# Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Save this PDF as:

Size: px
Start display at page:

Download "Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc."

## Transcription

1 Chapter 4 Dynamics: Newton s Laws of Motion

2 Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Solving Problems with Newton s Laws: Free-Body Diagrams Problem Solving A General Approach

3 4-1 Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity.

4 4-1 Force Force is a vector, having both magnitude and direction. The magnitude of a force can be measured using a spring scale.

5 4-2 Newton s First Law of Motion It may seem as though it takes a force to keep an object moving. Push your book across a table when you stop pushing, it stops moving. But now, throw a ball across the room. The ball keeps moving after you let it go, even though you are not pushing it any more. Why? It doesn t take a force to keep an object moving in a straight line it takes a force to change its motion. Your book stops because the force of friction stops it.

6 4-2 Newton s First Law of Motion This is Newton s first law, which is often called the law of inertia: Every object continues in its state of rest, or of uniform velocity in a straight line, as long as no net force acts on it.

7 4-2 Newton s First Law of Motion Conceptual Example 4-1: Newton s first law. A school bus comes to a sudden stop, and all of the backpacks on the floor start to slide forward. What force causes them to do that?

8 4-2 Newton s First Law of Motion Inertial reference frames: Newton s first law does not hold in every reference frame, such as a reference frame that is accelerating or rotating. An inertial reference frame is one in which Newton s first law is valid. This excludes rotating and accelerating frames. How can we tell if we are in an inertial reference frame? By checking to see if Newton s first law holds!

9 4-3 Mass Mass is the measure of inertia of an object, sometimes understood as the quantity of matter in the object. In the SI system, mass is measured in kilograms. Mass is not weight. Mass is a property of an object. Weight is the force exerted on that object by gravity. If you go to the Moon, whose gravitational acceleration is about 1/6 g, you will weigh much less. Your mass, however, will be the same.

10 4-4 Newton s Second Law of Motion Newton s second law is the relation between acceleration and force. Acceleration is proportional to force and inversely proportional to mass. It takes a force to change either the direction or the speed of an object. More force means more acceleration; the same force exerted on a more massive object will yield less acceleration.

11 4-4 Newton s Second Law of Motion Force is a vector, so coordinate axis. is true along each The unit of force in the SI system is the newton (N). Note that the pound is a unit of force, not of mass, and can therefore be equated to newtons but not to kilograms.

12 4-4 Newton s Second Law of Motion Example 4-2: Force to accelerate a fast car. Estimate the net force needed to accelerate (a) a 1000-kg car at ½ g; (b) a 200-g apple at the same rate. Example 4-3: Force to stop a car. What average net force is required to bring a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m?

13 4-5 Newton s Third Law of Motion Any time a force is exerted on an object, that force is caused by another object. Newton s third law: Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction on the first.

14 4-5 Newton s Third Law of Motion A key to the correct application of the third law is that the forces are exerted on different objects. Make sure you don t use them as if they were acting on the same object.

15 4-5 Newton s Third Law of Motion Rocket propulsion can also be explained using Newton s third law: hot gases from combustion spew out of the tail of the rocket at high speeds. The reaction force is what propels the rocket. Note that the rocket does not need anything to push against.

16 4-5 Newton s Third Law of Motion Conceptual Example 4-4: What exerts the force to move a car? Response: A common answer is that the engine makes the car move forward. But it is not so simple. The engine makes the wheels go around. But if the tires are on slick ice or deep mud, they just spin. Friction is needed. On firm ground, the tires push backward against the ground because of friction. By Newton s third law, the ground pushes on the tires in the opposite direction, accelerating the car forward.

17 4-5 Newton s Third Law of Motion Helpful notation: the first subscript is the object that the force is being exerted on; the second is the source.

18 4-5 Newton s Third Law of Motion Conceptual Example 4-5: Third law clarification. Michelangelo s assistant has been assigned the task of moving a block of marble using a sled. He says to his boss, When I exert a forward force on the sled, the sled exerts an equal and opposite force backward. So how can I ever start it moving? No matter how hard I pull, the backward reaction force always equals my forward force, so the net force must be zero. I ll never be able to move this load. Is he correct?

19 4-6 Weight the Force of Gravity; and the Normal Force Weight is the force exerted on an object by gravity. Close to the surface of the Earth, where the gravitational force is nearly constant, the weight of an object of mass m is: where

20 4-6 Weight the Force of Gravity; and the Normal Force An object at rest must have no net force on it. If it is sitting on a table, the force of gravity is still there; what other force is there? The force exerted perpendicular to a surface is called the normal force. It is exactly as large as needed to balance the force from the object. (If the required force gets too big, something breaks!)

