam III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

More information

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

More information

Chapter 34 Faraday s Law & Electromagnetic Induction

Chapter 34 Faraday s Law & Electromagnetic Induction Chapter 34 Faraday s Law & Electromagnetic Induction Faraday s Discovery (~ 1831) Faraday found that a changing magnetic field creates a current in a wire. This is an informal statement of Faraday s law.

More information

Induction. d. is biggest when the motor turns fastest.

Induction. d. is biggest when the motor turns fastest. Induction 1. A uniform 4.5-T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135

More information

Module 22: Inductance and Magnetic Field Energy

Module 22: Inductance and Magnetic Field Energy Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux

More information

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds &

More information

Chapter 21 Faraday s Law of Electromagnetic Induction

Chapter 21 Faraday s Law of Electromagnetic Induction Chapter 21 Faraday s Law of Electromagnetic Induction Magnetic Flux Φ B = ÚB da Φ B : Magnetic Flux B: Magnetic Field A: Area vector of enclosed current (perpendicular to area) SI Units: Weber, Wb = T

More information

Solution Derivations for Capa #10

Solution Derivations for Capa #10 Solution Derivations for Capa #10 1) A 1000-turn loop (radius = 0.038 m) of wire is connected to a (25 Ω) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the

More information

Inductance and Magnetic Energy

Inductance and Magnetic Energy Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 11-5 11. Self-Inductance... 11-5 Example 11. Self-Inductance

More information

Inductors & Inductance. Electronic Components

Inductors & Inductance. Electronic Components Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

More information

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper.

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 10 Faraday s Law of Induction Equipment: Supplies: Function Generator, Oscilloscope. One large and two small (with handles) coils, plastic triangles, T-base

More information

I d s r ˆ. However, this law can be difficult to use. If there. I total enclosed by. carrying wire using Ampere s Law B d s o

I d s r ˆ. However, this law can be difficult to use. If there. I total enclosed by. carrying wire using Ampere s Law B d s o Physics 241 Lab: Solenoids http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. A current carrying wire creates a magnetic field around the wire. This magnetic

More information

! = "d# B. ! = "d. Chapter 31: Faraday s Law! One example of Faraday s Law of Induction. Faraday s Law of Induction. Example. ! " E da = q in.

! = d# B. ! = d. Chapter 31: Faraday s Law! One example of Faraday s Law of Induction. Faraday s Law of Induction. Example. !  E da = q in. Chapter 31: Faraday s Law So far, we e looked at: Electric Fields for stationary charges E = k dq " E da = q in r 2 Magnetic fields of moing charges d = µ o I # o One example of Faraday s Law of Induction

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

PHYS 155: Final Tutorial

PHYS 155: Final Tutorial Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section

More information

Experiment IV: Magnetic Fields and Inductance

Experiment IV: Magnetic Fields and Inductance Experiment IV: Magnetic Fields and Inductance I. References Tipler and Mosca, Physics for Scientists and Engineers, 5th Ed., Chapter 7 Purcell, Electricity and Magnetism, Chapter 6 II. Equipment Digital

More information

Experiment 10 Inductors in AC Circuits

Experiment 10 Inductors in AC Circuits Experiment 1 Inductors in AC Circuits Preparation Prepare for this week's experiment by looking up inductors, self inductance, enz's aw, inductive reactance, and R circuits Principles An inductor is made

More information

Introduction to Faraday s Law of Induction 1 AP Physics C Video Lecture Notes Chapter Thank You, Emily Rencsok, for these notes.

Introduction to Faraday s Law of Induction 1 AP Physics C Video Lecture Notes Chapter Thank You, Emily Rencsok, for these notes. Introduction to Faraday s Law of Induction 1 AP Physics C Flipped Lecture Notes 01 - Introduction to Faraday s Law of Induction.doc 1 of 1 Introduction to Lenz Law - The Direction of Faraday s Law of Induction

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 nductance CHAPTER OUTNE 32.1 elf-nductance 32.2 R Circuits 32.3 Energy in a Magnetic Field 32.4 Mutual nductance 32.5 Oscillations in an C Circuit 32.6 The RC Circuit An airport metal detector

More information

Faraday's Law and Inductance

Faraday's Law and Inductance Page 1 of 8 test2labh_status.txt Use Internet Explorer for this laboratory. Save your work often. NADN ID: guest49 Section Number: guest All Team Members: Your Name: SP212 Lab: Faraday's Law and Inductance

More information

Chapter 9. Experiment 7: Electromagnetic Oscillations. 9.1 Introduction

Chapter 9. Experiment 7: Electromagnetic Oscillations. 9.1 Introduction Chapter 9 Experiment 7: Electromagnetic Oscillations 9.1 Introduction The goal of this lab is to examine electromagnetic oscillations in an alternating current (AC) circuit of the kind shown in Figure

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current

More information

Chapter 11. Inductors. Objectives

Chapter 11. Inductors. Objectives Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

