# Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa Cruz, Santa Rosa, CA 14 th 18 th January

2 Outline Notions of Special Relativity Historical background Lorentz transformations (length contraction and time dilatation) 4-vectors and Einstein s relation Conservation laws, particle collisions Electromagnetic theory Maxwell s equations, Magnetic vector and electric scalar potential Lorentz force Electromagnetic waves 2

3 Historical background Maxwell s equations (1863) attempted to explain electromagnetism and optics through wave theory A few doubtful hypotheses and inconsistencies A medium called luminiferous ether exists for the transport of electromagnetic waves Ether has a small interaction with matter and is carried along with astronomical objects Light propagates with speed c = m/s in " but not invariant in all frames Maxwell s equations are not invariant under Galilean transformations In order to make electromagnetism compatible with classical mechanics, assume that light has speed c only in frames where source is at rest 3

4 Experimental evidence Star light aberration: a small shift in apparent positions of distant stars due to the finite speed of light and Fizeau and Foucault s experiments (1850) on the velocity of light in air and liquids Michelson-Morley experiment (1887) to detect motion of the earth through ether Lorentz-FitzGerland contraction hypothesis ( ): perhaps bodies get compressed in the direction of their motion by a factor Michelson Fizeau and Foucault 4

5 Postulates of Special Relativity 1. First Postulate: Principle of Relativity Every physical law is invariant under inertial co-ordinate transformations. Thus, if an object in space-time obeys the mathematical equations describing a physical law in one inertial frame of reference, it must necessarily obey the same equations when using any other inertial frame of reference. 1. Second Postulate: Invariance of the speed of light There exists an absolute constant with the following property. If A, B are two events which have co-ordinates and in one inertial frame F, and have co-ordinates and in another inertial frame F', then if and only if 5

6 The Lorentz Transformation From a frame to a frame moving with velocity v along the x-axis the space-time coordinates are transformed as: The space-time interval is invariant under Lorentz transformations with 6

7 Length contraction z Frame F Frame F z y v y Rod AB of length L' fixed in F' at x' A, x' B. Its length L seen by the observer is contracted x A Rod B x 7

8 Time dilatation Clock in frame F at a point with coordinates (x,y,z) and different times t A and t B.In moving frame F' the time difference Δt is dilated Μ Red and Blue with identical clocks, (light beam bouncing off mirror). When Red and Blue at rest, tick and tocks are simultaneous Blue moves with his mirror at velocity v. Blue measures the same time between ticks and tocks but according to Red, the clock of Blue runs slow 1 R γ v For c = 1, distance between mirror and Red RM =1 tick. Red thinks that distance between Blue and mirror is BM = γ ticks. Distance between Blue and Red RB = γ v. So, γ B 8

9 Example: Relativistic Train What does B s clock read when G goes into tunnel? The two events are coincident and F frame of tunnel with observers at both ends A, B Relativistic train on frame F with driver D and guard G Observers A and B see train contracted Tunnel moves relative to train and the D,G see tunnel of 50 m! What does G s clock read as he enters? Where is the guard G, with respect to A, when his clock reads 0? Setting the time to zero in the previous equation So the guard is still 100m from tunnel entrance!!! 9

10 4-Vectors and Einstein s relation First note that and. 4-Position: 4-Velocity: 4-Acceleration: 4-Momentum: 4-Force: Invariants: and Differentiating the momentum invariant and i.e. which gives But the rate of change of the kinetic energy is and by integrating At rest and thus the constant is Finally, the energy is 10

11 Velocity and Kinetic Energy Relative velocity Relative velocity and Lorentz factor Momentum Kinetic energy For, and T [MeV] Electron Heavy particles become relativistic at higher energies Proton When relativistic, small velocity change provides big change in energy 11

12 Relationships for small parameter variations 12

13 Momentum conservation laws Equivalent expression for 4-momentum From the momentum invariance we get As the 4-momentum is conserved Total energy is conserved Classical momentum is conserved Norm of the 4-momentum is conserved Momentum is conserved but mass is not (mass is a form of energy)!!! 13

