How do populations evolve?... Are there any trends?...

Size: px
Start display at page:

Download "How do populations evolve?... Are there any trends?..."

Transcription

1

2

3 How do populations evolve?... Are there any trends?...

4 Gene pool: all of the genes of a population Allele frequency: the percentage of any particular allele in a gene pool A population in which an allele frequency remains the same over many generations is stable and is known as genetic equilibrium and therefore is NOT evolving

5 Gene pool: all of the genes of a population Allele frequency: the percentage of any particular allele in a gene pool Any factor affecting the genes in a gene pool will result in microevolution Evolution within a population/species FOUR factors affect evolutionary change

6 1. Natural Selection 2. Mutation 3. Gene Flow 4. Genetic Drift

7 According to the survival of the fittest, the best adapted phenotype is selected, favouring that particular set of alleles Selective Pressures Disease Climate conditions Food availability Predators Choice of mate

8 A. Stabilizing Selection: (most common) Limits evolutionary change by favouring the current population norm Examples: -human birth weights -ideal bill length in hummingbirds

9 B. Directional Selection: Produce evolutionary change by favouring individuals that differ from the population norm (in one direction) Common in artificial breeding Results from a sudden change in environment Example: -Salmon in B.C. (net fishing)

10 C. Disruptive Selection: Works the same as directional selection, but sometimes favours more than one trait (two directions) Example: -Finches in Africa food = soft and hard seeds

11 D. Sexual Selection: Selection favours individuals with variation of a trait that aids in the success of mating Leads to sexual dimorphism which is difference in physical appearance between males and females Example: -Peacock tails

12

13 1. A parrot population has only very large and very small tail feathers 2. A population of ducks lays eggs of intermediate mass 3. Most individuals in a population of hummingbirds have long beaks 4. A population includes only mediumsized spiders 5. The Peppered Moth

14 6. Most birds have extremely light weight and hollow bones 7. Trees in windy areas tend NOT to grow any bigger each year 8. The brain size of hominids steadily 9. The same species of butterflies tends to have blue stripes in open areas and orange stripes in forested areas 10. The average size of salmon due to over-fishing in British Columbia

15 1. A parrot population has only very large and very small tail feathers disruptive 2. A population of ducks lays eggs of intermediate mass stabilizing 3. Most individuals in a population of hummingbirds have long beaks directional 4. A population includes only medium-sized spiders stabilizing

16 5. The Peppered Moth directional 6. Most birds have extremely light weight and hollow bones directional 7. Trees in windy areas tend NOT to grow any bigger each year stabilizing 8. The brain size of hominids steadily directional

17 9. The same species of butterflies tends to have blue stripes in open areas and orange stripes in forested areas disruptive 10. The average size of salmon due to over-fishing in British Columbia directional

18 Occurs when individuals select mates based on their phenotypes Inbreeding: mating between relatives of a species Artificial selection: changes to a population caused by deliberate, selective breeding by humans Leads to Decreases ( ) diversity the frequency on inheriting recessive abnormalities vulnerability to disease and environmental change Long term outcomes of artificial selection hard to predict

19 Mutations: a change in the DNA A mutation provides new alleles and therefore produces new variation It is necessary for all other mechanisms of evolution a) Harmful mutations MOST common nature selects against them rare in the gene pool b) Beneficial mutations Occur rarely Nature selects for Accumulate in gene pool

20 Mutations: a change in the DNA A mutation provides new alleles and there produces new variation It I necessary for all other mechanisms of evolution a) Neutral mutations Nature selects neither for or against

21 Gene flow: transfer of alleles from one population to another via migration of individuals to and from existing populations

22 Genetic drift: changes of allele frequencies due to chance events which change population size; small populations are impacted more a) Bottleneck Effect Some chance even cause extreme in populations size (disease; natural disasters; human interference etc.) Result in loss of diversity Surviving genotypes are dictated by chance Example: Northern elephant seals (overhunting in 1890s)

23 Genetic drift: changes of allele frequencies due to chance events which change population size; small populations are impacted more b) Founder Effect Several individuals establish a new colony The new population is small with limited diversity The founder genotypes are dictated by chance Example: a few organisms migrate to a NEW location

