Computer Networks I. Transmission Media

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Computer Networks I. Transmission Media"

Transcription

1 Version 2/21/11 Computer Networks I application transport network Transmission Media link physical

2 Computer Networks I 2 Outline Some informal definitions Guide Media Unguided Media: Wireless References

3 Computer Networks I 3 Transmission medium Anything that can carry information from a source to a destination Background 19 th century - Morse's telegraph (metallic medium) 1869 Bell's telephone (also metallic medium) 1895 Hertz radio transmission (wireless) Later Marconi applied Hertz discover to the telegraph Physical layer Transmission channel Physical layer Cable or air

4 Computer Networks I 4 Transmission channel Data are transmitted through electromagnetic waveform propagation Channels have limited transmission capacity (bandwidth) And take certain delay to reach the destination Signals in the channel can be affected by Noise Atenuation Distorsion

5 Computer Networks I 5 Bandwidth Amount of information that can flow through a connection in a limited time It matters because Is limited by physics & technology Is not free Requirements grow at a rapid rate Critical to network performance

6 Computer Networks I 6 Bandwidth Measured in bits per second (bps) Depends mainly: on the transmission medium type of technology and protocol

7 Computer Networks I 7 Bandwidth For analog communications It is expressed using a range: Ex: 3 khz to 300 khz And measured in Hertz (Hz)

8 Computer Networks I 8 Transmission media Transmission Media Guided (wired) Unguided (wired) Twisted-pair cable Coaxial cable Fiber-optic cable Free space

9 Computer Networks I 9 Guided media Source and destination linked through a conduit Metallic conduit Twisted-pair cable Coaxial cable Glass/plastic conduit Fiber-optic cable

10 Computer Networks I 10 Twisted pair Twisting provides shielding against noise & interferences The most common type is unshielded twisted-pair (UTP) The standard categorizes the UTP into 7 classes Category Bandwidth Applications Cat1 0.4 MHz Telephone and modem lines Cat2? MHz Older terminal systems, e.g. IBM 3270 Cat3 16MHz 10BASE-T and 100BASE-T4 Ethernet Cat4 20MHz 16 Mbit/s Token Ring Cat5 100MHz 100BASE-TX & 1000BASE-T Ethernet Cat5e 100MHz 100BASE-TX & 1000BASE-T Ethernet Cat6 250MHz 1000BASE-T Ethernet Cat6e 250MHz 10GBASE-T (under development) Ethernet Cat6a 500MHz 10GBASE-T (under development) Ethernet Cat7 600MHz No applications yet. Cat7a 1200MHz Telephone, CATV, 1000BASE-T in the same cable.

11 Computer Networks I 11 Cable specifications T: twisted-pair F: Fiber-Optic 10 BASE-T

12 Computer Networks I 12 Twisted pair The most common UTP connector is the RJ45 Performance: Relation between attenuation (db/km) and frequency Sharply decreases with frequencies above 100KHz Applications Voice & data through telephone lines DSL for high-bandwidth Local area networks

13 Computer Networks I 13 Coaxial cable Supports higher frequency signal ranges than twisted-pair Most common connector BNC Performance Higher bandwidth than twisted-pair But also higher attenuation Applications Digital telephonic networks (nowadays replaced) Local area networks (10Base-2) Cable TV

14 Computer Networks I 14 Fiber-Optic cable Made of glass or plastic Signals are transmitted in the form of light, using refraction capabilities of the material Multimode (multiple beams using different paths) Single Mode

15 Computer Networks I 15 Fiber-Optic cable Performace: Up to 1600Gps data transfers. Limited by the electronics, not the medium Better attenuation than twisted-pair. 10 times less repeaters for the same cable length Applications Backbone networks (good relationship between bandwidth & cost) Cable TV Local-area networks 100Base-Fx 1000Base-X

16 Computer Networks I 16 Fiber-Optic cable Other advantages Immunity to electromagnetic interference Resistance to corrosive materials Light weight Some disadvantages Installation & maintenance expertise required Unidirectional light propagation Cost. Only justifiable for high-bandwidth requirements

17 Computer Networks I 17 Guided media comparison Coaxial cable Hardly used nowadays Fiber-Optic cable Highest bandwidth but the most expensive Immune to electromagnetic distortions Twisted-pair cable Easy to connect Cheap electronics