14 Particle collisions Two particles have equal rest mass m 0. Laboratory Frame (LF): one particle at rest, total energy is E lab. Centre of Mass Frame (CMF): Velocities are equal and opposite, total energy is E cm. The quantity In the CMF, we have In general is invariant. In the LF, we have and Finally 14

15 Particle on target vs. colliding particles A proton p 1 collides with an anti-proton p 2 (same rest mass m 0 ), producing two particles W 1 and W 2 with mass M W 1. p 1, p 2 with equal and opposite velocities in lab frame p 1 W 1 p 2 2. p 1 with 0 velocity in lab frame. we have and as and W 2 W 1 W 2 p 1 Easier particle production on colliding beams than fixed target experiments p 2 15

16 Maxwell s Equations Accelerator physics: description of charged particle dynamics in the presence of electromagnetic fields Maxwell s equations relate Electric and Magnetic fields generated by charge and current distributions. Gauss law: divergence of the electric field gives the density of the sources. Gauss law for magnetism: there are no magnetic monopoles E = electric field [V/m] µ 0 (permeability of free space) = 4π 10-7 [ C V -1 m -1 ] B = magnetic flux density [T] ε 0 (permittivity of free space) = [ V s A -1 m -1 ] ρ = charge density [C/m 3 ] c (speed of light) = m/s j = current density [A/m 2 ] 1/c 2 = ε 0 µ 0 Faraday s law of induction: induced electric field in coil equal to negative rate of change of magnetic field Ampere-Maxwell s law: integral of magnetic field in closed loop proportional to current flowing in the loop (static electric field) 16

17 Vector and scalar potential Maxwell s equation is a set of coupled first order differential equations relating different components of E/M field Introduce potentials to reduce number of equations and unknowns From Gauss law of magnetism, we obtain the magnetic vector potential From Faraday s law, we obtain an electric scalar potential Inserting these equations back to Gauss and Ampere s law and Considering the Lorentz gauge invariants and choose to get the decoupled equations 17

18 Lorentz force Force on charged particle moving in an electromagnetic field: In accelerator physics: electric fields used for particle acceleration and magnetic fields for particle guidance (but not exclusively) Integrate Lorentz force with the path length to get kinetic energy Kinetic energy is changed from the presence of electric but not magnetic field Relativistic equation of motion 18

19 Electromagnetic waves Maxwell s equations predict the existence of electromagnetic waves, later discovered by Hertz. Assume no charges and no currents: Take the curl of Faraday s law and replace curl of magnetic field by using Ampere s law Use the identity and Gauss law to obtain a 3D wave equation E/M waves carry energy, with a flow (power per unit area) described by the Poynting vector: 19

20 Nature of electromagnetic waves Plane wave with angular frequency ω travelling in the direction of the wave vector k From Gauss laws i.e. fields are transverse to each other and wave propagation From Faraday s law From Ampere-Maxwell s law We have that the velocity of propagation in vacuum is with wavelength and frequency 20

21 Bibliography Relativity W. Rindler, Introduction to Special Relativity, Oxford University Press, A. B. Lahanas, Introduction to Special Relativity, CAS Introductory Level, Loutraki, Greece, October C. Prior, Lecture given at CAS, Introductory Level, Zakopane, Poland, October Electromagnetism J.D. Jackson, Classical Electrodynamics, 3rd ed. Wiley & sons, A. B. Lahanas, Electromagnetic Theory, CAS, Introductory Level, Loutraki, Greece, October C. Prior, Lecture given at CAS, Introductory Level Zakopane, Poland, October

### Special Theory of Relativity. PH101 Lec-2

Special Theory of Relativity PH101 Lec-2 Failure of Newtonian Relativity! Clash with electromagnetism!! we won t go into here Newton s laws reigned supreme in mechanics for more than 200 years However,

### Electromagnetism - Lecture 8. Maxwell s Equations

Electromagnetism - Lecture 8 Maxwell s Equations Continuity Equation Displacement Current Modification to Ampère s Law Maxwell s Equations in Vacuo Solution of Maxwell s Equations Introduction to Electromagnetic

