Differential Scanning Calorimetry theoretical background

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Differential Scanning Calorimetry theoretical background"

Transcription

1 Differential Scanning Calorimetry theoretical background Galina Kubyshkina Elektromaterial Lendava d.d., Slovenia

2 Crystalline materials Typical features presence of a unit (cell), which is periodically repeated in space regular structure (lattice) have short and long range ordering anisotropy of properties have certain melting and crystallization temperature Figure 1. Examples of different crystal lattices 2

3 Amorphous materials Typical features do not have lattice irregular structure have short range ordering only isotropy of properties do not have certain melting (crystallization) temperature exhibit glass transition Figure 2. Polymorphism: crystalline and amorphous structure of SiO2 3

4 Materials and their transitions Phase transitions A phase transition is the transformation of a thermodynamic system from one phase to another phase transitions first order second order 4

5 Materials and their transitions Melting and crystallization Melting temperature - the temperature under which solid crystalline body has transition to liquid state 5

6 Materials and their transitions Glass transition amorphous solids glassy state rubber state Tg 6

7 Materials and their transitions Rate effect: physical aging 7 cooling cooling

8 Aging Physical and chemical AGING chemical physical leads to modification of polymer chain (chemical reaction) chemistry remains unchanged, but the local packing of the chains alters (dimensional changes) 8

9 Materials and their transitions Glass transition, melting, crystallization crystal region amorphous region amorphous material glass transition (Tg) crystalline material melting (Tm), crystallization (Tc) Figure 3. Polymer structure Semicrystalline material Tg, Tm, Tc 9

10 Materials and their transitions The task 10

11 Standards used ISO and ASTM Standards International standard ISO 11357: Plastics Differential scanning calorimetry, prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 5, Physical-chemical properties (7 parts) ASTM D ASTM E ASTM D ASTM D ASTM E ASTM E ASTM D ASTM E ASTM E ASTM E ASTM E ASTM D ASTM E ASTM E ASTM E ASTM E ASTM E

12 Thermal Analysis - definition * International Confederation for Thermal Analysis and Calorimetry(ICTAC) Thermal analysis* a group of techniques in which a property of the sample is monitored against time or temperature while the temperature of the sample, in a specified atmosphere, is programmed. 12

13 dilatometry temperature temperature difference heat mass magnetic properties the heating/cooling curves analysis DTA calorimetry DSC TG TG analysis thermomagneti c analysis pressure optical properties electrical properties acoustic properties thermomanometri c analysis thermooptical analysis thermoelectrical analysis thermoacousti c analysis 13 deformation mechanical properties thermomechanical analysis dynamic mechanical analysis thermoluminescence analysis thermophotometric analysis thermospectrometric analysis thermorefractometric analysis thermomicrometric analysis Thermally simulated current analysis Alternating current thermoelectrical analysis Dielectric thermal analysis thermoacoustic analysis Thermally simulated sound analysis static force TMA dynamic force TMA modulated force TMA DMA Classification of Thermal Analysis methods By a property under studying

14 DSC theoretical background Exothermic and endothermic processes According to the classification, calorimetry is a technique for determining the quantity of heat that is either absorbed or released by a substance undergoing a physical or a chemical change. Such a change alters the internal energy of the substance. At constant pressure, the internal energy is known as enthalpy, H. 14

15 DSC theoretical background Enthalpy change between two states H = Cp dt hard to measure. measure Q instead of cp H - the change of enthalpy between two states Cp - specific heat capacity the quantity of energy needed to change the temperature of 1g of material by 1 C at constant pressure T. - temperature Q - heat flux - the quantity of heat transferred per unit time and mass υ - heating rate. The formula clearly shows the relationship between the most important influential factors, namely, the heating rate and mass 15

16 DSC theoretical background DSC measuring principle The investigated specimen and the reference specimen are heated (cooled) individually Zero equilibrium principle is realized: should be permanently provided T=0 The heaters automatically adapt to the temperature changes between the investigated specimen and the reference specimen by supplying additional power The difference between the power applied to the investigated specimen and into the reference specimen is measured as a function of temperature and/or time Figure 4.Scheme of a power-compensation DSC The difference in thermal power P is the change in heat flux Q relative to the reference specimen thermal power P R 16

17 Sample crucibles (vessels) Factors affecting the choice of a crucible sample-crucible match sample sample material use conditions used method (DSC, DTA, TGA ) temperature range Requirements for materials: crucible material crucible volume crucibles atmosphere other conditions (heating rate, pressure) aluminum gold platinum steel copper glass sapphire alumina Should be inert to the sample in the temperature range used Should not exhibit any physical transitions in the temperature range used The melting point should be sufficiently high 17