24

25 The Hardy-Weinberg principle can be used to identify factors causing allele frequencies to change, leading to evolutionary change 1. Natural Selection (favours some allele) 2. Small population size 3. Mutation (introduces new alleles) 4. Migration (adds/removes alleles)

26 Mathematically, a gene pool can be described by the frequency of each of the alleles within the population This relationship between allele frequencies and the chance that they remain constant can be represented by an equation: A 2 + 2Aa + a 2 = 1 A=dominant a = recessive

27 A population of sunflower plants has only 2 alleles for the height gene. The allele frequency T is 20%. Determine the genotype frequencies (TT), (Tt), (tt) in this population.

28 In a sample of population of 500 peppered moths, determine the allele frequencies for the sampled counts listed below Genotype BB Bb bb # of moths (total = 500) Genotype frequency # of alleles in gene pool (total = 1000) Allele frequencies

29 1) A large population consists of 400 individuals, of which 289 are homozygous Dominant, 102 are heterozygous, and 9 are Homozygous Recessive. Determine the allele frequencies of M and m?

30 2)The gene pool of a large population of fruit flies contains only two eye-colour alleles; the dominant red eyes (W) and the recessive white alleles (w). Only 1% of the population has white eyes. Determine the allele and genotype frequencies of this population.

31 In a certain population of 1000 fruit flies, 640 have red eyes while the remainder have sepia eyes. The sepia eye trait is recessive to red eyes. How many individuals would you expect to be homozygous for red eye color?

32 R 2 + 2Rr + r 2 = 1 1) r 2 for this population is 360/1000 = ) r = 0.36 = 0.6 3) If r = 0.6, then R = 0.4 4) The homozygous dominant frequency = R 2 = (0.4)(0.4) = Therefore, you can expect 16% of 1000, or 160 individuals, to be homozygous dominant.

33

34

35 Speciation: the formation of a new species but how do brand new species evolve in the first place? ( The Blind Watchmaker) Recall the definitions of a species Requires the evolution of distinct, complex features CHANCE + CHOICE = (random change) (natural selection) Development of new complex features

36 1. Reproductive isolating mechanism: any biological factor preventing 2 species from exchanging genes Prezygotic mechanisms - prevents hybrid offspring formation o o o o o Habitat isolation Temporal isolation Behavioural isolation Mechanical isolation Gamete isolation

37 1. Reproductive isolating mechanism: any biological factor preventing 2 species from exchanging genes Postzygotic mechanisms - prevents hybrid offspring surviving and reproducing o Hybrid inviability o Hybrid sterility o Hybrid breakdown

38 Whenever reproductive isolation develops, separate species have formed and speciation has occurred

39 2. Allopatric speciation: populations evolve into separate species as a result of geographic isolation (occurs gradually) 3. Sympatric speciation: populations evolve into separate species while in the same geographic area (gradual or sudden) Example: Hawthorn flies +apples

40 VIDEO

41 Predictable outcomes of natural selection lead to recognizable patterns A. Divergent evolution: Populations that were once similar evolve into many different species Occurs as a result of adapting to different environmental conditions

42 Predictable outcomes of natural selection lead to recognizable patterns Adaptive evolution: A type of divergent evolution in which a single species evolves into many new species; each filling an empty ecological niche Occurs because new resources become available or competition

43 Predictable outcomes of natural selection lead to recognizable patterns B. Convergent evolution: Unrelated species evolve similar traits Occurs because they occupy similar niches in different geological locations

44 Predictable outcomes of natural selection lead to recognizable patterns C. Coevolution: One species evolves in response to the evolution of another species Occurs because they are dependent on one another for survival Example: Flowers and pollinators, parasites and host

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

11.1 KEY CONCEPT A population shares a common gene pool.

11.1 KEY CONCEPT A population shares a common gene pool. 11.1 KEY CONCEPT A population shares a common gene pool. Why it s beneficial: Genetic variation leads to phenotypic variation. It increases the chance that some individuals will survive Phenotypic variation

More information

Microevolution: The mechanism of evolution

Microevolution: The mechanism of evolution Microevolution: The mechanism of evolution What is it that evolves? Not individual organisms Populations are the smallest units that evolve Population: members of a species (interbreeding individuals and

More information

Chapter 16 How Populations Evolve

Chapter 16 How Populations Evolve Title Chapter 16 How Populations Evolve Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Population Genetics A population is all of the members of a single species

More information

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 Key Terms: gene flow, non-random mating, genetic drift, founder effect, bottleneck effect, stabilizing selection, directional selection

More information

Copyright 2011 Pearson Education, Inc.

