ELECTRICITYt. Electromagnetism

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ELECTRICITYt. Electromagnetism"

Transcription

1 ELECTRICITYt Electromagnetism Subject area : Physics Topic focus : magnetic properties, magnetic field, the Earth s magnetic field, magnetic field of an electric wire. Learning Aims : Polarity of bar magnets ( they have two poles : like poles repel, opposite poles attract each other. Magnetic field (How to detect a magnetic field - experiments ) The origin of the Earth s magnetic field. What electromagnetism is. The origin of the electromagnetism Oersted s experiment (Laboratory report). Skills : Reading : decoding information; scanning for specific information, interpreting visuals. Speaking: defining and describing. Listening : listening to CD-ROM. Writing : fill a schedule. Method :solve problems, interpret phenomena, ask questions, tests. Role play. Assessment: CLIL assessment, assessment grid for an oral presentation, assessment rubric to evaluate communicative skills, assessment rubric for experimental studies. 1-Magnetic properties These activities are meant to make students aware of the concrete application of abstract concepts. Have students try out little experiments on magnetism.the assignment should be given the day before the lesson. 1. Use two bar magnets and do a few little experiments so you can answer the following questions. 1.Do the magnets attract all objects? a. List 10 objects that are affected by the magnets. Do they have anything in common?

2 b. List 10 objects that are not affected by the magnets. Do these objects have anything in common? 2. Can you turn an object into magnet itself? 3. Touch one of the bars with a paper clip then whether the clip can attract other clips. 4. Once you remove it from the magnet, does the clip still display magnetic properties? For how long? 5.Look around your house for some other magnets and repeat the experiments. Do these magnets display the same characteristics as the ones above? 2-After you ve done this project involving experiments try to decide which statements are true (T) and which ones are false (F). T F 1 Iron, nichel, and steel are attracted by magnets. 2 Gold is attracted by magnets. 3 Magnets exert a force at a distance. 4 Magnets can make another object become magnetic. 5 There are temporary and permanent magnets. 5 The refrigerator is not a magnet. 3-After reading the text they can now understand the explanation of an abstract concept, with the help of visual elements provided. Now let s find out why the phenomena you ve just observed occur. Read the text and fill in the labels on the picture that illustrates the process.a magnetized bar is characterized 1- N.S 2-N.N

3 A magnetized bar is characterized by two opposite poles, one at each extremity. These are known as its north (N) and south (S) poles, because if the bar is hung by its middle from a string, its N extremity tends to point northwards and its S end southwards. The N and S poles will both repel similar poles of another magnet, so N will repel N and S will repel S, but N and S will attract each other. The region where this is observed is called magnetic field. Either pole can also attract objects such as pins and paper clips. That is because under the influence of a nearby magnet, each pin or paper becomes temporary magnet itself, with its poles arranged in such a way as to cause a magnetic attraction. 2.Magnetic fields Make sure you have prepared the necessary materials for the experiment (magnet bar, iron filings. and sheet of paper).the outcome of the experiment should look like the picture below. 2.1-Brainstorming Look at this picture and describe what you see 2.2 Read the text and underline the most important information. TEXT 1 A magnet is an object made of certain materials which create a magnetic field. Every magnet has at least one north pole and one south pole. By convention, we say that the magnetic field lines leave the North end of a magnet and enter the South end of a magnet. This is an example of a magnetic dipole ("di" means two, thus two poles). If you take a bar magnet and break it into two pieces, each piece will again have a North pole and a South pole. If you take one of those pieces and break it into two, each of the smaller pieces will have a North pole and a South pole. No matter how small the pieces of the magnet become, each piece will have a North pole and a South pole. It has not been shown to be possible to end up with a single North pole or a single