18 DSC calibration Standard reference material Standard reference material a material for which one or more of the thermal properties are sufficiently homogeneous and well established to be used for the calibration of DSC apparatus, for the assessment of a measurement method or for assigning values of materials. The choice depends on the temperature range we work 18

19 DSC measurement Reference specimen Reference specimen a known specimen which is usually thermally inactive over the temperature and time range of interest Generally an empty pan identical to the one with sample is used Figure 5.Scheme of a power-compensation DSC 19

20 Result of DSC measurement DSC curve melting peak glass transition region 1-st scan heating 2-nd scan heating cooling crystallization peak Figure 6. DSC curve as a function of time (left) and temperature (right) 20

21 DSC applications Characteristic temperatures of transitions determination * according to ISO h h/2 Figure 7. DSC curves in the region of a phase transition and the corresponding characteristic temperatures The temperatures Tmg, Tpm and Tpc are taken as glass transition temperature, melting temperature and temperature of crystallization respectively. 21

22 DSC applications Enthalpy of transitions determination * according to ISO The area of a DSC peak can be used to estimate the enthalpy of transition, H. Figure 8. Enthalpy of transition estimation 22

23 DSC applications Enthalpy of transitions determination: problem Endo. Considered to have zero error Main problem: extrapolation of the baseline in the peak region To determine the baseline generally a straight line is used. However, such approach too formal and has lack of theory. (!!!) The influence of changes in the sample's heat capacity or heat transfer characteristics is not taken into consideration. 23

24 Factors affecting on the result of DSC measurement sample calibration sample pan experiment conditions sample mass baseline calibration pan material temperature range mechanical history standard reference material pan geometry heating/cooling rate thermal history temperature calibration pan volume start/end temperature contact area enthalpy calibration pan cover holding time behavior during the experiment sample geometry reference material environmental conditions pan deformation during packing and the experiment of heating scan results interpretation sample shape atmosphere pressure purge gas baseline determination impurities water uptake temperature humidity type of purge gas flow extrapolation of temperature characteristics factors material input DSC measurement output vary 24

25 DSC advantages wide range of temperatures programmed heating/cooling rates sensitivity any material may be tested any form of material may be tested piece fiber powder film liquid etc small amount of material is needed does not take much time clearness of results 25

26 DSC disadvantages can not really control the rate of experiment (can check with thermocouple) dependent on too many parameters very sensitive to any changes the result depends a lot from the operator the procedure of standard parameters evaluation is not described precise and has lack of thermodynamic background 26

27 DSC use for structure analysis Indirect method of structure modification observation Figure 9. Morphology of Monomodal and bimodal PA6 Monomodal PA6 Bimodal PA6 Figure 10. Corresponding molecular mass distribution Figure 11. Melt-crystallization exotherms and subsequent melting endotherms for monomodal and bimodal PA6 materials prepared by the same technology 27

28 DSC use in quality control Thermal characteristics measurement characteristic temperatures of transitions enthalpy of transition measurement specific heat capacity measurement Identification of material Crystallinity Purity control Any chemical / physical transition revealing Stability control 28

29 DSC use in quality control Thermal characteristics of raw material control polymer Thermal characteristics measurement (to fit the requirements of technology) Identification of polymer Useful for recycled polymers additives Temperature characteristics measurement prepared raw materials Thermal characteristics measurement (to fit the requirements of technology) Identification of polymer Useful for recycled polymers 29

30 DSC use in quality control Crystallinity estimation The properties of polymers are critically affected by their crystallinity: the more crystalline the more rigid, strong, brittle it is. Determined as: measured from reference literature May be useful for polymer identification Heat flow Endo. Tm = 167 C Hm = 173J/g Practical example: Tm = 167 C PP H 173 W = 100 = 100 = 84% H 207 m 0 m too high Temperature More likely it is POM 30

31 DSC use in quality control Purity estimation The melting of a pure material takes place over a narrow range. The result is sharp melting peak on DSC curve at a temperature characteristic of this material. Impurities cause gradient of temperature in the sample. As a result the melting peak broadens and melting temperature shifts. Figure 12. DSC curves of a substance at three purity levels. 31

32 Degradation of polymer Characteristic temperatures of transitions determination Polymers are very sensitive to degradation reactions occurring both during the processing and during use. time, years Dominating degradation processes: oxydation thermal oxidation photo-oxidation Result: color change properties change To prevent degradation process stabilizers are added. 32

33 DSC use in quality control Oxidation stability estimation Heat flow Endo. Isothermal measurement Tm oxidation induction time N2 / O2 switch Time Figure 13. OIT measurement Information about the stability of materials can be obtained from the analysis of decomposition reactions. One widely used standard test method is the measurement of the oxidation induction time, OIT. The differences in stability toward oxidation between materials can be clearly seen. These measurements also allow thermally, mechanically or chemically stressed material to be distinguished from fresh material. 33