Copyright 2011 Pearson Education, Inc. Genetic Composition of Populations Five factors alter allele frequencies and bring about evolutionary change Genetic drift Gene flow Mutations Sexual selection Natural selection Very large population No

More information

Evolution and Darwin

Evolution and Darwin Evolution and Darwin Evolution The processes that have transformed life on earth from it s earliest forms to the vast diversity that characterizes it today. A change in the genes!!!!!!!! Old Theories of

More information

Theories of Evolution: A Brief History (take notes from classmates presentations)

Theories of Evolution: A Brief History (take notes from classmates presentations) Packet Theories of : A Brief History (take notes from classmates presentations) Carl Linnaeus (1707-1778) William Paley (1743-1805) Georges Cuvier (1769-1832) Thomas Malthus (1766-1834) Jean Baptiste Lamarck

More information

Population Genetics (Outline)

Population Genetics (Outline) Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

More information

Chapter 25: Population Genetics

Chapter 25: Population Genetics Chapter 25: Population Genetics Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the concept of a population and polymorphism in populations. 2. Apply the

More information

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits.

Ch. 13 How Populations Evolve Period. 4. Describe Lamarck s proposed theory of evolution, The Theory of Acquired Traits. Ch. 13 How Populations Evolve Name Period California State Standards covered by this chapter: Evolution 7. The frequency of an allele in a gene pool of a population depends on many factors and may be stable

More information

Population Genetics: Changes in the Gene Pool and Gene Frequency

Population Genetics: Changes in the Gene Pool and Gene Frequency Biology 11 Name: Population Genetics: Changes in the Gene Pool and Gene Frequency Evolution through natural selection describes how populations change over time but it is not the only way that populations

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 Review Evolution by Natural Selection new variants

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Evolution Q: How can populations evolve to form new species? 17.1 How do genes make evolution possible? WHAT I KNOW SAMPLE ANSWER: There are different variations of the same gene.

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

More information

The Origin of Species. Chapter 16

The Origin of Species. Chapter 16 The Origin of Species Chapter 16 Species Species is defined as a group of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups (biological

More information

Allopatric speciation is the evolution of reproductive barriers between populations that are geographically separated.

Allopatric speciation is the evolution of reproductive barriers between populations that are geographically separated. Speciation For one species to become two, separate populations of the same species must become reproductively isolated. For reproductive isolation to evolve, some change must occur in one or both lineages

More information

Lecture 10 Friday, March 20, 2009

Lecture 10 Friday, March 20, 2009 Lecture 10 Friday, March 20, 2009 Reproductive isolating mechanisms Prezygotic barriers: Anything that prevents mating and fertilization is a prezygotic mechanism. Habitat isolation, behavioral isolation,

More information

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below.

11.1. A population shares a common gene pool. The Evolution of Populations CHAPTER 11. Fill in the concept map below. 11.1 GENETIC VARIATION WITHIN POPULATIONS Study Guide KEY CONCEPT A population shares a common gene pool. VOCABULARY gene pool allele frequency MAIN IDEA: Genetic variation in a population increases the

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

CAMPBELL BIOLOGY. Chapter 13

CAMPBELL BIOLOGY. Chapter 13 Lecture 10 Population Genetics CAMPBELL BIOLOGY Chapter 13 Hox Genes Control development Hox genes need to be highly regulated to get expressed at the right time and correct level to orchestrate mammalian

More information

Evolution Part 1. Unit 10 Miss Wheeler

Evolution Part 1. Unit 10 Miss Wheeler Evolution Part 1 Unit 10 Miss Wheeler Evolution Evolution- The process by which organisms have changed (and will continue changing) over time Charles Darwin- Father of Evolution Traveled for 5 years on

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section B: Causes of Microevolution

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section B: Causes of Microevolution CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section B: Causes of Microevolution 1. Microevolution is generation-to-generation change in a population s allele frequencies 2. The two main causes of microevolution

More information

Ch.16-17 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch.16-17 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Ch.16-17 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following statements describe what all members of a population

More information

Chapter 10. The Theory of Evolution Worksheets. (Opening image copyright Daniel Korzeniewski, Used under license from Shutterstock.com.