4 South pole which is a monopole ("mono" means one or single, thus one pole). The Earth is like a giant magnet! The nickel iron core of the earth gives the earth a magnetic field much like a bar magnet. 2.3-Answer the following questions. a) 1-What is magnetism? b) 2-What is a magnet? c) 3-What is a dipole? d) 4- What is a monopole? e) Has Earth a magnetic field? 2.4 Little experiment! You can look at a bar magnet s magnetic field, using iron filings. Put a light dusting of filings on a sheet of paper and place the paper over the magnet. Tap the paper lightly and the filings will align with the magnetic field, letting you see its shape. 2.5 Describe the picture in activity 2.4 by focusing on the following aspects: The rotation of the filings and where the lines start and finish. Where the filings are concentrated. 3 Earth s Magnetic Field. In the space there is no magnetic iron, yet magnetism is widespread. Scientists believe the magnetic field is generated deep inside the Earth, were the heat of planet s solid inner core causes movement in the liquid outer core of iron and nickel. The solid inner core is thought to be a mass of iron about the size of the moon that has a temperature of several thousand degrees Fahrenheit. The heat of this inner core radiates outwards and upwards until it reaches the boundary with Earth s liquid outer core, causing the fluid there to expand. As it expands, it becomes a little less dense, so it starts

5 to rise. That s called convection, which generates an electric current and, as result, a magnetic field. The Earth s magnetic field is similar to that of a bar magnet. The north pole of a compass needle is a magnetic north pole. It is attracted to the geographic North Pole, which is a magnetic south pole (opposite magnetic poles attract).

6 The Solenoid (Listen and read to find out) A solenoid is a long coil of wire wrapped in many turns. When a current passes through it, it creates a nearly uniform magnetic field inside. Solenoids can convert electric current to mechanical action, and so are very commonly used as switches. The magnetic field within a solenoid depends upon the current and density of turns. In order to estimate roughly the force with which a solenoid pulls on ferromagnetic rods placed near it, one can use the change in magnetic field energy as the rod is inserted into the solenoid. The force is roughly Force on rod = change in magnetic field energy distance rod moves into solenoid

7 The energy density of the magnetic field depends on the strength of the field, squared, and also upon the magnetic permeability of the material it fills. Iron has a much, much larger permeability than a vacuum. Even small solenoids can exert forces of a few newtons. The intensity of the magnetic field generated by a solenoid is determinate by the amount of current flowing through the wire, the number of coils and the distance from the wire. The unit of intensity of a magnetic field is called the tesla (T). Another unit used is the gauss, where 10 4 (10,000) gauss equals 1 tesla. An example of a very intense magnetic field is that generated by a magnetic resonance imaging (MRI). We can also say that when a magnetic field is generated by a straight wire, the magnetic intensity decreases with distance, that is, it is inversely proportional to the distance. For example, the magnetic force at 2 cm from a wire is half than at 1 cm, and the force at 3 cm is one third the force at 1 cm. Magnetic Field Due to a Solenoid A solenoid is a long coil (shaped like a cylinder) containing a large number of close turns of insulated copper wire.

8 The figure above shows a solenoid SN whose ends are connected to a battery B through a switch X. When a current is passed through a solenoid, it produces a magnetic field around it. The magnetic field is shown in the fig. It is along the axis of the solenoid and is almost constant in magnitude and direction. The magnetic lines of force inside the solenoid are nearly parallel to each other and parallel to the axis of the solenoid. A solenoid when suspended freely, aligns itself in the north-south direction, thus behaving like a bar magnet. One end of the solenoid acts like a north pole and the other end the south pole.

9 The polarity of the solenoid can be changed by reversing the direction of the current. The strength of the magnetic field produced by a current carrying solenoid depends on: The number of turns - larger the number of turns, greater is the magnetism produced. The strength of the current - when current increases, magnetism also increases. Nature of 'core-material' used in making the solenoid - if we use soft-iron as a core for the solenoid, then it produces the strongest magnetism.