34

Thermal Analysis TGA / DTA. Linda Fröberg

Thermal Analysis TGA / DTA. Linda Fröberg Thermal Analysis TGA / DTA Linda Fröberg Outline Definitions What is thermal analysis? Instrumentation & origin of the TGA-DTA signal. TGA DTA Basics and applications Phase diagrams & Thermal analysis

More information

Differential Scanning Calorimetry DSC

Differential Scanning Calorimetry DSC Analyzing & Testing Differential Scanning Calorimetry DSC Technique, Instrument, Applications DSC 3500 Sirius DSC 3500 Sirius Principle of Operation Differential Scanning Calorimetry Differential Scanning

More information

DSC Differential Scanning Calorimeter

DSC Differential Scanning Calorimeter DSC Differential Scanning Calorimeter Introduction The Differential Scanning Calorimetry (DSC) is the most popular thermal analysis technique to measure endothermic and exothermic transitions as a function

More information

Dielectric Analysis Permittivity and dielectric loss 100. Dynamic Mechanical Analysis Mechanical strength and energy loss 200

Dielectric Analysis Permittivity and dielectric loss 100. Dynamic Mechanical Analysis Mechanical strength and energy loss 200 Relative Signal Technique Property Measured Change at Tg Differential Scanning Calorimetry Heat flow (heat capacity) 0.2 Thermomechanical Analysis Expansion coefficient or softening 3 Dielectric Analysis

More information

TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here. Operating Instructions

TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here. Operating Instructions TA INSTRUMENTS DIFFERENTIAL SCANNING CALORIMETER (DSC) Insert Nickname Here Operating Instructions Table of Contents 1 INTRODUCTION Safety 2 Sample Preparation 3 2 BACKGROUND Background Information 4 Resources

More information

Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC)

Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC) Thermogravimetric Analysis (TGA) & Differential Scanning Calorimetry (DSC) Mark McKinnon Lab Test Methods Day 2014 6/25/2014 Thermogravimetric Analysis (TGA) Test method capable of measuring the mass evolution

More information

Differential Scanning Calorimetry of Polystyrene

Differential Scanning Calorimetry of Polystyrene CHEM 331L Physical Chemistry I Laboratory Revision 2.0 Differential Scanning Calorimetry of Polystyrene In this laboratory exercise we will measure the glass transition temperature of Polystyrene. The

More information

Measurement of Tg by DSC

Measurement of Tg by DSC application note Measurement of Tg by DSC W.J. Sichina What is Tg? Tg is the accepted abbreviation for the glass transition temperature. All amorphous (non-crystalline or semi-crystalline) materials will

More information

DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler. A Beginner's Guide

DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler. A Beginner's Guide FREQUENTLY ASKED QUESTIONS Differential Scanning Calorimetry (DSC) DSC 4000 DSC 8000 DSC 8500 with Autosampler DSC 6000 with Autosampler PerkinElmer's DSC Family A Beginner's Guide This booklet provides

More information

Thermal Analysis. Application Handbook. Thermal Analysis of Polymers Selected Applications

Thermal Analysis. Application Handbook. Thermal Analysis of Polymers Selected Applications Thermal Analysis Application Handbook Thermal Analysis of Polymers Selected Applications Selected Applications Thermal Analysis Thermal Analysis of Polymers This application handbook presents selected

More information

4 Thermomechanical Analysis (TMA)

4 Thermomechanical Analysis (TMA) 172 4 Thermomechanical Analysis 4 Thermomechanical Analysis (TMA) 4.1 Principles of TMA 4.1.1 Introduction A dilatometer is used to determine the linear thermal expansion of a solid as a function of temperature.

More information

Characterization of Electronic Materials Using Thermal Analysis

Characterization of Electronic Materials Using Thermal Analysis application Note Thermal Analysis Characterization of Electronic Materials Using Thermal Analysis Thermal analysis comprises a series of powerful techniques for the characterization of the thermal, physical,

More information

DSC823 e Module. Differential scanning calorimetry for all requirements

DSC823 e Module. Differential scanning calorimetry for all requirements DSC823 e Module Differential scanning calorimetry for all requirements METTLER TOLEDO DSC823 e Measuring module Unmatched DSC Sensitivity with the MultiSTAR DSC Sensors Differential scanning calorimetry

More information

Investigation of Polymers with Differential Scanning Calorimetry

Investigation of Polymers with Differential Scanning Calorimetry HUMBOLDT UNIVERSITÄT ZU BERLIN MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Investigation of Polymers with Differential Scanning Calorimetry Contents 1 Introduction 1 2 Thermal Properties

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DSC 1 STAR e System Innovative Technology Versatile Modularity Swiss Quality Differential Scanning Calorimetry for all Requirements DSC Excellence Unmatched DSC Performance

More information

Crucibles Overview DSC and TGA /SDTA. Crucibles for Thermal Analysis

Crucibles Overview DSC and TGA /SDTA. Crucibles for Thermal Analysis Crucibles Overview DSC and TGA /SDTA Crucibles for Thermal Analysis METTLER TOLEDO crucibles Crucibles for thermal analysis General comments Crucibles serve as containers for samples during thermoanalytical

More information

Thermal Analysis Differential scanning calorimetry for all requirements.