Chapter 10. The Theory of Evolution Worksheets. (Opening image copyright Daniel Korzeniewski, Used under license from Shutterstock.com. Chapter 10 The Theory of Evolution Worksheets (Opening image copyright Daniel Korzeniewski, 2010. Used under license from Shutterstock.com.) Lesson 10.1: Darwin and the Theory of Evolution Lesson 10.2:

More information

Quiz #4 Ch. 4 Modern Evolutionary Theory

Quiz #4 Ch. 4 Modern Evolutionary Theory Physical Anthropology Summer 2014 Dr. Leanna Wolfe Quiz #4 Ch. 4 Modern Evolutionary Theory 1. T/F Evolution by natural selection works directly on individuals, transforming populations. 2. T/F A genotypic

More information

Population Genetics. Outline. Key Concepts: How does a population evolve?

Population Genetics. Outline. Key Concepts: How does a population evolve? Population Genetics How does a population evolve? Outline 1. Key Concepts 2. Individuals Don t evolve, Populations Do 3. The Hardy-Weinberg Theorem 4. The Microevolution and Natural Selection 5. Genetic

More information

Population Genetics and Evolution - Practice

Population Genetics and Evolution - Practice Name: Period: Date: Population Genetics and Evolution - Practice Multiple Choice Identify the choice that best completes the statement or answers the question. Indicate your answer choice with an UPPER

More information

Chapter 8 Population Genetics: How do Genes Move through Time and Space?

Chapter 8 Population Genetics: How do Genes Move through Time and Space? Chapter 8 Population Genetics: How do Genes Move through Time and Space? 4/29/2009 Chun-Yu Chuang How Do We Characterize Variation? Variation can be smooth or discontinuous. Two views of biology Naturalists

More information

How Populations Evolve

How Populations Evolve How Populations Evolve Darwin and the Origin of the Species Charles Darwin published On the Origin of Species by Means of Natural Selection, November 24, 1859. Darwin presented two main concepts: Life

More information

Allele Frequencies: Changing. Chapter 15

Allele Frequencies: Changing. Chapter 15 Allele Frequencies: Changing Chapter 15 Changing Allele Frequencies 1. Mutation introduces new alleles into population 2. Natural Selection specific alleles are more likely to be passed down because they

More information

Teacher Notes. Biology 30 Unit 4 Population Genetics

Teacher Notes. Biology 30 Unit 4 Population Genetics Biology 30 Unit 4 Population Genetics General Outcome D1: Students will describe a community as a composite of populations in which individuals contribute to a gene pool that can change over time. A. Genetic

More information

Speciation factsheet. What is a species?

Speciation factsheet. What is a species? What is a species? A species is a group of interbreeding individuals that share a gene pool and are reproductively isolated from other species. It is impossible to determine whether two organisms are from

More information

Activity 2.4 Text:Campbell,v.8,chapter24 SPECIATION SPECIES BIOLOGICAL CONCEPT REPRODUCTIVE BARRIERS PREZYGOTIC: Evolution Activity 2.

Activity 2.4 Text:Campbell,v.8,chapter24 SPECIATION SPECIES BIOLOGICAL CONCEPT REPRODUCTIVE BARRIERS PREZYGOTIC: Evolution Activity 2. AP BIOLOGY Activity 2.4 Text:Campbell,v.8,chapter24 NAME DATE HOUR SPECIATION SPECIATION SPECIES BIOLOGICAL CONCEPT REPRODUCTIVE BARRIERS PREZYGOTIC: Evolution Activity 2.4 page 1 POSTZYGOTIC: MODES OF

More information

Species Concepts and Speciation

Species Concepts and Speciation Species Concepts and Speciation Speciation - Contents What are species? Definitions and concepts. Forms of speciation. Reproductive isolating mechanisms. Clines and ring species. How many species are there?