10 Magnets and Electromagnets An electromagnet is a magnet that runs on electricity. Unlike a permanent magnet, the strength of an electromagnet can easily be changed by changing the amount of electric current that flows through it. The poles of an electromagnet can even be reversed by reversing the flow of electricity.an electromagnet works because an electric current produces a magnetic field. The magnetic field produced by an electric current forms circles around the electric current, as shown in the diagram below: If a wire carrying an electric current is formed into a series of loops, the magnetic field can be concentrated within the loops. The magnetic field can be strengthened even more by wrapping the wire around a core. The atoms of certain materials, such as iron, nickel and cobalt, each behave like

11 tiny magnets. Normally, the atoms in something like a lump of iron point in random directions and the individual magnetic fields tend to cancel each other out. However, the magnetic field produced by the wire wrapped around the core can force some of the atoms within the core to point in one direction. All of their little magnetic fields add together, creating a stronger magnetic field. As the current flowing around the core increases, the number of aligned atoms increases and the stronger the magnetic field becomes. At least, up to a point. Sooner or later, all of the atoms that can be aligned will be aligned. At this point, the magnet is said to be saturated and increasing the electric current flowing around the core no longer affects the magnetization of the core itself. 1-Do you know what an electromagnet is? An electromagnet is a magnet that is created when electricity flows through a conductor. The magnetic field goes around the conductor. The typical way electromagnets are built is to wrap many coils of wire around a ferromagnetic core (almost always iron). Ferromagnetic materials, such as iron, nickel or cobalt have the property of concentrating magnetic fields through them, making the

12 field strength higher than without the core. When electricity passes through the coils of wire, a magnetic field develops around it, which is caught in the ferromagnetic core. The magnetic field goes through the core, out one end of the core and back in the other end. 2-Which devices use electromagnets? Electromagnets are used everywhere. Electric motors, speakers, and power door locks are some devices that use electromagnets. 3-How do you make an electromagnet? It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps if you would like to build the electromagnet.

13 A Simple electromagnet Can you make a magnet from a nail, some batteries and some wire? If you wrap your wire around a nail 10 times, connect the wire to a battery and bring one end of the nail near the compass, you will find that it has a much greater effect on the compass. In fact, the nail behaves just like a bar magnet. What you have created is an electromagnet! You will find that this magnet is able to pick up small steel things like paper clips, staples and thumb tacks.

14 Answer the following True or False questions about magnets and electromagnets: T/F 1. Heating or hitting a permanent magnet can ruin it. 2. Iron is a good metal to use to make an electromagnet. 3. The north pole of one magnet will attract the north pole of another magnet. 4. Magnets and electromagnets are used in many devices.

15 I think that increasing the voltage will...the electromagnet s strength. (increase, decrease or not change) I think that increasing the wire coils will the electromagnet s strength. Questions to think about: (increase, decrease or not change) 1. What happens to the strength of the electromagnet when more turns of wire are used? 2. What happens to the strength of the electromagnet when more volts are used? 3. Where can you find electromagnets in your home? 4. How can you make a permanent magnet lose its magnetism? 5. How can you measure the intensity of a magnetic field generated by a solenoid?

16 Writing about magnetism [Think about what you know about magnets] Let s apply the formula! A coil with 10 loops produces a magnetic field with an intensity of 2 gauss. Calculate the intensity of a magnetic field produced by a coil with 20 loops.

17

18

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both

More information

The Power of Magnets. Grade 6 Activity Plan

The Power of Magnets. Grade 6 Activity Plan The Power of Magnets Grade 6 Activity Plan 6.5 The Power of Magnets Objectives: 1. To learn about magnetic fields 2. To learn about some of the different applications for magnets and electromagnets. 3.

More information

Unit 3 Lesson 4 Magnets and Magnetism. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 Magnets and Magnetism. Copyright Houghton Mifflin Harcourt Publishing Company Stuck on You What are some properties of magnets? The term magnet describes any material that attracts iron or objects made of iron. Many magnets are made of iron, nickel, cobalt, or mixtures of these

More information

Chapter 14 Magnets and

Chapter 14 Magnets and Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Magnetic Forces. Background: Experiments:

Magnetic Forces. Background: Experiments: Magnetic Forces Magnetism is a force observed in the attraction of iron by certain metals, including magnetized iron, nickel, and cobalt. The magnetic force can be felt but it can not be seen. It can effect

More information

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities

More information

How do you measure voltage and current in electric circuits? Materials

How do you measure voltage and current in electric circuits? Materials 20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

More information

Magnets and Electromagnets

Magnets and Electromagnets Magnets and Electromagnets Objective/EQ Objective: Students will be able to describe the basic properties of magnets and electromagnets and they can produce an electric current. EQ: Can I describe the