Thermal Analysis Differential scanning calorimetry for all requirements. Thermal Analysis Differential scanning calorimetry for all requirements. DSC822 e Module METTLER TOLEDO DSC822 e Measuring module Outstanding performance, simple and easy to operate. Differential scanning

More information

Thermal Analysis Excellence

Thermal Analysis Excellence Thermal Analysis Excellence DSC 3 STAR e System Innovative Technology Versatile Modularity Swiss Quality Differential Scanning Calorimetry for Routine Analysis DSC Excellence Unmatched DSC Performance

More information

TA Instruments User Training

TA Instruments User Training TA Instruments User Training DSC 原 理 與 應 用 2012 年 9 月 7 日 國 立 台 灣 大 學 化 學 系 潘 貫 講 堂 (B 棟 積 學 館 2 樓 演 講 廳 ) 基 礎 應 用 許 炎 山 TA Instruments, Waters LLC 美 商 沃 特 斯 國 際 股 份 有 限 公 司 台 灣 分 公 司 TA Taipei office:

More information

Glass-Rubber Transition. A Second order Transition Important in Polymeric Systems

Glass-Rubber Transition. A Second order Transition Important in Polymeric Systems Glass-Rubber Transition A Second order Transition Important in Polymeric Systems Change in Specific Volume 11/14/2010 2 Effect of structure, side chain effect 11/14/2010 3 Effect of structure, flexible

More information

Differential Scanning Calorimetry; First and Second Order Transitions in Polymers

Differential Scanning Calorimetry; First and Second Order Transitions in Polymers Differential Scanning Calorimetry; First and Second Order Transitions in Polymers Purpose: Determine the enthalpy of melting (fusion) of polyethylene and the heat capacity, glass transition temperature,

More information

Purity Determinations By Differential Scanning Calorimetry 1

Purity Determinations By Differential Scanning Calorimetry 1 Purity Determinations By Differential Scanning Calorimetry 1 Purpose: Determine the purity of a compound using freezing point depression measurements with a differential scanning calorimeter. Prelab: The

More information

Characterization of Polyketone Copolymer by High Speed DSC

Characterization of Polyketone Copolymer by High Speed DSC application Note Thermal Analysis Authors Wim M. Groenewoud Eerste Hervendreef 32 5232 JK S Hertogenbosh The Netherlands Nik Boer PerkinElmer, Groningen The Netherlands Phil Robinson Thermal Analysis Consultant

More information

Phase Transitions and Differential Scanning Calorimetry

Phase Transitions and Differential Scanning Calorimetry Phase Transitions and Differential Scanning Calorimetry Overview Differential scanning calorimetry (DSC) is an inexpensive and rapid method to measure heat capacities of condensed phases. From these measuremenmst,

More information

2. Thermal analysis of polymer films 2.1 Introduction

2. Thermal analysis of polymer films 2.1 Introduction 2. 2.1 Introduction DSC and TMA are widely used to determine the glass transition temperature T g of free films [48,64-67]. The glass transition temperature is defined as the transformation of a substance

More information

Thermal Analysis Option

Thermal Analysis Option Thermal Analysis Option The TGA-Sorption System is available in two versions. Each consists of a thermoanalyzer, a humidity generator, and an interface. In the simpler version, the humidified gas produced

More information

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA Characterization of Two Different Clay Materials by Thermogravimetry (TG), Differential Scanning Calorimetry (DSC), Dilatometry (DIL) and Mass Spectrometry (MS) - 12215 Ekkehard Post* and Jack B. Henderson**

More information

6.2 Determination of Heats of Reaction

6.2 Determination of Heats of Reaction 162 6 Applications of Differential Scanning Calorimetry 6.2 Determination of Heats of Reaction The aim is to determine a thermodynamically well defined (temperature dependent) reaction enthalpy. If a subsequent

More information

Effects of Tg and CTE on Semiconductor Encapsulants

Effects of Tg and CTE on Semiconductor Encapsulants Effects of Tg and CTE on Semiconductor Encapsulants Dr. Mark M. Konarski Loctite Corporation www.loctite.com Abstract As the role of direct-chip-attachment increases in the electronics industry, the reliability