More information

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics

Chapter 23. (Mendelian) Population. Gene Pool. Genetic Variation. Population Genetics 30 25 Chapter 23 Population Genetics Frequency 20 15 10 5 0 A B C D F Grade = 57 Avg = 79.5 % (Mendelian) Population A group of interbreeding, sexually reproducing organisms that share a common set of

More information

Evolution, Natural Selection, and Speciation D. L. A. Underwood Biology Entomology. A. Adaptation. 4. Adaptedness is at the phenotypic level.

Evolution, Natural Selection, and Speciation D. L. A. Underwood Biology Entomology. A. Adaptation. 4. Adaptedness is at the phenotypic level. Evolution, Natural Selection, and Speciation D. L. A. Underwood Biology 316 - Entomology A. Adaptation 1. Three definitions: a. Any behavioral, morphological, or physiological trait that is assumed to

More information

Workshop on Microevolution

Workshop on Microevolution Workshop on Microevolution by Dana Krempels I. Discuss the meaning of: a. species f. heritable traits (consider "nature vs. nurture") b. population g. lethal alleles c. gene pool h. adaptive, maladaptive,

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

Speciation. Mechanisms of Isolation. Overview

Speciation. Mechanisms of Isolation. Overview 1 Speciation Overview For convenience, we can analyze speciation as a three-step process: 1) an initial step that isolates populations; 2) a second step that results in the divergence of characteristics

More information

Section Review 15-1 1.

Section Review 15-1 1. Section Review 15-1 1. Beagle 2. theory of evolution 3. varied 4. Darwin s curiosity might have led him to make many observations and ask questions about the natural world. His analytical nature may have

More information

Another way to think about it: Species are the cross-sections of branches on the tree of life. We can only experience species as snapshots in time

Another way to think about it: Species are the cross-sections of branches on the tree of life. We can only experience species as snapshots in time We can only experience species as snapshots in time Another way to think about it: Species are the cross-sections of branches on the tree of life. What would it look like if we could zoom in on the branches

More information

For a particular allele N, its frequency in a population is calculated using the formula:

For a particular allele N, its frequency in a population is calculated using the formula: Date: Calculating Allele Frequency Definitions: Allele frequency is a measure of the relative frequency of an allele in a population. Microevolution is defined as the change in the frequency of alleles

More information

Wilmot Evolution Review

Wilmot Evolution Review Wilmot Evolution Review Name- 1. Define species- group of organisms that can interbreed and produce fertile offspring 2. What was Jean Baptiste de Lamark s contribution to evolution? Theory of Acquired

More information

II B. Gene Flow. II C. Assortative Mating. II D. Genetic Drift. II E. Natural Selection. Northern Elephant Seal: Example of Bottleneck

II B. Gene Flow. II C. Assortative Mating. II D. Genetic Drift. II E. Natural Selection. Northern Elephant Seal: Example of Bottleneck I. What is Evolution? Agents of Evolutionary Change The Five Forces of Evolution and How We Measure Them A. First, remember that Evolution is a two-stage process: 1. Production and redistribution of variation

More information

Evolution and the Origin of New Species

Evolution and the Origin of New Species Evolution and the Origin of New Species The Species Concept A. Taxonomy 1. The science of classifying organisms based on their relationships with one another B. Species 1. A population or group of populations

More information

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas.

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas. GENETICS Genetics The study of heredity. Gregor Mendel (1860 s) discovered the fundamental principles of genetics by breeding garden peas. Genetics Alleles 1. Alternative forms of genes. 2. Units that

More information

What is evolution? - Helena Curtis and N. Sue Barnes, Biology, 5th ed. 1989 Worth Publishers, p.974

What is evolution? - Helena Curtis and N. Sue Barnes, Biology, 5th ed. 1989 Worth Publishers, p.974 Chapter 16 What is evolution? Evolution is a process that results in heritable changes in a population spread over many generations. Evolution can be precisely defined as any change in the frequency of

More information

Speciation Adaptive landscapes. Speciation Adaptive landscapes. Speciation Adaptive landscapes. Speciation Adaptive landscapes