More information

Electricity, Energy and Magnetism

Electricity, Energy and Magnetism Electricity, Energy and Magnetism A. What's a Magnet? A magnet is a substance with two opposite poles: orth and outh. Like opposite charges, opposite poles attract, so the north pole of one magnet will

More information

MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

MAGNETISM MAGNETISM. Principles of Imaging Science II (120) Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

More information

Make it into a magnet

Make it into a magnet Make it into a magnet O nce a magnet, always a magnet? Not necessarily. Some magnets keep their magnetic effect for years. Others lose their magnetic effect in just minutes. There are also magnets that

More information

Chapter 14 Magnets and Electromagnetism

Chapter 14 Magnets and Electromagnetism Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental

More information

Unit 4 Magnetism. The first compass.

Unit 4 Magnetism. The first compass. The Earth Is a Magnet Magnetism is one of the most important natural phenomena. Magnetic force was known over 2000 years ago by the Greeks. The first magnetic stones were found in Magnesia near Asia Minor.

More information

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero! Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

More information

Objectives: Vocabulary: Materials: Students will: Safety: Magnet Electricity Electromagnet Charge Current Magnetic Field

Objectives: Vocabulary: Materials: Students will: Safety: Magnet Electricity Electromagnet Charge Current Magnetic Field Electromagnets Author: Jane Earle, Lauren Downing, Kevin Dilley Date Created: July 2007 Subject: Physics Level: High School Standards: New York State- Physics (www.emsc.nysed.gov/ciai/) Standard 1- Analysis,

More information

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

More information

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

More information

Teacher Content Brief

Teacher Content Brief Teacher Content Brief Electric Motors Introduction Motors convert electric energy into mechanical energy. This mechanical energy turns the propellers on your Sea Perch. But what makes a motor spin? To

More information

R Ch 36 Magnetism pg 1. Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19

R Ch 36 Magnetism pg 1. Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19 R Ch 36 Magnetism pg 1 Text Qs pg 575 RQ 1, 2, 4, 5, 7-9,12,13,19 R Ch 36 Magnetism pg 2 Magnets are essential for modern life, they are used in generators, motors, lights etc. Originally called loadstones

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass 800 BC Uses a magnetic needle Probably an invention of Arabic or Indian origin Greeks Discovered magnetite

More information

Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric

Magnetic Force. For centuries, humans observed strange force. Between iron and special stones called lodestones. Force couldn't be gravity or electric MAGNETIC FIELD Magnetic Force For centuries, humans observed strange force Between iron and special stones called lodestones Force couldn't be gravity or electric Not enough mass or electric charge to

More information

PHY 212 LAB Magnetic Field As a Function of Current

PHY 212 LAB Magnetic Field As a Function of Current PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

6 MAGNETISM. (c) horseshoe magnet (d) magnetic compass 7. The surest test for magnetism is :

6 MAGNETISM. (c) horseshoe magnet (d) magnetic compass 7. The surest test for magnetism is : 6 MAGNETISM I. Tick ( ) the most appropriate answer. 1. When a bar magnet is suspended freely, it comes to rest : (a) east-west direction (b) north-east direction (c) north-south direction (d) north-west

More information

Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17.

Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17. Introduction to Electricity Table of Contents Bellringer Write a definition for electric charge in your own words in your science journal. When do you experience electric charges most, in winter or in

More information

Magnets and the Magnetic Force

Magnets and the Magnetic Force Magnets and the Magnetic Force We are generally more familiar with magnetic forces than with electrostatic forces. Like the gravitational force and the electrostatic force, this force acts even when the

More information

Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

More information

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? 4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

More information

Draft Unit 6: Electricity and Magnetism Key Ideas:

Draft Unit 6: Electricity and Magnetism Key Ideas: Unit 6: Electricity and Magnetism Key Ideas: 6.1 Observe, describe, and investigate the evidence of energy transfer in electrical circuits. 6.2 Construct and diagram an electrical circuit 6.3 Identify

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 21 Magnetism 1 21-1 What is a magnet? 2 21-2 What causes magnetism? 3 Human Magnetic Fields Enrichment Activity for Lesson 21-2 4 21-3