More information

102 Adopted:

102 Adopted: 102 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Melting Point / Melting Range INTRODUCTION 1. This guideline is a revised version of the original

More information

Differential Scanning Calorimetry

Differential Scanning Calorimetry Differential Scanning Calorimetry Cooking with Chemicals Clare Rawlinson School of Pharmacy University of Bradford Outline Brief history of thermal analysis Theory of thermal analysis techniques Thermal

More information

SDT 2960 Simultaneous DSC-TGA including DTA capabilities

SDT 2960 Simultaneous DSC-TGA including DTA capabilities SDT 96 including DTA capabilities : The Technique measures both the heat flows (DSC) and weight changes (TGA) associated with transitions in a material as a function of temperature and time in a controlled

More information

Determination of the heat storage capacity of PCM and PCM objects as a function of temperature

Determination of the heat storage capacity of PCM and PCM objects as a function of temperature Determination of the heat storage capacity of PCM and PCM objects as a function of temperature E. Günther, S. Hiebler, H. Mehling ZAE Bayern, Walther-Meißner-Str. 6, 85748 Garching, Germany Outline Introduction

More information

High Precision Heat Capacity Measurements of Metals by Modulated DSC

High Precision Heat Capacity Measurements of Metals by Modulated DSC High Precision Heat Capacity Measurements of Metals by Modulated DSC Carlton G. Slough, Ph.D. and Nathan D. Hesse, Ph.D. TA Instruments, 109 Lukens Drive, New Castle DE 19720, USA ABSTRACT Accurate measurement

More information

Production of compounds in high and low density polyethylene for extrusion and blowmoulding

Production of compounds in high and low density polyethylene for extrusion and blowmoulding 09.2013 Production of compounds in high and low density polyethylene for extrusion and blowmoulding Our company Pebo belongs to System Group. System Group was founded in 1979 and after 30 years of activity,

More information

A.l. MELTING/FREEZING TEMPERATURE

A.l. MELTING/FREEZING TEMPERATURE A.l. MELTING/FREEZING TEMPERATURE may exist between this version and the one agreed and published in the paper edition of the Official In case of doubt the reader is advised to consult the Official 1.

More information

Material Testing Services

Material Testing Services Material Testing Services Hawk offers state-of-the-art equipment for your analysis needs. Specific instrumental analysis capabilities and potential applications are as follows: Material Identification:

More information

XFA 600 Thermal Diffusivity Thermal Conductivity

XFA 600 Thermal Diffusivity Thermal Conductivity XFA 600 Thermal Diffusivity Thermal Conductivity Thermal Diffusivity, Thermal Conductivity Information of the thermo physical properties of materials and heat transfer optimization of final products is

More information

Thermal Analysis Applications in the Semiconductor Packaging Industry

Thermal Analysis Applications in the Semiconductor Packaging Industry application Note Thermal Analysis Authors Tiffany Kang Taiwan Boon-Chun Tan Malaysia Thermal Analysis Applications in the Semiconductor Packaging Industry PerkinElmer can provide a complete solution of

More information

Thermal diffusivity and conductivity - an introduction to theory and practice

Thermal diffusivity and conductivity - an introduction to theory and practice Thermal diffusivity and conductivity - an introduction to theory and practice Utrecht, 02 October 2014 Dr. Hans-W. Marx Linseis Messgeräte GmbH Vielitzer Str. 43 D-95100 Selb / GERMANY www.linseis.com

More information

Low Temperature Properties of Polymers

Low Temperature Properties of Polymers TECHNICAL WHITEPAPER Low Temperature Properties of Polymers Introduction Most plastics at room temperature show their familiar properties of flexibility (a low Young s modulus) and high resistance to cracking

More information

Synthesis of Large Amount of Pure Negative-Thermal-Expansion Material, ZrW 2 O 8

Synthesis of Large Amount of Pure Negative-Thermal-Expansion Material, ZrW 2 O 8 No.36 (2001) pp.121-126 Synthesis of Large Amount of Pure Negative-Thermal-Expansion Material, ZrW 2 O 8 Takuya HASHIMOTO 1, Tomohiro WAKI 1 and Yuko MORITO 2 (Received September 30, 2000) Abstract The

More information

DILATOMETER L 76 L 75 Horizontal L 75 Vertical

DILATOMETER L 76 L 75 Horizontal L 75 Vertical DILATOMETER L 76 L 75 Horizontal L 75 Vertical General Products Dilatometry is a technique which measures the dimensional change of a substance as a function of temperature while the substance is subjected

More information

1/2000. Information for users of METTLER TOLEDO thermal analysis systems. Contents. TA TIP Interpreting DSC curves; Part 1: Dynamic measurements