18 Computer Networks I 18 Unguided media Transport electromagnetic waves without a physical conductor Also referred as wireless communication Use a part of the electromagnetic spectrum

19 Computer Networks I 19 Wireless propagation methods Ground propagation: Lowest portion of the atmosphere Signals follow the curvature of the earth Sky propagation Higher frequency signals raise up to the ionosphere Greater distance with lower output power. Line-of-sight (visual) propagation Highest frequency but shorter range

20 Computer Networks I 20 Wireless bands Band Range Propagation Application VLF (very low frequency) 3-30 Khz ground Long-range radio navigation LF (low frequency) Khz ground Radio beacons & navigational locators MF (middle frequency) 300 Khz 3 Mhz sky AM radio HF (high frequency) 3-30 Mhz sky Citizens band (CB), shift/spacecraft comm. VHF (very high frequency) Mhz Sky & line-of-sight VHF-TV, FM radio UHF (ultrahigh frequency) 300 Mhz 3 Ghz Line-of-sight UHF-TV, cellular phones, satellite SHF (superhigh frequency) 3-30 Ghz Line-of-sight Satellite comm. EHF (extremely high frequency Ghz Line-of-sight Radar, satellite

21 Computer Networks I 21 Wireless transmission waves Wireless transmission Radio wave Microwave Infrared

22 Computer Networks I 22 Radio wave They range from 3 khz to 1 GHz Transmitted through omnidirectional antennas Can travel long distances and penetrate walls (good for AM radio, for instance) Very sensible to interference Almost the entire band is regulated form authorities Applications: TV & radio broadcasting Cordless phones

23 Computer Networks I 23 Microwave They range from 1 GHz to 300 GHz Unidirectional => Antennas must be aligned Propagation is line-of-sight (earth curvature is a problem) Cannot penetrate walls Higher data range than radio waves Part of the spectrum is regulated form authorities

24 Computer Networks I 24 Infrared They range from 300 GHz to 400 THz Used for short range communication Low interference between different systems Very high data rate

25 Computer Networks I 25 References B.F. Transmisión de datos y redes de comunicaciones, 3th edition Chapter 7 A.S. Redes de computadores. Pearson, 4th edition, Chapter 2: Sections 2.2 and 2.3 CISCO Networking Academy e-learning. Module 8 CCNA Exploration All unlabeled figures are taken from the Wikipedia.

JARINGAN KOMPUTER I Modul 3 Transmission Media

JARINGAN KOMPUTER I Modul 3 Transmission Media JARINGAN KOMPUTER I Modul 3 Transmission Media 1 A Digital Signal Abas A. Pangera: Network1-02 : 2 Bit Rate and Bit Interval Abas A. Pangera: Network1-02 : 3 An Analog Signal Abas A. Pangera: Network1-02

More information

Chapter 7: Transmission Media

Chapter 7: Transmission Media Chapter 7: Transmission Media Abdullah Konak School of Information Sciences and Technology Penn State Berks Learning Objectives Describe and be familiar the various transmission media A. Konak IST 220/Ch7:

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may be used

More information

Transmission Media. Dr Steve Gordon ICT, SIIT

Transmission Media. Dr Steve Gordon ICT, SIIT Transmission Media Dr Steve Gordon ICT, SIIT Guided Media Twisted Pair Coaxial Cable Optical Fibre Unguided Media Contents Concepts: Antennas and Propagation Terrestrial Microwave Satellite Microwave Broadcast

More information

TRANSMISSION MEDIA. TRANSMISSION MEDIA 2- December -2014

TRANSMISSION MEDIA. TRANSMISSION MEDIA 2- December -2014 TRANSMISSION MEDIA Transmission media are actually located below the physical layer and are directly controlled by the physical layer. We could say that transmission media belong to layer zero. Figure

More information

Transmission Media. Raj Jain. Washington University in St. Louis.