### Since we will be studying electromagnetic waves, let s review some general features of waves:

The Nature of Waves Since we will be studying electromagnetic waves, let s review some general features of waves: 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. The

### VII MAXWELL S EQUATIONS

VII MAXWELL S EQUATIONS 71 The story so far In this section we will summarise the understanding of electromagnetism which we have arrived at so far We know that there are two fields which must be considered,

### Electromagnetic Induction. Physics 231 Lecture 9-1

Electromagnetic Induction Physics 231 Lecture 9-1 Induced Current Past experiments with magnetism have shown the following When a magnet is moved towards or away from a circuit, there is an induced current

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Special Theory of Relativity. A Brief introduction

Special Theory of Relativity A Brief introduction Classical Physics At the end of the 19th century it looked as if Physics was pretty well wrapped up. Newtonian mechanics and the law of Gravitation had

### Relativistic Electromagnetism

Chapter 8 Relativistic Electromagnetism In which it is shown that electricity and magnetism can no more be separated than space and time. 8.1 Magnetism from Electricity Our starting point is the electric

### A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle

A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle Page 1 of 15 Abstract: The wireless power transfer link between two coils is determined by the properties of the

### Magnetohydrodynamics MHD

Magnetohydrodynamics MHD References S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability T.G. Cowling: Magnetohydrodynamics E. Parker: Magnetic Fields B. Rossi and S. Olbert: Introduction to the

### General Physics I Can Statements

General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

### Part 1. Relativity. Special theory of relativity. Chapter 27. Historical Background. Special Theory of Relativity

Part 1 Relativity Chapter 7 Special theory of relativity Historical Background By the beginning of th century experimental observation that Newtonian s mechanics was not able to explain (Michelson's and

### arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001

Introducing Time Dependence into the Static Maxwell Equations arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001 Avraham Gal Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

### April 15. Physics 272. Spring Prof. Philip von Doetinchem

Physics 272 April 15 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 291 Lunar eclipse

### Special Theory of Relativity

June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

### Relativity II. Selected Problems

Chapter Relativity II. Selected Problems.1 Problem.5 (In the text book) Recall that the magnetic force on a charge q moving with velocity v in a magnetic field B is equal to qv B. If a charged particle

### ( ) 2 " c 2 ( time interval) 2. Homework - Exam. From last time. Question. Time dilation, length contraction. Separation between events

Homework - Exam HW#7: M Chap : Questions A, C, Exercises 4, 8 M Chap 2: Exercises 4, 6 Hour Exam 2: Wednesday, March 8 In-class, covering waves, electromagnetism, and relativity Twenty multiple-choice

### Form of Intensity of the Moving Charge Electric Field is asymmetrical.

Form of Intensity of the Moving Charge Electric Field is asymmetrical. Lubomir Vlcek Rokytov 132, 086 01, Slovak Republic Email: lubomir.vlcek@gmail.com Abstract Relationship Lorentz derived from the asymmetrical

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 25 Modern Physics Relativity Time dilation, length contraction http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 26 1 If you want to know your progress so far, please

### Advanced Topics in Physics: Special Relativity Course Syllabus

Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems

### Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S

Dr. Alain Brizard Electromagnetic Theory I PY 3 Faraday s Law & Maxwell s Equations Griffiths Chapter 7: Sections -3 Electromagnetic Induction The flux rule states that a changing magnetic flux Φ B = S

### Inertial reference frames. Inertial reference frames. Inertial reference frames. To cut a long story short:

PH300 Modern Physics SP11 Each ray of light moes in the coordinate system 'at rest' with the definite, constant elocity c, independent of whether this ray of light is emitted by a body at rest or a body

### Module 3 : Electromagnetism Lecture 13 : Magnetic Field

Module 3 : Electromagnetism Lecture 13 : Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an