Speciation Adaptive landscapes. Speciation Adaptive landscapes. Speciation Adaptive landscapes. Speciation Adaptive landscapes Adaptive landscapes 1 Adaptive landscapes 2 Selection will tend to move populations in the direction of increased fitness. Selection isn t always directional: sometimes there is an optimal phenotype (or

More information

Allopatric Speciation Evolution Biology 4974/597 D.F. Tomback

Allopatric Speciation Evolution Biology 4974/597 D.F. Tomback Biology 4974/5974 Evolution Allopatric Speciation And Hybridization Grant and Grant 2002 R.J. Abbott (2003)Science 302: 1189-1190 Learning goals Learning Goals--Know and understand: The reproductive isolating

More information

Lecture 22 Speciation

Lecture 22 Speciation Lecture 22 Speciation These facts seemed to me to throw some light on the origin of species that mystery of mysteries. C. Darwin The Origin What is speciation? in Darwin s words, speciation is the multiplication

More information

Population Genetics page 1

Population Genetics page 1 Population Genetics page 1 Objectives Learn basic principles of population genetics and microevolution through the use of a computer model. Pre-lab assignment Before lab, read the introductory material

More information

Applications in population genetics. Hanan Hamamy Department of Genetic Medicine and Development Geneva University

Applications in population genetics. Hanan Hamamy Department of Genetic Medicine and Development Geneva University Applications in population genetics Hanan Hamamy Department of Genetic Medicine and Development Geneva University Training Course in Sexual and Reproductive Health Research Geneva 2013 Population genetics

More information

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment TEST NAME: Genetics unit test TEST ID: 437885 GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment Genetics unit test Page 1 of 12 Student: Class: Date: 1. There are four blood

More information

Darwin & His Theories

Darwin & His Theories Darwin & His Theories The Origin of Species In 1859, Darwin publish his ideas in a book, The Origin of Species Stated animals and plants changed gradually over time; still changing. Animals living today

More information

Non-Disjunction Review. tent/animations/content/mistakesmei osis/mistakesmeiosis.html

Non-Disjunction Review.  tent/animations/content/mistakesmei osis/mistakesmeiosis.html Non-Disjunction Review http://www.sumanasinc.com/webcon tent/animations/content/mistakesmei osis/mistakesmeiosis.html Lesson# 1.6- Genetic Diversity and Heredity Gregor Mendel (1822-1884) Pioneer of genetics

More information

Chapter 2: Traits and How They Change

Chapter 2: Traits and How They Change Table of Contents Chapter 2: Traits and How They Change Section 2: Genetics Heredity x Genetics Mendel s experiments Punnett Square REVIEW: Genes are sections of DNA Genes have different Alleles A gene

More information

CH. 15: Darwin s Theory of Evolution. Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below.

CH. 15: Darwin s Theory of Evolution. Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below. CH. 15: Darwin s Theory of Evolution Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below. 1. What is a theory? 2. Describe some of the ideas that influenced

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2014-15 EVOLUTIONARY BIOLOGY BIO- 5008B / BIO-2B10 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS

More information

Introduction to Biological Anthropology: Notes 5 What are species and how do they arise? Copyright Bruce Owen 2009 Two ways to look at evolution We

Introduction to Biological Anthropology: Notes 5 What are species and how do they arise? Copyright Bruce Owen 2009 Two ways to look at evolution We Introduction to Biological Anthropology: Notes 5 What are species and how do they arise? Copyright Bruce Owen 2009 Two ways to look at evolution We can look at it up close as we did with the minor variations

More information

LAB 11 Natural Selection (version 2)

LAB 11 Natural Selection (version 2) LAB 11 Natural Selection (version 2) Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you

More information

Genetics (20%) Sample Test Prep Questions

Genetics (20%) Sample Test Prep Questions Genetics (20%) Sample Test Prep Questions Grade 7 (2a Genetics) Students know the differences between the life cycles and reproduction methods of sexual and asexual organisms. (pg. 106 Science Framework)

More information

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE THE ROLE OF DNA IN INHERITANCE (2013:2) (a) Use the diagram above to help you explain the relationship

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157)

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2013 page 1 of 5 Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria with with Excellence Demonstrate understanding