Transmission Media. Raj Jain. Washington University in St. Louis. Transmission Media Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 4-1 Overview Electromagnetic

More information

Transmission Media. Dr. Indranil Sen Gupta Transmission Media Slide 1

Transmission Media. Dr. Indranil Sen Gupta Transmission Media Slide 1 Transmission Media Dr. Indranil Sen Gupta Transmission Media Slide 1 Introduction Physical path between transmitter and receiver in a data transmission system. May be classified into two types: Guided:-

More information

Chapter 4 Transmission Media

Chapter 4 Transmission Media Chapter 4 Transmission Media Overview transmission medium is the physical path between transmitter and receiver guided media guided along a solid medium unguided media atmosphere, space, water characteristics

More information

Design Factors. Guided Transmission Media. Electromagnetic Spectrum for Telecom. Chapter 4 Transmission Media. Bandwidth:

Design Factors. Guided Transmission Media. Electromagnetic Spectrum for Telecom. Chapter 4 Transmission Media. Bandwidth: Chapter 4 Transmission Media Overview Guided wire (twisted pair, coaxial cable, optical fiber) Unguided wireless (broadcast radio, terrestrial microwave, satellite) Characteristics & quality of data transmission

More information

Transmission Media CIS748 Class Notes

Transmission Media CIS748 Class Notes Transmission Media CIS748 Class Notes Alex S. 1 Introduction Signals need something to travel though. The electromagnetic spectrum is filled with many different kinds of energies. The low frequencies are

More information

Introduction t o to Wireless Wireless Communication

Introduction t o to Wireless Wireless Communication Introduction to Wireless Communication History of wireless communication Guglielmo Marconi invented the wireless telegraph in 1896 Communication by encoding alphanumeric characters in analog signal Sent

More information

Cabling and Connectors

Cabling and Connectors Cabling and Connectors General media considerations Broadband versus baseband Baseband transmissions use digital signaling and Time Division Multiplexing (TDM) Broadband transmissions use analog and Frequency

More information

Unguided Media After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media B.

Unguided Media After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media B. Unguided Media After this lecture, you will be able to describe the physical and transmission characteristics of various unguided media B.1 Unguided media Guided to unguided Transmission the signal is

More information

Fig:Bending of Light Ray

Fig:Bending of Light Ray FIBER-OPTICS Fiber-optic cabling uses either glass or plastic fibers to guide light impulses from source to destination. The bits are encoded on the fiber as light impulses. Optical fiber cabling is capable

More information

CSCI Computer Networking: Physical Layer Transmission Media George Blankenship. Physical Layer Transmission Media. George Blankenship 1

CSCI Computer Networking: Physical Layer Transmission Media George Blankenship. Physical Layer Transmission Media. George Blankenship 1 CSCI 6431 Computer Networking: George Blankenship George Blankenship 1 Lecture Outline Guided wire Unguided wireless George Blankenship 2 Design Factors Key concerns are data rate and distance Higher bandwidth

More information

16.36 Communication Systems Engineering

16.36 Communication Systems Engineering MIT OpenCourseWare http://ocw.mit.edu 16.36 Communication Systems Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.36: Communication

More information

Lecture 2 Physical Layer - Transmission Media

Lecture 2 Physical Layer - Transmission Media DATA AND COMPUTER COMMUNICATIONS Lecture Physical Layer - Transmission Media Mei Yang Based on Lecture slides by William Stallings 1 OVERVIEW transmission medium is the physical path between transmitter

More information

Transmission medium and physical layer. Transmission medium. Cable or air

Transmission medium and physical layer. Transmission medium. Cable or air CHAPTER 7 Transmission Media We discussed many issues related to the physical layer in Chapters 3 through 6. n this chapter, we discuss transmission media. Transmission media are actually located below

More information

3 Transmission Media. Objectives. At the end of this chapter, students should be able to:

3 Transmission Media. Objectives. At the end of this chapter, students should be able to: Transmission Media.1 Introduction.2 Guided Media.2.1 Twisted pair cables.2.1.1 Unshielded Twisted Pair (UTP).2.1.2 Shielded Twisted Pair (STP).2.2 Coaxial Cable.2.2.1 Thicknet (Thickwire Ethernet).2.2.2

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

Chap. 3 Transmission Media 1. Transmission Media

Chap. 3 Transmission Media 1. Transmission Media Transmission Media Chap. 3 Transmission Media 1 Physical path between transmitter and receiver Guided or unguided (wireless) Communication is in the form of electromagnetic waves Characteristics and quality