1/2000. Information for users of METTLER TOLEDO thermal analysis systems. Contents. TA TIP Interpreting DSC curves; Part 1: Dynamic measurements 1/2000 Information for users of METTLER TOLEDO thermal analysis systems Dear Customer, The year 2000 should prove to be extremely interesting for METTLER TOLEDO thermal analysis. We plan to expand the

More information

HFM Heat Flow Meter Thermal Conductivity Analyzer

HFM Heat Flow Meter Thermal Conductivity Analyzer HFM Heat Flow Meter Thermal Conductivity Analyzer Introduction An insulating material is a material with low thermal conductivity, which in the construction industry, equipment manufacturing, or the production

More information

POM PA 12 PA 6 PA 66 PBT. Melting peaks of various semicrystalline thermoplastics

POM PA 12 PA 6 PA 66 PBT. Melting peaks of various semicrystalline thermoplastics 1.2 Procedure 63 1.2.3 Real-Life Examples 1.2.3.1 Identification of Plastics Polymers have a characteristic molecular structure and morphology. DSC often enables unknown polymers to be identified from

More information

THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY

THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY THERMAL DIFFUSIVITY THERMAL CONDUCTIVITY Thermal Diffusivity, Thermal Conductivity Information of the thermo physical properties of materials and heat transfer optimization of final products is becoming

More information

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager

CHARACTERIZATION OF POLYMERS BY TMA. W.J. Sichina, National Marketing Manager PERKIN ELMER Polymers technical note CHARACTERIZATION OF POLYMERS BY W.J. Sichina, National Marketing Manager Thermomechanical analysis () is one of the important characterization techniques in the field

More information

DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE. E. Günther, S. Hiebler, H. Mehling

DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE. E. Günther, S. Hiebler, H. Mehling DETERMINATION OF THE HEAT STORAGE CAPACITY OF PCM AND PCM-OBJECTS AS A FUNCTION OF TEMPERATURE E. Günther, S. Hiebler, H. Mehling Bavarian Center for Applied Energy Research (ZAE Bayern) Walther-Meißner-Str.

More information

FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC

FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC FTIR and DS of polymer films used for packaging: LLDPE, PP and PVD John Petrovich SHAPE American High School Abstract: Polymers are compounds used in various materials. There are a plethora of methods

More information

A8 Thermal properties of materials

A8 Thermal properties of materials A8 Thermal properties of materials Thermal properties the melting temperature, T m, and the glass temperature (temperatura de transição vítrea), T g, relate directly to the strength of the bonds in the

More information

Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program

Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program THERMAL TRENDS 2 Table of content L75/SDC simultaneous-dilatometer/calorimeter L75/SDD simultaneous Dilatometer/DTA L81/RITA high speed Thermo Balance Quattro Dilatometer L75/1250/B/S Macro Dilatometer

More information

Comparison between Blanket Aerogel and Mineral Wool Panels

Comparison between Blanket Aerogel and Mineral Wool Panels A case study of performance degradation in insulating panels: Comparison between Blanket Aerogel and Mineral Wool Panels Francia Elena Prof. Siligardi Cristina Corso di Laurea Magistrale Ingegneria dei

More information

Expansion and shrinkage of fibers

Expansion and shrinkage of fibers Expansion and shrinkage of fibers Introduction Fibers are produced worldwide in enormous quantities. More than 20 million tons of synthetic fibers and 20 million tons of natural fibers are manufactured

More information

Thermal Analysis of Composites Using DSC

Thermal Analysis of Composites Using DSC Thermal Analysis of Composites Using DSC by Suchitra Mutlur Differential scanning calorimetry (DSC) is a technique that measures the difference in the heat flow to a sample and to a reference sample as

More information

TIE-31: Mechanical and thermal properties of optical glass

TIE-31: Mechanical and thermal properties of optical glass PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

FULL PAPER Standardization of PCM Characterization via DSC

FULL PAPER Standardization of PCM Characterization via DSC FULL PAPER Standardization of PCM Characterization via DSC Stefan Gschwander 1, Thomas Haussmann 1, Georg Hagelstein 1, Aran Sole 2, Luisa F. Cabeza 2 Gonzalo Diarce 3, Wolfgang Hohenauer 4, Daniel Lager

More information

THE PROPERTIES AND STRUCTURE OF MATTER

THE PROPERTIES AND STRUCTURE OF MATTER THE PROPERTIES AND STRUCTURE OF MATTER COURSE CONTENT 1. Define matter and state of matter 2. Properties of solids, liquids and gases 3. Changes in matter Physical and chemical changes Phase changes of