More information

HONORS BIOLOGY 2A Lab: Speciation

HONORS BIOLOGY 2A Lab: Speciation HONORS BIOLOGY 2A Lab: Speciation Introduction: As natural selection acts upon the variations present in a population, certain phenotypes are favored in terms of survival and, more importantly, their ability

More information

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1

Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Population Genetics -- Evolutionary Stasis and the Hardy-Weinberg Principles 1 Review and Introduction Mendel presented the first successful theory of the inheritance of biological variation. He viewed

More information

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines

Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains

More information

Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) NCEA Level 1 Science (90948) 2012 page 1 of 5 Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Assessment Criteria ONE (a) (b) DNA contains

More information

205. POPULATION GENETICS

205. POPULATION GENETICS 205. POPULATION GENETICS Evolution can be defined as the change in allele frequencies in a population. For this definition to be useful, we must also define the terms "allele frequency" and "population".

More information

Evolution of Phenotypes

Evolution of Phenotypes Evolution of Phenotypes [Background section about the Grant s study of finches on the Galapagos] [see Beak of the Finch].. Daphne Island in the Galapagos Four species of Galapagos finches Peter Grant with

More information

MORE HARDY-WEINBERG PROBLEMS THAN YOU CAN SHAKE A STICK AT!

MORE HARDY-WEINBERG PROBLEMS THAN YOU CAN SHAKE A STICK AT! MORE HARDY-WEINBERG PROBLEMS THAN YOU CAN SHAKE A STICK AT! 1. In a certain flock of sheep, 4% of the population has black wool and 96% has white wool. If black wool is a recessive trait, what percent

More information

Population Genetics INTRODUCT ION:

Population Genetics INTRODUCT ION: Population Genetics INTRODUCT ION: An understanding of evolution depends upon knowledge of population genetics. If you have ever asked questions such as the ones that follow, you begin to see why studying

More information

Topic 6: Genetics. 1. The transfer of genes from parents to their offspring is known as

Topic 6: Genetics. 1. The transfer of genes from parents to their offspring is known as 1. The transfer of genes from parents to their offspring is known as 5. The diagram below represents a reproductive process that takes place in humans. (1) differentiation (2) heredity (3) immunity (4)

More information

Practice Questions 1: Evolution

Practice Questions 1: Evolution Practice Questions 1: Evolution 1. Which concept is best illustrated in the flowchart below? A. natural selection B. genetic manipulation C. dynamic equilibrium D. material cycles 2. The diagram below

More information

What two Assumptions did Darwin have to arrive at BEFORE he could form his theories of evolution?

What two Assumptions did Darwin have to arrive at BEFORE he could form his theories of evolution? Influences on Darwin s Thinking: What ideas did each of the listed names below contribute to Darwin s thinking about evolution? (very brief) Georges Buffon: Jean Baptiste Lamarck: Charles Lyell: Thomas

More information

Evolution and Origin of Biodiversity: Patterns of Descent with Modification

Evolution and Origin of Biodiversity: Patterns of Descent with Modification Evolution and Origin of Biodiversity: Patterns of Descent with Modification by CHED on January 10, 2017 lesson duration of 20 minutes under General Biology 2 generated on January 10, 2017 at 04:19 am Tags:

More information

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) NCEA Level 1 Science (90948) 2013 page 1 of 7 Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Evidence Statement Expected Coverage

More information

Follow up on feedback & independent project drafts Follow up on minute papers Species concepts (cont.)

Follow up on feedback & independent project drafts Follow up on minute papers Species concepts (cont.) Spring 2014: Mondays 10:15am 12:05pm (Fox Hall, Room 204) Instructor: D. Magdalena Sorger Website: theantlife.com/teaching/bio295-islands-evolution LECTURE 10 Today: Follow up on feedback & independent

More information

Name Period Date GENETICS

Name Period Date GENETICS Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

More information

not to be republished NCERT Heredity and Evolution CHAPTER 9 Multiple Choice Questions

not to be republished NCERT Heredity and Evolution CHAPTER 9 Multiple Choice Questions CHAPTER 9 Heredity and Evolution Multiple Choice Questions 1. Exchange of genetic material takes place in (a) vegetative reproduction (b) asexual reproduction (c) sexual reproduction (d) budding 2. Two

More information

BIO152 Term Test 1 10 of 10

BIO152 Term Test 1 10 of 10 1. A scientific theory is a. An observation leading to a strong hypothesis. b. A conjecture, idea or hypothesis of how something works or how it came to be. c. An educated guess about something; it is

More information

Ninja Sea Turtles Lab A simulation of population genetics

Ninja Sea Turtles Lab A simulation of population genetics Name Date I. Introduction Ninja Sea Turtles Lab A simulation of population genetics Created by Amanda Tsoi Somerville High School, MA Which type of population will survive better: a group that has a lot

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Evolution: The process by which organism change over time. Based on science, not opinion.