More information

Electromagnetic Signal. Transmission Fundamentals. Time-Domain Concepts. Time-Domain Concepts. Time-Domain Concepts. Sine Wave Parameters

Electromagnetic Signal. Transmission Fundamentals. Time-Domain Concepts. Time-Domain Concepts. Time-Domain Concepts. Sine Wave Parameters Electromagnetic Signal Transmission Fundamentals Chapter 2 Function of time Can also be expressed as a function of frequency Signal consists of components of different frequencies Time-Domain Concepts

More information

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state. Data Transmission Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 2-1 Overview Time Domain and Frequency Domain Bit, Hertz Decibels Data vs Signal Attenuation, Delay

More information

Transmission Media. Physical Layer Transmission Media. Mini Electromagnetic Review. Mini Electromagnetic Review. Two basic formats CS442

Transmission Media. Physical Layer Transmission Media. Mini Electromagnetic Review. Mini Electromagnetic Review. Two basic formats CS442 Transmission Media Physical Layer Transmission Media CS442 Two basic formats Guided media : wires, fiber optics Medium is important Unguided media : wireless, radio transmission Antenna is important Each

More information

NETWORKING ESSENTIALS

NETWORKING ESSENTIALS NETWORKING ESSENTIALS 1 What is a network? A network is a group of computers that are wired together in some fashion which enables sharing of information and services 2 Required network elements? At least

More information

Computers Are Your Future. 2006 Prentice-Hall, Inc.

Computers Are Your Future. 2006 Prentice-Hall, Inc. Computers Are Your Future 2006 Prentice-Hall, Inc. Computers Are Your Future Chapter 3 Wired and Wireless Communication 2006 Prentice-Hall, Inc Slide 2 What You Will Learn... ü The definition of bandwidth

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of

More information

CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission

CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission CS647: Advanced Topics in Wireless Networks Basics of Wireless Transmission CS 647 2.1 Outline Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation CS 647 2.2 Types of

More information

Transmission Media After this lecture, you will be able to

Transmission Media After this lecture, you will be able to Transmission Media After this lecture, you will be able to describe the physical and transmission characteristics of various transmission media their limitations and current applications guided media twisted

More information

Introduction to Communication Systems - Analog and Digital - Albert Einstein: The wireless telegraph is not difficult

Introduction to Communication Systems - Analog and Digital - Albert Einstein: The wireless telegraph is not difficult Introduction to Communication Systems - Analog and Digital - Albert Einstein: The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You pull the tail in

More information

Introduction to Communication Systems. James Flynn Sharlene Katz

Introduction to Communication Systems. James Flynn Sharlene Katz Introduction to Communication Systems James Flynn Sharlene Katz Communications System Diagram Information Source and Input Transducer Transmitter Channel Receiver Output Transducer 2 Flynn/Katz - SDR Communications

More information

What Does Communication (or Telecommunication) Mean?

What Does Communication (or Telecommunication) Mean? What Does Communication (or Telecommunication) Mean? The term communication (or telecommunication) means the transfer of some form of information from one place (known as the source of information) to

More information

Chapter 4 Transmission Media. Transmission medium: physical path between transmitter and receiver Guided media

Chapter 4 Transmission Media. Transmission medium: physical path between transmitter and receiver Guided media CEN 342 Introduction to Data Transmission Chapter 4 Transmission Media Dr. Mostafa Hassan Dahshan Computer Engineering Department College of Computer and Information Sciences King Saud University mdahshan@ccis.ksu.edu.sa

More information

TRANSMISSION MEDIA Twisted Pair

TRANSMISSION MEDIA Twisted Pair TRANSMISSION MEDIA Twisted Pair - A twisted pair consists of two insulated copper wires arranged in a regular spiral pattern. A wire pair acts as a single communications link. Typically a number of these

More information

TRANSMISSION MEDIA CHAPTER 4

TRANSMISSION MEDIA CHAPTER 4 CHAPTER 4 TRANSMISSION MEDIA 4.1 Guided Transmission Media Twisted Pair Coaxial Cable Optical Fiber 4.2 Wireless Transmission Antennas Terrestrial Microwave Satellite Microwave Broadcast Radio Infrared