More information

1. Separation is easy with a magnet (try it and be amazed!).

1. Separation is easy with a magnet (try it and be amazed!). EXERCISES 1. Separation is easy with a magnet (try it and be amazed!). 2. All magnetism originates in moving electric charges. For an electron there is magnetism associated with its spin about its own

More information

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

More information

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields 1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

More information

6. The diagram below represents magnetic lines of force within a region of space.

6. The diagram below represents magnetic lines of force within a region of space. 1. As the distance between two opposite magnetic poles increases, the flux density midway between them decreases remains the same increases 6. The diagram below represents magnetic lines of force within

More information

Electrical discharge in air e.g. lightning

Electrical discharge in air e.g. lightning Static Electricity electron transfer causes static electricity results from an imbalance of charges can occur by induction, friction, and contact You need to describe the direction of motion of charges

More information

Basic Magnetics. The two main properties of magnets are: A) Like poles repel. B) Unlike poles attract.

Basic Magnetics. The two main properties of magnets are: A) Like poles repel. B) Unlike poles attract. Basic Magnetics Magnetism and electricity are closely related. Whenever an electric current flows through a conductor, a magnetic field is produced. When a conductor cuts across a magnetic field or magnetic

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Three types of materials. 1. (Permanent) Magnet 2. Ferromagnertic 3. Non-magnetic

Three types of materials. 1. (Permanent) Magnet 2. Ferromagnertic 3. Non-magnetic Magnets Weak A magnet is a source of magnetic interactions. The poles of the magnet have the strongest magnetic interaction. There are two types of poles pole and pole. Each magnet has (at least) one pole

More information

And in un-magnetized state, the molecular magnets are arranged randomly.

And in un-magnetized state, the molecular magnets are arranged randomly. MAGNETISM A magnet is a piece of metal that attracts other metals. It has two poles i.e. North Pole and South Pole A pole This is a point or an area in a magnet where the attractive power seems to be concentrated.

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

More information

Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

More information

VO Magnets are all around us, from the simplest child s toy to the most powerful electromagnet.

VO Magnets are all around us, from the simplest child s toy to the most powerful electromagnet. Physics 1001 - Introduction to Magnetism Magnets are all around us, from the simplest child s toy to the most powerful electromagnet. Even the earth acts as a giant magnet. Its magnetic field is responsible

More information

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!*** Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

More information

Field Lines Domains. Horseshoe Ring/Disc

Field Lines Domains. Horseshoe Ring/Disc Magnets Info Lab (25 pts) 1. nickel, cobalt, iron 2.Iron, Nickel,and Cobalt have an unmatched electron spinning either UP or DOWN. The result is an atom with a net spin and thus a magnetic field. 3, Field

More information

How do magnets really work?

How do magnets really work? How do magnets work?, Rick Hoadley 6/8/15 How do magnets really work? A magnet is something that creates a magnetic field, and in order to create a magnetic field, electrons have to move. This means there

More information

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

Electromagnetic Laboratory Stations

Electromagnetic Laboratory Stations Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other well-known electromagnetic

More information

Reading Comprehension Skills Preview the Book Compare and Contrast How to Read Charts Main Idea and Details

Reading Comprehension Skills Preview the Book Compare and Contrast How to Read Charts Main Idea and Details TM Red Edition Grade 3 4 reading level Purple Edition Grade 4 5 reading level Objectives Understand that electric charge is a property of matter. Compare static electricity and current electricity. Describe

More information

Magnets. We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect.