More information

Characterization of Polymers Using TGA

Characterization of Polymers Using TGA application note Characterization of Polymers Using TGA W.J. Sichina, Marketing Manager Introduction Thermogravimetric analysis (TGA) is one of the members of the family of thermal analysis techniques

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Exothermic verses Endothermic Grade Level and Course: 8 th Grade Physical Science & 9-12 High School Chemistry Materials: 100 ml beakers or plastic cups.1 M CH3COOH

More information

Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC

Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC application Note Thermal Analysis Better DSC Isothermal Cure Kinetics Studies Using Power Compensation DSC Introduction One important aspect of a thermosetting resin, such as an epoxy, is the cure kinetics

More information

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes Naue GmbH&Co.KG Quality Control and Quality Assurance Manual For Geomembranes July 2004 V.O TABLE OF CONTENTS 1. Introduction 2. Quality Assurance and Control 2.1 General 2.2 Quality management acc. to

More information

According to the International Vocabulary of Basic and General Terms in Metrology (ISO VIM, 2 nd ed, 1993),

According to the International Vocabulary of Basic and General Terms in Metrology (ISO VIM, 2 nd ed, 1993), Calibration methods Why calibrate a thermometer? Directives or standards such as ISO 9000 or ISO 17025 require organisations to provide accurate temperature measurements traceable to national or international

More information

TGA 4000 Thermogravimetric Analyzer. Thermal Analysis. Thermal analysis solutions and beyond. Fast, accurate, precise.

TGA 4000 Thermogravimetric Analyzer. Thermal Analysis. Thermal analysis solutions and beyond. Fast, accurate, precise. P r o d u c t N o t e Thermal Analysis Key Features Compact footprint with optional autosampler High performance balance and furnace for maximum accuracy and precision Top loading balance for easy sample

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Special Feature: Pharmaceutical Analysis (3) Evaluation of polymorphic forms by powder X-ray diffraction and thermal analysis methods

Special Feature: Pharmaceutical Analysis (3) Evaluation of polymorphic forms by powder X-ray diffraction and thermal analysis methods Technical articles Special Feature: Pharmaceutical Analysis (3) Evaluation of polymorphic forms by powder X-ray diffraction and thermal analysis methods Yukiko Namatame* and Hiroaki Sato** 1. Introduction

More information

The referenced Texas Essential Knowledge and Skills (TEKS) are from TEA Chemistry and TEA Integrated Physics and Chemistry.

The referenced Texas Essential Knowledge and Skills (TEKS) are from TEA Chemistry and TEA Integrated Physics and Chemistry. Texas University Interscholastic League Contest Event: Science (Chemistry) The contest challenges students to read widely in chemistry, to understand the significance of experiments rather than to recall

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Thermal cover:layout 1 1/18/11 3:56 PM Page 2 TA Instruments

Thermal cover:layout 1 1/18/11 3:56 PM Page 2 TA Instruments TA Instruments Thermomechanical Analysis Sensitive Measurement, Unmatched Versatility TMA Q400EM/Q400 SPECIFICATIONS 98 The Q400EM is the industry s leading research-grade thermomechanical analyzer with

More information

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy. Chapter 5.2 Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

More information

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics

System. System, Boundary and surroundings: Nature of heat and work: Sign convention of heat: Unit-7 Thermodynamics Unit-7 Thermodynamics Introduction: The term Thermo means heat and dynamics means flow or movement.. So thermodynamics is concerned with the flow of heat. The different forms of the energy are interconvertible

More information

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry

The Relationships Between. Internal Energy, Heat, Enthalpy, and Calorimetry The Relationships Between Internal Energy, Heat, Enthalpy, and Calorimetry Recap of Last Class Last class, we began our discussion about energy changes that accompany chemical reactions Chapter 5 discusses:

More information

EXPERIMENT 1 (Organic Chemistry I)

EXPERIMENT 1 (Organic Chemistry I) EXPERIMENT 1 (Organic Chemistry I) Melting Point Determination Purpose a) Determine the purity of a substance using melting point as physical property b) Identify an unknown compound using its melting

More information

DILATOMETRY ΔL ΔT. α = 1 ( )

DILATOMETRY ΔL ΔT. α = 1 ( ) DILATOMETRY DILATOMETRY dilatometry is a method for characterizing dimensional changes of a material as a function of temperature. The measurement may be performed across a temperature range (e.g. from

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Lecture 4.1: Thermoplastics and Thermosets

Lecture 4.1: Thermoplastics and Thermosets Lecture 4.1: Thermoplastics and Thermosets The word plastic comes from the Greek word Plastikos, meaning able to be shaped and molded. Plastics can be broadly classified into two major groups on the basis