### Note: be careful not confuse the conductivity σ with the surface charge σ, or resistivity ρ with volume charge ρ.

SECTION 7 Electrodynamics This section (based on Chapter 7 of Griffiths) covers effects where there is a time dependence of the electric and magnetic fields, leading to Maxwell s equations. The topics

### Electromagnetic Waves

May 4, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 7 Maxwell Equations A basic feature of Maxwell equations for the EM field is the existence of travelling wave solutions which

### physics 112N magnetic fields and forces

physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

### Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Intro to

### Version 001 Relativity tubman (111213) 1

Version 00 Relativity tubman (23) This print-out should have 36 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC 40 00 0.0 points

### Nicholas J. Giordano. Chapter 12 Waves

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 12 Waves Wave Motion A wave is a moving disturbance that transports energy from one place to another without transporting matter Questions

### PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

### Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves 9.2 Electromagnetic waves in Vacuum 9.2.1 The Wave Equation for E and B In Vacuum, no free charges and no currents 0, J 0, q 0, I 0 B E 0 B 0 E - t B 0 0 Let s derive the

### The Special Theory of Relativity explained to children

The Special Theory of Relativity explained to children (from 7 to 107 years old) Charles-Michel Marle marle@math.jussieu.fr Université Pierre et Marie Curie, Paris, France Albert Einstein Century International

### Calculate the centripetal acceleration of the boot just before impact

(ii) alculate the centripetal acceleration of the boot just before impact....... (iii) iscuss briefly the radial force on the knee joint before impact and during the impact................. (4) (Total

### Example of the use of vectors Announcements:

Today Example of the use of vectors Announcements: River River HW#3 is due Wed. (tomorrow) at 8 am. Look for two new extra credit problems on CAPA HW#4 will be due next Wednesday as usual Exam # Thurs.

### March 20. Physics 272. Spring 2014 Prof. Philip von Doetinchem

Physics 272 March 20 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 129 Summary No magnetic

### * Magnetic Scalar Potential * Magnetic Vector Potential. PPT No. 19

* Magnetic Scalar Potential * Magnetic Vector Potential PPT No. 19 Magnetic Potentials The Magnetic Potential is a method of representing the Magnetic field by using a quantity called Potential instead

### Astronomy 102, Fall September 2009

Astronomy, Fall 009 15 September 009 Today in Astronomy : relativity, continued Einstein s procedures and results on the special theory of relativity. Formulas and numerical examples of the effects of

### AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

### Electro Magnetic Fields

Electro Magnetic Fields Faheem Ahmed Khan, Assoc Prof. EEE Department, Ghousia College of Engineering, Ramanagaram EEE, GCE,Ramanagaram Page 1 of 50 Coulomb s Law and electric field intensity Experimental

### Vector or Pseudovector?

Vector or Pseudovector? Jeffrey A. Phillips Loyola Marymount University Los Angeles, CA 90045 By using a corner reflector it is possible to perform an inversion or improper transformation thereby identifying

### sinusoidal electromagnetic waves

CH32: Electromagnetic Waves Maxwell s equations and electromagnetic waves sinusoidal electromagnetic waves Passage of electromagnetic waves through matter Energy and momentum of electromagnetic waves *(Not

### Physics 53. Wave Motion 1

Physics 53 Wave Motion 1 It's just a job. Grass grows, waves pound the sand, I beat people up. Muhammad Ali Overview To transport energy, momentum or angular momentum from one place to another, one can

### Abstract. Introduction. The formulas of the Doppler effect

1 Investigations on the Theory of the Transverse Doppler Effect Xing-Bin Huang College of Physics Science and Technology, Heilongjiang University, Harbin, Heilongjiang, China E-mail: huangxingbin@msn.com

### Investigation of the Equilibrium Speed Distribution of Relativistic Particles

I. Introduction Investigation of the Equilibrium Speed Distribution of Relativistic Pavlos Apostolidis Supervisor: Prof. Ian Ford Condensed Matter & Material Physics Dept. of Physics & Astronomy, UCL June-July

### Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### Special Relativity. Photo by Philippe Halsman. Used with permission from Mrs. P. Halsman.