21 4-6 Weight the Force of Gravity; and the Normal Force Example 4-6: Weight, normal force, and a box. A friend has given you a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is resting on the smooth (frictionless) horizontal surface of a table. (a) Determine the weight of the box and the normal force exerted on it by the table. (b) Now your friend pushes down on the box with a force of 40.0 N. Again determine the normal force exerted on the box by the table. (c) If your friend pulls upward on the box with a force of 40.0 N, what now is the normal force exerted on the box by the table?

22 4-6 Weight the Force of Gravity; and the Normal Force Example 4-7: Accelerating the box. What happens when a person pulls upward on the box in the previous example with a force greater than the box s weight, say N?

23 4-6 Weight the Force of Gravity; and the Normal Force Example 4-8: Apparent weight loss. A 65-kg woman descends in an elevator that briefly accelerates at 0.20g downward. She stands on a scale that reads in kg. (a) During this acceleration, what is her weight and what does the scale read? (b) What does the scale read when the elevator descends at a constant speed of 2.0 m/s?

24 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams 1. Draw a sketch. 2. For one object, draw a free-body diagram, showing all the forces acting on the object. Make the magnitudes and directions as accurate as you can. Label each force. If there are multiple objects, draw a separate diagram for each one. 3. Resolve vectors into components. 4. Apply Newton s second law to each component. 5. Solve.

25 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Conceptual Example 4-10: The hockey puck. A hockey puck is sliding at constant velocity across a flat horizontal ice surface that is assumed to be frictionless. Which of these sketches is the correct free-body diagram for this puck? What would your answer be if the puck slowed down?

26 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Example 4-11: Pulling the mystery box. Suppose a friend asks to examine the 10.0-kg box you were given previously, hoping to guess what is inside; and you respond, Sure, pull the box over to you. She then pulls the box by the attached cord along the smooth surface of the table. The magnitude of the force exerted by the person is F P = 40.0 N, and it is exerted at a 30.0 angle as shown. Calculate (a) the acceleration of the box, and (b) the magnitude of the upward force F N exerted by the table on the box.

27 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Example 4-12: Two boxes connected by a cord. Two boxes, A and B, are connected by a lightweight cord and are resting on a smooth table. The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force of 40.0 N is applied to the 10.0-kg box. Find (a) the acceleration of each box, and (b) the tension in the cord connecting the boxes.

28 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Example 4-13: Elevator and counterweight (Atwood s machine). A system of two objects suspended over a pulley by a flexible cable is sometimes referred to as an Atwood s machine. Here, let the mass of the counterweight be 1000 kg. Assume the mass of the empty elevator is 850 kg, and its mass when carrying four passengers is 1150 kg. For the latter case calculate (a) the acceleration of the elevator and (b) the tension in the cable.

29 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Conceptual Example 4-14: The advantage of a pulley. A mover is trying to lift a piano (slowly) up to a second-story apartment. He is using a rope looped over two pulleys as shown. What force must he exert on the rope to slowly lift the piano s 2000-N weight?

30 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Example 4-15: Accelerometer. A small mass m hangs from a thin string and can swing like a pendulum. You attach it above the window of your car as shown. What angle does the string make (a) when the car accelerates at a constant a = 1.20 m/s 2, and (b) when the car moves at constant velocity, v = 90 km/h?

31 4-7 Solving Problems with Newton s Laws: Free-Body Diagrams Example 4-16: Box slides down an incline. A box of mass m is placed on a smooth incline that makes an angle θ with the horizontal. (a) Determine the normal force on the box. (b) Determine the box s acceleration. (c) Evaluate for a mass m = 10 kg and an incline of θ = 30.

32 4-8 Problem Solving A General Approach 1. Read the problem carefully; then read it again. 2. Draw a sketch, and then a free-body diagram. 3. Choose a convenient coordinate system. 4. List the known and unknown quantities; find relationships between the knowns and the unknowns. 5. Estimate the answer. 6. Solve the problem without putting in any numbers (algebraically); once you are satisfied, put the numbers in. 7. Keep track of dimensions. 8. Make sure your answer is reasonable.