More information

University of Cambridge, Materials Science & Metallurgy. Dilatometry

University of Cambridge, Materials Science & Metallurgy. Dilatometry University of Cambridge, Materials Science & Metallurgy H. K. D. H. Bhadeshia Dilatometry The dilatometric method utilises either transformation strains or thermal strains; the basic data generated are

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 5612 India Chapter 15. Thermal properties Engineering materials are important

More information

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Specific heat is an intensive property of a single phase (solid, liquid or gas) sample that describes how the temperature of the sample changes

More information

Introduction: Background of the OIT Test:

Introduction: Background of the OIT Test: The Effect of Hindered Phenol Stabilizers on Oxygen Induction Time (OIT) Measurements, and The Use of OIT Measurements to Predict Long Term Thermal Stability Philip Jacoby, Vice President of Technology,

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS

IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS IUCLID 5 COMPOSITION AND ANALYSIS GUIDANCE DOCUMENT: IRON ORES, AGGLOMERATES [EINECS NUMBER 265 996 3, CAS NUMBER 65996 65 8] IRON ORE PELLETS INTRODUCTION Each REACH registrant is required to file its

More information

HSC Chemistry Peter Bjorklund August 10, ORC-T

HSC Chemistry Peter Bjorklund August 10, ORC-T HSC Chemistry 6.0 25-1 25. WATER Figure 1: Pressure-Temperature calculator for water. The Pressure and Temperature calculator enables a complete thermodynamic description for a species, by allowing the

More information

Thermochemistry: Enthalpy of Reaction Hess s Law

Thermochemistry: Enthalpy of Reaction Hess s Law Thermochemistry: Enthalpy of Reaction Hess s Law Objective Demonstrate Hess s Law for determining the enthalpy of formation for MgO by measuring temperature change for several reactions. Introduction The

More information

Exploring Creation With Chemistry Table of Contents

Exploring Creation With Chemistry Table of Contents Exploring Creation With Chemistry Table of Contents MODULE #1: Measurement and Units...1 Introduction... 1 Experiment 1.1: Air Has Mass... 1 Experiment 1.2: Air Takes Up Space... 2 Units of Measurement...

More information

Calorimeter: A device in which the heat associated with a specific process is measured.

Calorimeter: A device in which the heat associated with a specific process is measured. 1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

More information

Atoms. The structure of an atom

Atoms. The structure of an atom Atoms The structure of an atom Protons and neutrons are located in the center of the atom, called the nucleus. Electrons are located outside the nucleus. Elements An element is a pure substance that cannot

More information

Influence of Magnesium on Formation and Growth of Nitride Layer on Aluminum Substrate

Influence of Magnesium on Formation and Growth of Nitride Layer on Aluminum Substrate Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 1856-1861 1856 Influence of Magnesium on Formation

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) Ch. Amorphous Structures Course KGP003 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden )

More information

Thermoplastic Material Testing for Use in Sigmasoft

Thermoplastic Material Testing for Use in Sigmasoft Thermoplastic Material Testing for Use in Sigmasoft + technical center for materials a DatapointLabs affiliate Materials Testing Data Infrastructure Productivity Software Plastic Rubber Film Metal Foam

More information

Specific Heat Capacity

Specific Heat Capacity Specific Heat Capacity Specific Heat Capacity The amount of energy it takes to heat up 1 gram of a substance by 1 C What heats up faster, metal or water? Calorie Energy changes can also be measured in

More information

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Dena K. Leggett, Ph.D. and Jon H. Hardesty, Ph.D. Collin County Community College Dept. of Chemistry 1. Introduction: One of the

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

IPC-TM-650 TEST METHODS MANUAL

IPC-TM-650 TEST METHODS MANUAL The Institute for Interconnecting and Packaging Electronic Circuits 2215 Sanders Road Northbrook, IL 60062-6135 TEST METHODS MANUAL Number Glass Transition Temperature and Thermal Expansion of Materials

More information

Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace

Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace China Steel Technical Report, No. 21, pp. 21-28, (2008) J. S. Shiau and S. H. Liu 21 Effect of Magnesium Oxide Content on Final Slag Fluidity of Blast Furnace JIA-SHYAN SHIAU and SHIH-HSIEN LIU Steel and

More information

Example: orange juice from frozen concentrate.

Example: orange juice from frozen concentrate. Dilution: a process in which the concentration (molarity) of a solution is lowered. The amount of solute (atoms, moles, grams, etc.) remains the same, but the volume is increased by adding more solvent.

More information

Physical/Chemical practice questions Name Regents Chemistry

Physical/Chemical practice questions Name Regents Chemistry Physical/Chemical practice questions Name Regents Chemistry 1. Which substance can not be decomposed by a chemical change? A) ammonia B) copper C) propanol D) water 6. Which substance can be decomposed

More information