Evolution: The process by which organism change over time. Based on science, not opinion. Evolution Evolution: The process by which organism change over time. Based on science, not opinion. Darwin: Evolution is descent with modification Evolution: changes through time 1. Species accumulate

More information

Paving the way for Darwin

Paving the way for Darwin Evolution and Natural Selection Introduction to Natural Selection History of Evolutionary Thought Theory of Natural Selection Examples of Natural Selection Chapters 1.4-1.6, Bush Introduction to Natural

More information

SPECIATION JERRY A. COYNE. University of Chicago H. ALLEN ORR. University of Rochester

SPECIATION JERRY A. COYNE. University of Chicago H. ALLEN ORR. University of Rochester SPECIATION JERRY A. COYNE University of Chicago H. ALLEN ORR University of Rochester Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Contents Introduction 1 1 Species: Reality and

More information

Introduction to genetics

Introduction to genetics Introduction to genetics Biology chapter 11 Mr. Hines 11.1 The work of Gregor Mendel What makes you unique? A. Nearly all living things are unique in some way. B. Humans for example all have different

More information

Natural Selection. (1) variation in a trait between individuals (2) a relationship between the trait and reproductive success

Natural Selection. (1) variation in a trait between individuals (2) a relationship between the trait and reproductive success 1 Natural Selection Background Processes we've talked about so far (e.g.,, genetic sampling error, inbreeding, and gene flow) affect allele frequencies and/or genotype frequencies within a population,

More information

A Hands-On Exercise To Demonstrate Evolution

A Hands-On Exercise To Demonstrate Evolution HOW-TO-DO-IT A Hands-On Exercise To Demonstrate Evolution by Natural Selection & Genetic Drift H ELEN J. YOUNG T RUMAN P. Y OUNG Although students learn (i.e., hear about) the components of evolution by

More information

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences.

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences. Q. The diagrams show one of Mendel s experiments. He bred pea plants. Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following

More information

Ch 5. Evolution, Biodiversity, and Population Ecology. This lecture will help you understand:

Ch 5. Evolution, Biodiversity, and Population Ecology. This lecture will help you understand: Ch 5 Evolution, Biodiversity, and Population Ecology Part 1: Foundations of Environmental Science PowerPoint Slides prepared by Jay Withgott and Heidi Marcum Copyright 2008 2006 Pearson Education, Inc.,

More information

Topic 1 Classification, Variation and Inheritance

Topic 1 Classification, Variation and Inheritance Topic 1 Classification, Variation and Inheritance How are organisms classified? Kingdom (Animalia, Plantae, Fungi, Prokaryotae (bacteria), Protoctista) Phylum Class Order Family always ends ae or ea Genus

More information

Continuous and discontinuous variation

Continuous and discontinuous variation Continuous and discontinuous variation Variation, the small differences that exist between individuals, can be described as being either discontinuous or continuous. Discontinuous variation This is where

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis?

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis? Name Period GENERAL BIOLOGY Second Semester Study Guide Chapters 3, 4, 5, 6, 11, 14, 16, 17, 18 and 19. SEXUAL REPRODUCTION AND MEIOSIS 1. What is the purpose of meiosis? 2. Distinguish between diploid

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

Furry Family Pre-Test Questions

Furry Family Pre-Test Questions Furry Family Pre-Test Questions Name: Period: Date: 1) When will a recessive trait show its effect? a. Even if no recessive genes for that trait are present b. In the presence of one recessive gene c.

More information

Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement

Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement NCEA Level 2 Biology (91157) 2014 page 1 of 5 Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement NCEA Level 2 Biology (91157) 2014 page

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information