33 Summary of Chapter 4 Newton s first law: If the net force on an object is zero, it will remain either at rest or moving in a straight line at constant speed. Newton s second law: Newton s third law: Weight is the gravitational force on an object. Free-body diagrams are essential for problemsolving. Do one object at a time, make sure you have all the forces, pick a coordinate system and find the force components, and apply Newton s second law along each axis.

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce

### Newton s Laws of Motion (Ch 5)

Newton s Laws of Motion (Ch 5) Force Isaac Newton 1642-1727 English physicist & mathematician By the age of 31, discovered: laws of motion universal gravitation calculus Eccentric read Coming of Age in

### MOTION AND FORCE: DYNAMICS

MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between

### Newton s Laws of Motion

Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.00-12.00

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### CHAPTER 3 NEWTON S LAWS OF MOTION

CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Forces. Lecturer: Professor Stephen T. Thornton

Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law

Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

### THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Ch.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66

Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces - vector quantity that changes the velocity

### Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### College Physics 140 Chapter 4: Force and Newton s Laws of Motion

College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning

### Recap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:

Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since

### 56 Chapter 5: FORCE AND MOTION I

Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

### Dynamics- Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?

Dynamics- Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Q5.1. A. tension T 1 B. tension T 2 C. tension T 3 D. two of the above E. T 1, T 2, and T Pearson Education, Inc.

Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram for the engine? A. tension T 1 B. tension T 2 C. tension

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### How does the net force change between scenario 1 and 2?

How does the net force change between scenario 1 and 2? A) The magnitude decreases, the direction stays the same B) The magnitude stays the same, the direction changes C) The magnitude decreases AND the

### Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

### Physics-1 Recitation-3

Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### E R CONTENTS. (c) F B 7 F A.

RG RG GR A space shuttle is carried out into space by powerful rockets. They are accelerating, increasing in speed rapidly. To do so, a force must be exerted on them according to Newton s second law, =

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

### Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

### 356 CHAPTER 12 Bob Daemmrich

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### Forces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.

Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Spinning Stuff Review

Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object, as shown in the figure below. When released

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### 2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed,

Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, unless it is compelled to change that state by forces

### Lesson 04: Newton s laws of motion

www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.

### Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

### Chapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

### Conceptual Physics Review (Chapters 4, 5, & 6)

Conceptual Physics Review (Chapters 4, 5, & 6) Solutions Sample Questions and Calculations. If you were in a spaceship and launched a cannonball into frictionless space, how much force would have to be

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a

### Mass, energy, power and time are scalar quantities which do not have direction.

Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

### Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

### Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

### F13--HPhys--Q5 Practice

Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

### COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion

CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object

### More of Newton s Laws

More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### For every action, there is an and.

SPH4C1 Lesson 03 Newton s Laws NEWTON S THIRD LAW LEARNING GOALS Students will: Be able to state Newton s 3 rd Law and apply it in qualitative and quantitative terms to explain the effect of forces acting

### Best Angle for QUICK LAB. Analyze and Conclude. 22 MHR Unit 1 Forces and Motion: Dynamics

5. Pushing a grocery cart with a force of 95 N, applied at an angle of 35 down from the horizontal, makes the cart travel at a constant speed of 1.2 m/s. What is the frictional force acting on the cart?

### 1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### questions: force and motion I

questions: force and motion I problem 1 The figure below is an overhead view of a 12 kg tire that is to be pulled by three ropes. One force (F l, with magnitude 50 N) is indicated. Orient the other two

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

### Unit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures

Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### 1206EL - Concepts in Physics. Friday, September 18th

1206EL - Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts

### P113 University of Rochester NAME S. Manly Fall 2013

Final Exam (December 19, 2013) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless

### Chapter 4. Forces I. 4.1 The Important Stuff Newton s First Law Newton s Second Law

Chapter 4 Forces I 4.1 The Important Stuff 4.1.1 Newton s First Law With Newton s Laws we begin the study of how motion occurs in the real world. The study of the causes of motion is called dynamics, or

### Newton s Second Law. First of only two important equations in this chapter: r =

Newton s First Law Unless they are acted upon by an external force, objects at rest will stay at rest, and object in motion will stay in motion with a constant velocity. Only applies in inertial reference

### Isaac Newton was a British scientist whose accomplishments included

80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

### Chapter 4. Forces and Newton s Laws of Motion

Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Action-at-a-distance forces do not require contact

### BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Newton s 3 rd Law Study Guide Chapter 7

1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle

### Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

### Newton s Laws of Motion

Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would