More information

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 Unit of Learning # 2 The Physical Layer Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 The Theoretical Basis for Data Communication Sergio Guíñez Molinos Redes de Computadores 2 The Theoretical

More information

Data Transmission Media and Modes

Data Transmission Media and Modes Data Transmission Media and Modes Info 341 Networking and Distributed Applications Data Transmission Principles Data transmission is governed by physics The properties of the physical medium Forms of physical

More information

Outlines. LECTURE 3: Wireless Transmission Technologies. Wireless Transmission on Unguided Media

Outlines. LECTURE 3: Wireless Transmission Technologies. Wireless Transmission on Unguided Media LECTURE 3: Wireless Transmission Technologies CIS 472 Wireless Communications and Networks Winter 2016 Instructor: Dr. Song Xing Outlines Wireless Data Transmission Modulation Spread Spectrum Department

More information

wavelength 2 cycles wavelength 4 cycles

wavelength 2 cycles wavelength 4 cycles Waves Frequency: Cycles per second But that is too simple so instead we call one cycle per second a Hertz (Hz) 1000 cycles/second = 1000 Hz = 1 kilohertz = 1 khz 1,000,000 Hz = 1 megahertz = 1 MHz 1,000,000,000

More information

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department The Islamic University of Gaza Faculty of Engineering Computer Engineering Department Data Communications ECOM 4314 Solution (Chapters 5-6-7-8) Dr. Hasan Qunoo Eng. Wafaa Audah Eng. Waleed Mousa 1. A cable

More information

Upon completing this chapter, you will be able to: Describe the primary types and uses of twisted-pair cables Describe the primary types and uses of

Upon completing this chapter, you will be able to: Describe the primary types and uses of twisted-pair cables Describe the primary types and uses of Upon completing this chapter, you will be able to: Describe the primary types and uses of twisted-pair cables Describe the primary types and uses of coaxial cables Describe the primary types and uses of

More information

Chapter 4 Connecting to the Internet through an ISP

Chapter 4 Connecting to the Internet through an ISP Chapter 4 Connecting to the Internet through an ISP 1. According to Cisco what two things are essential to gaining access to the internet? a. ISPs are essential to gaining access to the Internet. b. No

More information

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK

CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK CN1047 INTRODUCTION TO COMPUTER NETWORKING CHAPTER 1 BASIC CONCEPTS OF NETWORK DEFINTION & APPLICATIONS DEFINTION: A computer network is defined as the interconnection of two or more computers. It is done

More information

Introduction. Antennas and Propagation. Types of Antennas. Radiation Patterns. Antenna Gain. Antenna Gain

Introduction. Antennas and Propagation. Types of Antennas. Radiation Patterns. Antenna Gain. Antenna Gain Introduction Antennas and Propagation Chapter 5 An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic

More information

wavelength 2 cycles wavelength 4 cycles

wavelength 2 cycles wavelength 4 cycles Waves Frequency: Cycles per second But that is too simple so instead we call one cycle per second a Hertz (Hz) 1000 cycles/second = 1000 Hz = 1 kilohertz = 1 khz 1,000,000 Hz = 1 megahertz = 1 MHz 1,000,000,000

More information

Chapter 9 Objectives. Chapter 9 Communications and Networks. Communications. Communications

Chapter 9 Objectives. Chapter 9 Communications and Networks. Communications. Communications Chapter 9 Objectives Define the components required for successful communications Understand the various communications technologies Identify various sending and receiving devices Identify uses of intranets

More information

Network Design. Yiannos Mylonas

Network Design. Yiannos Mylonas Network Design Yiannos Mylonas Physical Topologies There are two parts to the topology definition: the physical topology, which is the actual layout of the wire (media), and the logical topology, which

More information

Networking 101 (Networking Basics) Presentation to UCHUG - 1/03/07 G. Skalka

Networking 101 (Networking Basics) Presentation to UCHUG - 1/03/07 G. Skalka Networking 101 (Networking Basics) Presentation to UCHUG - 1/03/07 G. Skalka What is a network? A computer network is two or more computers connected together using a telecommunication system for the purpose