Problem Set 7: SOLUTIONS

Problem Set 7: SOLUTIONS University of Alabama Department of Physics and Astronomy PH 102-2 / LeClair Spring 2008 Problem Set 7: SOLUTIONS 1. 15 points. Very large magnetic fields can be produced using a procedure called flux

More information

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS PHYSICS 212 CHAPTER 20 INDUCED VOLTAGES AND INDUCTANCE WORKOOK ANSWERS STUDENT S FULL NAME (y placing your name above and submitting this for credit you are affirming this to be predominantly your own

More information

Mutual inductance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Mutual inductance. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Mutual inductance This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Physics 1502: Lecture 19 Today s Agenda

Physics 1502: Lecture 19 Today s Agenda Physics 1502: Lecture 19 Today s Agenda Announcements: Midterm 1 aailable Homework 06 next Friday Induction Faraday's Law d 1 Induction Effects ar magnet moes through coil Current induced in coil Change

More information

physics 112N electromagnetic induction

physics 112N electromagnetic induction physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity

More information

1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.

1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

April 8. Physics 272. Spring Prof. Philip von Doetinchem

April 8. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 218 L-C in parallel

More information

PHY2049 Exam #2 Solutions Fall 2012

PHY2049 Exam #2 Solutions Fall 2012 PHY2049 Exam #2 Solutions Fall 2012 1. The diagrams show three circuits consisting of concentric circular arcs (either half or quarter circles of radii r, 2r, and 3r) and radial segments. The circuits

More information

Electrical Circuits (2)

Electrical Circuits (2) Electrical Circuits (2) Lecture 5 Magnetically Coupled Circuits Dr.Eng. Basem ElHalawany Magnetically Coupled Circuits The circuits we have considered so far may be regarded as conductively coupled, because

More information

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster

More information

AS91526: Demonstrate understanding of electrical systems Level 3 Credits 6

AS91526: Demonstrate understanding of electrical systems Level 3 Credits 6 AS956: Demonstrate understanding of electrical systems Level 3 redits 6 This achievement standard involves demonstrating understanding of electrical systems. Achievement riteria Achievement Achievement

More information

Chapter 21 Electromagnetic Induction and Faraday s Law

Chapter 21 Electromagnetic Induction and Faraday s Law Lecture PowerPoint Chapter 21 Physics: Principles with Applications, 6 th edition Giancoli Chapter 21 Electromagnetic Induction and Faraday s Law 2005 Pearson Prentice Hall This work is protected by United

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

IMPEDANCE and NETWORKS. Kirchoff s laws. Charge inside metals. Skin effect. Impedance, Resistance, Capacitance, Inductance

IMPEDANCE and NETWORKS. Kirchoff s laws. Charge inside metals. Skin effect. Impedance, Resistance, Capacitance, Inductance IMPEDANCE and NETWORKS Kirchoff s laws Charge inside metals Skin effect Impedance, Resistance, Capacitance, Inductance Mutual Inductance, Transformers Stray impedance 1 ENGN4545/ENGN6545: Radiofrequency

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

More information

AP Physics C: Electricity and Magnetism: Syllabus 3

AP Physics C: Electricity and Magnetism: Syllabus 3 AP Physics C: Electricity and Magnetism: Syllabus 3 Scoring Components SC1 SC2 SC3 SC SC5 SC6 SC7 The course provides and provides instruction in electrostatics. The course provides and provides instruction

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Electromagnetic Induction. Physics 231 Lecture 9-1

Electromagnetic Induction. Physics 231 Lecture 9-1 Electromagnetic Induction Physics 231 Lecture 9-1 Induced Current Past experiments with magnetism have shown the following When a magnet is moved towards or away from a circuit, there is an induced current

More information

ELET 4143 Electrical Machines and Controls

ELET 4143 Electrical Machines and Controls ELET 4143 Electrical Machines and Controls Electromagnetism Spring 2008 Energy in an Inductor A coils stores in its magnetic field when it carries a current I The energy is given by: W = ½ L I 2 W = Energy

More information

The March/April Morseman Problem

The March/April Morseman Problem The Problem as stated was: The March/April Morseman Problem A toroidal transformer is used in directional coupler versions of an SWR bridge. The primary winding is the single wire running through the toroid,

More information

Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

More information

Physics 2220 Module 09 Homework

Physics 2220 Module 09 Homework Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10-cm-long wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction - Induction Experiments - Faraday s Law - Lenz s Law - Motional Electromotive Force - Induced Electric Fields - Eddy Currents - Displacement Current and Maxwell s Equations

More information

Physics 6C, Summer 2006 Homework 1 Solutions F 4

Physics 6C, Summer 2006 Homework 1 Solutions F 4 Physics 6C, Summer 006 Homework 1 Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter Conceptual Questions 18. Consider the four wires shown

More information

(Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANSxxx.)

(Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANSxxx.) [go to Problems] Walker, Physics, 3 rd Edition Chapter 23 Conceptual Questions (Answers to odd-numbered Conceptual Questions can be found in the back of the book, beginning on page ANSxxx.) 1. Explain

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : , 1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Ch 21: Induction. Electromagnetic Induction. Lenz s Law 6/1/2016

Ch 21: Induction. Electromagnetic Induction. Lenz s Law 6/1/2016 Ch 21: Induction Faraday s Experiment Trying to induce a current using magnetic fields No induced current in Y loop with a DC circuit Saw a current when opening and closing the switch (changing the magnetic

More information

Lesson 3: RLC circuits & resonance

Lesson 3: RLC circuits & resonance P. Piot, PHYS 375 Spring 008 esson 3: RC circuits & resonance nductor, nductance Comparison of nductance and Capacitance nductance in an AC signals R circuits C circuits: the electric pendulum RC series

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

Faraday s Law Challenge Problem Solutions

Faraday s Law Challenge Problem Solutions Faraday s Law Challenge Problem Solutions Problem 1: A coil of wire is above a magnet whose north pole is pointing up. For current, counterclockwise when viewed from above is positive. For flux, upwards

More information

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S Dr. Alain Brizard Electromagnetic Theory I PY 3 Faraday s Law & Maxwell s Equations Griffiths Chapter 7: Sections -3 Electromagnetic Induction The flux rule states that a changing magnetic flux Φ B = S

More information

Lecture 10 Induction and Inductance Ch. 30

Lecture 10 Induction and Inductance Ch. 30 Lecture 10 Induction and Inductance Ch. 30 Cartoon - Faraday Induction Opening Demo - Thrust bar magnet through coil and measure the current Warm-up problem Topics Faraday s Law Lenz s Law Motional Emf

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EE100 Basics of Electrical SAMPLE QUESTION PAPER Maximum Marks 100 Part- A (10 questions) Attempt all the questions 10*4=40 1. We have two identical 10 V electromotive

More information

(b) Draw the direction of for the (b) Draw the the direction of for the

(b) Draw the direction of for the (b) Draw the the direction of for the 2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

More information

A Study of Linear Variable Differential Transformers in MATLAB

A Study of Linear Variable Differential Transformers in MATLAB A Study of Linear Variable Differential Transformers in MATLAB Alicia Alarie Jacob Tutmaher April 25, 2011 Abstract The purpose of this lab was to test Faraday s Law using a Linear Variable Differential

More information

6.1 The Capacitor 6.2 The Inductor 6.3 Series-Parallel Combinations of Capacitance and Inductance 6.4 Mutual Inductance

6.1 The Capacitor 6.2 The Inductor 6.3 Series-Parallel Combinations of Capacitance and Inductance 6.4 Mutual Inductance CAPACITACE, IDUCTACE, AD MUTUA IDUCTACE 6. The Capacitor 6. The Inductor 6.3 Series-Parallel Combinations of Capacitance and Inductance 6. The Capacitor In this chapter, two new and important passive linear

More information

DOING PHYSICS WITH MATLAB ELECTROMAGNETIC INDUCTION FARADAY S LAW MUTUAL & SELF INDUCTANCE

DOING PHYSICS WITH MATLAB ELECTROMAGNETIC INDUCTION FARADAY S LAW MUTUAL & SELF INDUCTANCE DOING PHYSICS WITH MATLAB ELECTROMAGNETIC INDUCTION FARADAY S LAW MUTUAL & SELF INDUCTANCE Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

Supplementary Notes on Transformers

Supplementary Notes on Transformers Supplementary Notes on Transformers A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors the transformer's coils. Figure 1 illustrates

More information

Faraday s and Lenz s Law: Induction

Faraday s and Lenz s Law: Induction Lab #18 Induction page 1 Faraday s and Lenz s Law: Induction Reading: Giambatista, Richardson, and Richardson Chapter 20 (20.1-20.9). Summary: In order for power stations to provide electrical current

More information

Physics 9 Fall 2009 Homework 8 - Solutions

Physics 9 Fall 2009 Homework 8 - Solutions 1. Chapter 34 - Exercise 9. Physics 9 Fall 2009 Homework 8 - s The current in the solenoid in the figure is increasing. The solenoid is surrounded by a conducting loop. Is there a current in the loop?

More information

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

COURSE OUTLINE. School of Arts & Science PHYSICS DEPARTMENT PHYS /02 Electricity and Magnetism 2013Q1. Instructor Information

COURSE OUTLINE. School of Arts & Science PHYSICS DEPARTMENT PHYS /02 Electricity and Magnetism 2013Q1. Instructor Information 1 School of Arts & Science PHYSICS DEPARTMENT PHYS 210-01/02 2013Q1 COURSE OUTLINE Instructor Information (a) Instructor: Dr. Julie Alexander (b) Office Hours: 1:30-2:30 M-F (c) Location: Tech 220 (d)

More information

Chapter 27 Electromagnetic Induction

Chapter 27 Electromagnetic Induction For us, who took in Faraday s ideas so to speak with our mother s milk, it is hard to appreciate their greatness and audacity. Albert Einstein 27.1 ntroduction Since a current in a wire produces a magnetic

More information