Albert Einstein and the Miracle Year Special Relativity The year 1905 is often referred to as the Annus Mirabilis (or year of miracles). In this year, Albert Einstein, a 23-year old with an undergraduate

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Relativistic Doppler Effect and the Principle of Relativity

Apeiron, Vol. 10, No. 4, October 2003 29 Relativistic Doppler Effect and the Principle of Relativity W. Engelhardt a Abstract The frequency shifts predicted by the relativistic Doppler effect are derived

### Chapter 35. Electromagnetic Fields and Waves

Chapter 35. Electromagnetic Fields and Waves To understand a laser beam, we need to know how electric and magnetic fields change with time. Examples of timedependent electromagnetic phenomena include highspeed

### Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### For each component of the plasma we have Maxwell s equations and the fluid equations n t. = q(e + u B) mνu. (8.2)

Chapter 8 WAVES IN ISOTROPIC PLASMA 8.1 Introduction In this chapter, we use the fluid equations and Maxwell s equations to study wave propagation in cold and warm isotropic (unmagnetized) plasmas. For

### In this lecture. Magnetic Field. Magnetic Field. Moving Charges in a B-FieldB. Magnetism (Part II)

In this lecture Magnetism (Part II) Magnetic field Magnetic force on a moving charge Magnetic Field Lines Magnetism for MRI Magnetic Field Just as there is a field associated with electric charge there

### Fundamental Invalidity of all Michelson-Morley Type Experiments

Applied Physics Research; Vol. 8, No. 3; 2016 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Fundamental Invalidity of all Michelson-Morley Type Experiments 1 Independent

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction - Induction Experiments - Faraday s Law - Lenz s Law - Motional Electromotive Force - Induced Electric Fields - Eddy Currents - Displacement Current and Maxwell s Equations

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two fixed navigation beacons mark the approach lane to a star. The beacons are in line

### Special Theory of Relativity

Special Theory of Relativity Up to ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from

### 6 J - vector electric current density (A/m2 )

Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

### Conceptual Approaches to the Principles of Least Action

Conceptual Approaches to the Principles of Least Action Karlstad University Analytical Mechanics FYGB08 January 3, 015 Author: Isabella Danielsson Supervisors: Jürgen Fuchs Igor Buchberger Abstract We

### Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

1 of 8 2/29/2016 11:17 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

### Online Courses for High School Students 1-888-972-6237

Online Courses for High School Students 1-888-972-6237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,

### 1. Coordinates (x, t) in one frame are related to coordinates (x, t ) in another frame by the Lorentz transformation formulas.

Physics 00 Problem Set 7 Solution Quick overview: Although relativity can be a little bewildering, this problem set uses just a few ideas over and over again, namely. Coordinates x, t in one frame are

### SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement

### Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

### 1 Monday, October 24: Special Relativity Review

1 Monday, October 24: Special Relativity Review Personally, I m very fond of classical physics. As we ve seen recently, you can derive some very useful electromagnetic formulae without taking into account

### * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

### x 1 ' = x 1 vt 1 x 1 ' = 4.0 m t 1 = 1.0 s x 2 vt 2 ' = 4.0 m t 2 ' = x 2 = 3.0 s x 1 = x 2 x 1 ' + vt 1 ' + vt 2 v (t 1 t 2 ) = x 2 ' x 1 ' = x 2

Physics 2220 Module 16 Homework 01. A firecracker explodes in reference frame S at t 1 1.0 seconds. A second firecracker explodes at the same position at t 2 3.0 seconds. In reference frame S', which moves

### p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:

Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as

### Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Structure

### LAB 8: Electron Charge-to-Mass Ratio

Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

### physics 111N oscillations & waves

physics 111N oscillations & waves periodic motion! often a physical system will repeat the same motion over and over! we call this periodic motion, or an oscillation the time it takes for the motion to