More information

Wired & Wireless LAN Connections

Wired & Wireless LAN Connections Lecture 5 Wired & Wireless LAN Connections Network Interface Card (NIC) Ethernet Wiring - Thick Ethernet - Thin Ethernet - Star (Hub) Ethernet Extending LAN - Fiber Modem - Repeater - Bridge - Switch Short

More information

Conducted and Wireless Media

Conducted and Wireless Media Fundamentals of Networking and Data Communications, Sixth Edition 3-1 Conducted and Wireless Media Chapter 3 Learning Objectives After reading this chapter, students should be able to: Outline the characteristics

More information

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Chapter 9A. Network Definition. The Uses of a Network. Network Basics Chapter 9A Network Basics 1 Network Definition Set of technologies that connects computers Allows communication and collaboration between users 2 The Uses of a Network Simultaneous access to data Data

More information

1. Introduction. FER-Zagreb, Satellite communication systems 2011/12

1. Introduction. FER-Zagreb, Satellite communication systems 2011/12 1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of

More information

CHAPTER 4. Electromagnetic Spectrum

CHAPTER 4. Electromagnetic Spectrum ELEC4504 Avionics Systems 9 CHAPTER 4. Electromagnetic Spectrum 4.1. Electromagnetic (EM) Waves In free space (or the atmosphere) the electric field is perpendicular to the magnetic field and both are

More information

Basic Concepts RF Basics

Basic Concepts RF Basics Basic Concepts RF Basics The technology involving the generation, the manipulation, the transmission and the reception of radio waves, and the use of these to transmit information (both in analog and digital

More information

Discovering Computers

Discovering Computers Discovering Computers Technology in a World of Computers, Mobile Devices, and the Internet Chapter 10 Communications and Networks Objectives Overview Discuss the purpose of the components required for

More information

Telecommunications, Networks, and Wireless Computing

Telecommunications, Networks, and Wireless Computing Objectives Telecommunications, Networks, and Wireless Computing 1. What are the features of a contemporary corporate telecommunications system? On what major technology developments are they based? 2.

More information

Appendix A: Radio Communication Basics 1

Appendix A: Radio Communication Basics 1 Appendix A: Radio Communication Basics 1 DEFINITIONS OF RADIOCOMMUNICATION TERMS 1 Amplitude: A measure of the value of a radio wave, measured in volts (see figure A-1). Analog: In analog radio communication,

More information

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties.

3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties. CHAPTER 3 - THE ELECTROMAGNETIC SPECTRUM 3-1 The Nature of Electromagnetic Waves 1. What do all mechanical waves such as sound waves have in common? All mechanical waves such as sound waves transfer energy

More information

Communication Systems I

Communication Systems I Communication Systems I Course Map Contents Recap of the networks we ve seen so far Basics of protocols HTTP example The OSI model Packet and Circuit switching Physical media What to expect next Recap

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

ECE-205 ANALOG COMMUNICATIONS

ECE-205 ANALOG COMMUNICATIONS ECE-205 ANALOG COMMUNICATIONS Overview Communication systems Analog Modulation AM FM Digital Modulation ASK FSK Modems Communication systems Digital Analog The block diagram on the top shows the blocks

More information

6 NETWORK MEDIA AND DEVICES

6 NETWORK MEDIA AND DEVICES 6 NETWORK MEDIA AND DEVICES PROJECTS Project 6.1 Project 6.2 Project 6.3 Project 6.4 Project 6.5 Understanding Key Concepts Comparing Physical Media Applications Identifying Physical Media Types Comparing

More information

Lecture 5. Transmission Media

Lecture 5. Transmission Media Two main groups: Lecture 5 Transmission Media -Wire based media (hardwire, or guided), either : -electric, like twisted pair cable TP, coaxial cable -optic, like fiber optics -Wireless (softwire, or unguided),

More information

Computer Networks and Internets, 5e Chapter 7 Transmission Media. Guided and Unguided Transmission

Computer Networks and Internets, 5e Chapter 7 Transmission Media. Guided and Unguided Transmission Computer Networks and Internets, 5e Chapter 7 Transmission Media Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper Saddle River,

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

IFI5481: RF Circuits, Theory and Design

IFI5481: RF Circuits, Theory and Design IFI5481: RF Circuits, Theory and Design Lecturer: Prof. Tor A. Fjeldly, UiO og NTNU/UNIK [torfj@unik.no] Assistant: Malihe Zarre Dooghabadi [malihezd@ifi.uio.no] Syllabus: Lectured material and examples,