Magnets. We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect. Magnets We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect. What you are seeing is another invisible force field known as

More information

Chapter 5. Magnetic Fields and Forces. 5.1 Introduction

Chapter 5. Magnetic Fields and Forces. 5.1 Introduction Chapter 5 Magnetic Fields and Forces Helmholtz coils and a gaussmeter, two of the pieces of equipment that you will use in this experiment. 5.1 Introduction Just as stationary electric charges produce

More information

Lab 9 Magnetic Interactions

Lab 9 Magnetic Interactions Lab 9 Magnetic nteractions Physics 6 Lab What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. Most of the electrical devices you will encounter

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism Objective The purpose of this experiment is to investigate (a) the properties of magnets, (b) the relationships between magnetism and electricity, and (c) practical applications

More information

Chapter 24 Practice Problems, Review, and Assessment

Chapter 24 Practice Problems, Review, and Assessment Section 1 Understanding Magnetism: Practice Problems 1. If you hold a bar magnet in each hand and bring your hands close together, will the force be attractive or repulsive if the magnets are held in the

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

10.2 Electromagnets. What is an electromagnet? Chapter 10

10.2 Electromagnets. What is an electromagnet? Chapter 10 In the last section you learned about permanent magnets and magnetism. There is another type of magnet, one that is created by electric current. This type of magnet is called an. What is an? Why do magnets

More information

Key concepts of magnetism

Key concepts of magnetism Magnetism Introduction Activities using magnets can feature at all levels. Students will have some knowledge of magnets, since they are common around homes, but students often expect magnets to attract

More information

Each Magnet has a north and a south pole. The field lines are always from N to S outside the magnet & S to N inside the magnet.

Each Magnet has a north and a south pole. The field lines are always from N to S outside the magnet & S to N inside the magnet. Each Magnet has a north and a south pole. The field lines are always from N to S outside the magnet & S to N inside the magnet. Magnets Field about a bar magnet A magnet is a piece of metal that pulls

More information

Magnets and Magnetism

Magnets and Magnetism 1 What You Will Learn Describe the properties of magnets. Explain why some materials are magnetic and some are not. Describe four kinds of magnets. Give two examples of the effect of Earth s magnetic field.

More information

Making an Electromagnet Grade 4

Making an Electromagnet Grade 4 TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Making an Electromagnet Grade 4 Created by: Maria Schetter (Terrace Heights Elementary School), Stella Winckler (Lucerne Elementary School), Karen

More information

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

More information

Mapping the Magnetic Field

Mapping the Magnetic Field I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Moving Charge in Magnetic Field

Moving Charge in Magnetic Field Chapter 1 Moving Charge in Magnetic Field Day 1 Introduction Two bar magnets attract when opposite poles (N and S, or and N) are next to each other The bar magnets repel when like poles (N and N, or S

More information

Chapter 16 Magnetism. How can a magnet be strong enough to lift a car? What is the biggest magnet on Earth? How does a compass work?

Chapter 16 Magnetism. How can a magnet be strong enough to lift a car? What is the biggest magnet on Earth? How does a compass work? UNIT 6 Electricity and Magnetism Chapter 16 Magnetism Chapter 17 Electromagnets and Induction Chapter 18 Fields and Forces Chapter 16 Magnetism Have you ever used a compass? A compass is very handy when

More information

Energy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire.

Energy, electricity and magnetism page The diagram below shows an object made from a battery, a nail, and some wire. Energy, electricity and magnetism page 3 Name: ate: 1. The diagram below shows an object made from a battery, a nail, and some wire. What will happen if you touch a metal paperclip to the nail? A. The

More information

MAGNETISM Suggested Grades: 4 th and 5 th

MAGNETISM Suggested Grades: 4 th and 5 th MAGNETISM Suggested Grades: 4 th and 5 th K-STATE RESEARCH AND EXTENSION- SEDGWICK COUNTY 7001 W. 21st St. North Wichita, KS 67205-1759 (316) 660-0112 FAX (316) 722-1432 Drescher@ksu.edu http://www.sedgwickcountyextension.org

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Circuits and Electricity

Circuits and Electricity Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

More information

Key Stage 3 - MRI Brain briefing

Key Stage 3 - MRI Brain briefing Key Stage 3 - MRI Brain briefing The roles 1 Hospital communications worker Has overall responsibility for producing the leaflet or video. Pupil worksheet Magnetic resonance imaging (MRI) An MRI scanner

More information

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.

Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other. Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength

More information

Material World: Electricity

Material World: Electricity 17. Coulomb s Law The force, F, between two objects with charge q 1 and q 2, is given by: k q 1 q F - 2, where r = distance between the two charges in meters 2 r k = Coulomb's constant = 9 X 10 9 m 2 /C

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted (1777-1851) Oersted showed that electricity and magnetism are related

More information

THE MAGNETIC FIELD. 9. Magnetism 1

THE MAGNETIC FIELD. 9. Magnetism 1 THE MAGNETIC FIELD Magnets always have two poles: north and south Opposite poles attract, like poles repel If a bar magnet is suspended from a string so that it is free to rotate in the horizontal plane,

More information

(1) Physics Purpose: Materials: Theory: We investigate the elementary properties of magnetism using the following four magnets:

(1) Physics Purpose: Materials: Theory: We investigate the elementary properties of magnetism using the following four magnets: Department of Physics and Geology The study of magnetic fields Physics 2402 Purpose: We investigate the elementary properties of magnetism using the following four magnets: 1. a compass needle 2. a bar

More information

The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab.

The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab. The Charge to Mass Ratio (e/m) Ratio of the Electron NOTE: You will make several sketches of magnetic fields during the lab. Remember to include these sketches in your lab notebook as they will be part

More information

Magnetic Field Lines. Uniform Magnetic Field. Earth s Magnetic Field 6/3/2013

Magnetic Field Lines. Uniform Magnetic Field. Earth s Magnetic Field 6/3/2013 Chapter 33: Magnetism Ferromagnetism Iron, cobalt, gadolinium strongly magnetic Can cut a magnet to produce more magnets (no magnetic monopole) Electric fields can magnetize nonmagnetic metals Heat and

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Copyright 2014 Edmentum - All rights reserved. Science Physics Electromagnetic Blizzard Bag 2014-2015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Fall 12 PHY 122 Homework Solutions #4

Fall 12 PHY 122 Homework Solutions #4 Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 10-30 C.m at a point 4.1 x 10-9 m away if this point is (a)

More information

Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

More information

Worked solutions Chapter 9 Magnets and electricity

Worked solutions Chapter 9 Magnets and electricity 9.1 Fundamentals of magnetism 1 A magnetic field exists at any point in space where a magnet or magnetic material (e.g. iron, nickel, cobalt) will experience a magnetic force. 2 C. The magnetic force between

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

Electric Train Experiment

Electric Train Experiment Electric Train Experiment Purpose To build an electric train, utilizing uninsulated copper wire, a battery, and powerful magnets. The result is a fascinating and cheap experiment that displays the basic

More information

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT BASANT S SCIENCE ACADEMY Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 To study

More information

My lecture slides are posted at Information for Physics 112 midterm, Wednesday, May 2

My lecture slides are posted at  Information for Physics 112 midterm, Wednesday, May 2 My lecture slides are posted at http://www.physics.ohio-state.edu/~humanic/ Information for Physics 112 midterm, Wednesday, May 2 1) Format: 10 multiple choice questions (each worth 5 points) and two show-work

More information

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips) Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

More information

Chapter 27 Magnetic Field an Magnetic Forces Study magnetic forces. Consider magnetic field and flux

Chapter 27 Magnetic Field an Magnetic Forces Study magnetic forces. Consider magnetic field and flux Chapter 27 Magnetic Field an Magnetic Forces Study magnetic forces Consider magnetic field and flux Explore motion in a magnetic field Consider magnetic torque Apply magnetic principles and study the electric

More information

LEVITATING TRAIN. DESIGN CHALLENGE Build a magnetic levitating train that can balance on a magnetic track without falling.

LEVITATING TRAIN. DESIGN CHALLENGE Build a magnetic levitating train that can balance on a magnetic track without falling. Grades 3 5, 6 8 15 30 minutes LEVITATING TRAIN DESIGN CHALLENGE Build a magnetic levitating train that can balance on a magnetic track without falling. MATERIALS Supplies and Equipment (Per Team): Neodymium

More information

physics 112N magnetic fields and forces

physics 112N magnetic fields and forces physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

More information

Second Grade Magnetism Assessment

Second Grade Magnetism Assessment Second Grade Magnetism Assessment 1a. A magnet is a. an object that attracts metals such as iron, steel and tin. b. an object that sticks to copper, glass, and wood 1b. A magnet is a. an object that attracts

More information