### POTENTIAL FORMULATIONS IN MAGNETICS APPLYING THE FINITE ELEMENT METHOD. Lecture notes

MIKLÓS KUCZMANN POTENTIAL FORMULATIONS IN MAGNETICS APPLYING THE FINITE ELEMENT METHOD Lecture notes Laboratory of Electromagnetic Fields Széchenyi István University Győr, Hungary 2009. Contents 1 Introduction

### Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

### 20.1 Revisiting Maxwell s equations

Scott Hughes 28 April 2005 Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005 Lecture 20: Wave equation & electromagnetic radiation 20.1 Revisiting Maxwell s equations In our

### Wave Motion (Chapter 15)

Wave Motion (Chapter 15) Waves are moving oscillations. They transport energy and momentum through space without transporting matter. In mechanical waves this happens via a disturbance in a medium. Transverse

### Magnetostatics II. Lecture 24: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics II Lecture 4: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetic field due to a solenoid and a toroid A solenoid is essentially a long current loop

### The speed of the ball relative to O, which we call u, is found. u u' O'

Einstein s Theory of relativity The theory of relativity has two parts. The Special Theory of Relativity relates the measurements of the same events made by two different observers moving relative to each

### The Theory of Relativity

The Theory of Relativity L. Knutson April 28, 2009 1. Introduction The theory of relativity was first introduced in a publication by Albert Einstein in the year 1905. Einstein was 26 years old at the time

### Massachusetts Institute of Technology Department of Physics. Physics October Quiz 1

Massachusetts Institute of Technology Department of Physics Physics 8.033 17 October 2006 Quiz 1 Name: (Last, First) (please print). Recitation number (circle one): 1 2 3 Record all answers and show all

### PHY101 Physics Solved Objective final Term Papers For Final Term Exam

PHY101 Physics Solved Objective final Term Papers For Final Term Exam Question No: 1 ( Marks: 1 ) - Please choose one As a 2.0-kg block travels around a 0.50-m radius circle it has an angular speed of

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Introduction to Special Relativity

Introduction to Special Relativity Dr. Bob Gardner Great Ideas in Science (PHYS 2018) Notes based on Differential Geometry and Relativity Theory: An Introduction by Richard Faber 1 Chapter 2. Special Relativity:

### FVCC Physics I Laboratory. Inelastic and Elastic Collisions

FVCC Physics I Laboratory Inelastic and Elastic Collisions J.K. Boger September 18, 2013 1 Objective To observe and take data on both inelastic and nearly elastic collisions. Test the law of conservation

### People s Physics book

The Big Idea Quantum Mechanics, discovered early in the 20th century, completely shook the way physicists think. Quantum Mechanics is the description of how the universe works on the very small scale.

### Magnetism, a history. Existence of a Magnetic Field, B. Magnetic Force on a charged particle. The particle in the figure

Existence of a Magnetic Field, B Magnetic field, B, is a vector You may be familiar with bar magnets have a magnetic field similar to electric field of dipoles Amazing experimental finding: there is a

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### UNIT 28: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions

Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 28: ELECTROMAGNETIC WAVES AND POLARIZATION Approximate Time Three 100-minute Sessions Hey diddle diddle, what kind of riddle Is this nature of light?

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### Special Theory of Relativity

Special Theory of Relativity In ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from different,

### Lecture L1 - Introduction

S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L1 - Introduction Introduction In this course we will study Classical Mechanics and its application to aerospace systems. Particle motion in Classical

### CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

### Essay on Relative Velocity

Essay on Relative Velocity Physical Sciences>Physics>Relativity>relative velocity Observers can measure relative speed and direction {relative velocity} with respect to physical objects (and measurement

### Assessment Plan for Learning Outcomes for BA/BS in Physics

Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

### The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab.

The Charge to Mass Ratio (e/m) Ratio of the Electron NOTE: You will make several sketches of magnetic fields during the lab. Remember to include these sketches in your lab notebook as they will be part

### Electromagnetic Induction

. Electromagnetic Induction Concepts and Principles Creating Electrical Energy When electric charges move, their electric fields vary. In the previous two chapters we considered moving electric charges