More information

About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "

About Me List of Lectures In This Course Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems  Dr. Cecilia Mascolo About Me Reader in Mobile Systems NetOS Research Group Research on Mobile, Social and Sensor Systems More specifically, Human Mobility and Social Network modelling Opportunistic Mobile Networks Mobile

More information

Discovering Computers Fundamentals, 2011 Edition. Living in a Digital World

Discovering Computers Fundamentals, 2011 Edition. Living in a Digital World Discovering Computers Fundamentals, 2011 Edition Living in a Digital World Objectives Overview Discuss the purpose of the components required for successful communications Describe these uses of computer

More information

Multiplexing on Wireline Telephone Systems

Multiplexing on Wireline Telephone Systems Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing

More information

SECTION 2 PRINCIPLES OF RADIO TRANSMISSION. 1 kilohertz = 1000 Hertz 1 Megahertz = 1000 kilohertz

SECTION 2 PRINCIPLES OF RADIO TRANSMISSION. 1 kilohertz = 1000 Hertz 1 Megahertz = 1000 kilohertz SECTION 2 PRINCIPLES OF RADIO TRANSMISSION The marine radio is a source of information for many and a job for others. In an emergency at sea, a radio is a vital link for being rescued or obtaining assistance

More information

ADS Chapter 564 Security Communications

ADS Chapter 564 Security Communications ADS Chapter 564 Security Communications Document Quality Check Date: 10/02/2012 Partial Revision Date: 12/30/2011 Responsible Office: SEC/CTIS File Name: 564_100212 12/30/2011 Partial Revision Functional

More information

Chapter 1: roadmap. Access networks and physical media

Chapter 1: roadmap. Access networks and physical media Chapter 1: roadmap 1.1 What is the nternet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 nternet structure and SPs 1.6 elay & loss in packet-switched networks 1.7 Protocol

More information

Chapter 7. Transmission Media

Chapter 7. Transmission Media Chapter 7 Transmission Media 1 Guided and Unguided Transmission How should transmission media be divided into classes? There are two broad approaches: By type of path: communication can follow an exact

More information

Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair

Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair Presentation; Session 2; Cabling Technology in the Data Centre Media Choices; Copper Twisted Pair 5 th April 2010 Paul Mathews MInstSMM, CCNA, MIEEE Global Channel Manager Media Types Physical Layer Cabling;

More information

Discovering Computers Technology in a World of Computers, Mobile Devices, and the Internet

Discovering Computers Technology in a World of Computers, Mobile Devices, and the Internet Discovering Computers Technology in a World of Computers, Mobile Devices, and the Internet Chapter 10 Communications and Networks Objectives Overview See Page 416 for Detailed Objectives Objectives Overview

More information

Chapter 9. Communications and Networks. McGraw-Hill/Irwin. Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 9. Communications and Networks. McGraw-Hill/Irwin. Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 9 Communications and Networks McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Competencies (Page 1 of 2) Discuss connectivity, the wireless revolution,

More information

Implementing Fast Ethernet

Implementing Fast Ethernet Implementing Fast Ethernet R The Next Generation of Ethernet Fast Ethernet (also known as IEEE 802.3u or 100BASE-T) is quickly becoming the successor to Ethernet as the network topology of choice. Fast

More information

Discovering Computers 2008. Chapter 9 Communications and Networks

Discovering Computers 2008. Chapter 9 Communications and Networks Discovering Computers 2008 Chapter 9 Communications and Networks Chapter 9 Objectives Discuss the the components required for for successful communications Identify various sending and receiving devices

More information

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879) L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

More information

Future Stars. Grade X Manual Chapter 1 Networking and Telecommunication. telecommunication. Telephones, telegrams, radios and televisions help

Future Stars. Grade X Manual Chapter 1 Networking and Telecommunication. telecommunication. Telephones, telegrams, radios and televisions help Future Stars Grade X Manual Chapter 1 Networking and Telecommunication 1. Answer the following questions. a. What is telecommunication? Ans: The transfer of information at a far distance is known as telecommunication.

More information

Chapter 1 -Introduction to Antenna

Chapter 1 -Introduction to Antenna Chapter 1 -Introduction to Antenna 1. Basic Antenna Operation 2. Radio Propagation Nurul Hazlina 1 1. What? 2. Where? 3. How? 4. Why? BASIC ANTENNA OPERATION Nurul Hazlina 2 Basic Antenna Operation 1.

More information

for Communication Systems Protection EMI CD-ROM INCLUDED

for Communication Systems Protection EMI CD-ROM INCLUDED Krešimir Malarić EMI Protection for Communication Systems CD-ROM INCLUDED Contents Preface xiii CHAPTER 1 Communications Systems 1 1.1 Components of Communications Systems 1 1.2 Transmitter Systems 2 1.2.1

More information

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Networks. The two main network types are: Peer networks

Networks. The two main network types are: Peer networks Networks Networking is all about sharing information and resources. Computers connected to a network can avail of many facilities not available to standalone computers: Share a printer or a plotter among

More information

2 Network Media. Copper Core Cable

2 Network Media. Copper Core Cable Network Media Copper Core Cable After studying this chapter, you will be able to: Match the five forms of electronic signals to the media types on which they travel. Describe the major differences between

More information

Module 2. Data Communication Fundamentals. Version 2 CSE IIT, Kharagpur

Module 2. Data Communication Fundamentals. Version 2 CSE IIT, Kharagpur Module 2 Data Communication Fundamentals Lesson 2 Transmission Media Specific Instructional Objectives At the end of this lesson the students will be able to: Classify various Transmission Media Distinguish

More information

Data Communications Transmission System: Structure and Function

Data Communications Transmission System: Structure and Function Data Communications Transmission System: Structure and Function Nathaniel Kinsey Hamilton College The purpose of this discussion is to outline the major components and theories that comprise any data transmission

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0

CCNA 1: Networking Basics. Cisco Networking Academy Program Version 3.0 CCNA 1: Networking Basics Cisco Networking Academy Program Version 3.0 Table of Contents CCNA 1: NETWORKING BASICS...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE OBJECTIVES...3

More information

Local Area Network By Bhupendra Ratha, Lecturer School of Library and Information Science Devi Ahilya University, Indore Email: bhu261@gmail.com Local Area Network LANs connect computers and peripheral

More information

:-------------------------------------------------------Instructor---------------------

:-------------------------------------------------------Instructor--------------------- Yarmouk University Hijjawi Faculty for Engineering Technology Computer Engineering Department CPE-462 Digital Data Communications Final Exam: A Date: 20/05/09 Student Name :-------------------------------------------------------Instructor---------------------

More information

The ionosphere and radio wave propagation

The ionosphere and radio wave propagation The ionosphere and radio wave propagation P. J. Erickson Atmospheric Sciences Group MIT Haystack Observatory RET Workshop Haystack Observatory July 11, 2011 Electromagnetic Waves Electromagnetic spectrum

More information

Chapter 8: Computer Networking. AIMS The aim of this chapter is to give a brief introduction to computer networking.

Chapter 8: Computer Networking. AIMS The aim of this chapter is to give a brief introduction to computer networking. Chapter 8: Computer Networking AIMS The aim of this chapter is to give a brief introduction to computer networking. OBJECTIVES At the end of this chapter you should be able to: Explain the following terms:

More information

Introduction To Computer Networks

Introduction To Computer Networks Introduction To Computer Networks 1. LAN s and WAN s 2. Some network and internetwork components 3. The communication process 4. Communication media 5. Topologies 6. Communication models and Standards

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Networks and Telecommunications

Networks and Telecommunications s and Telecommunications B Introduction Change is everywhere in the information technology domain, but nowhere is change more evident and more dramatic than the realm of networks and telecommunications.

More information

Digital vs. Analog Transmission

Digital vs. Analog Transmission Digital vs. Analog Transmission Two forms of transmission: digital transmission: data transmission using square waves analog transmission: data transmission using all other waves Four possibilities to

More information

Chapter 9 Communications and Networks

Chapter 9 Communications and Networks Chapter 9 Objectives Chapter 9 and Discuss the the components required for for successful Identify various sending and and receiving devices Describe uses of of computer List advantages of of using a network

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information