# Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

Save this PDF as:

Size: px
Start display at page:

Download "Lab 7: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)"

## Transcription

1 of a Permanent Magnet (Magnetic Field Sensor) Equipment Needed Qty Equipment Needed Qty Magnetic Field Sensor (CI-6520A) 1 Meter stick, non-metal 1 Magnet*, disk, Neodymium, 1/2 or 3/4 (EM-8648) 1 Small compasses 10 A piece of paper 1 *Warning: Keep magnets away from the computers and computer disks. In this experiment variation of magnetic field of a permanent will be explored using a a bar magnet and a magnetic sensor. Theory The strength of a magnetic field varies with distance from the magnet. The strength of the magnetic field could vary inversely as the square of distance, as with the strength of a gravitational field or an electrical field. The strength of the magnetic field could vary in a different way relative to distance. The gravitational field or electric field of a point mass or charge is radial, while the magnetic field of a magnet consists of complete loops that surround and go through the magnet. For You To Do Use the Magnetic Field Sensor to measure the magnetic field strength of a small neodymium magnet as the distance between the sensor and the magnet changes. Use DataStudio or ScienceWorkshop to record and display the magnetic field strength and the entered distance. Determine the relationship between the measured strength of the magnetic field and the distance from the magnet.

2 PART I: Computer Setup 1. Connect the ScienceWorkshop interface to the computer, turn on the interface, and turn on the computer. 2. Connect the DIN plug of the Magnetic Field Sensor to Analog Channel A. 500 scientific PASCO Interface scientific 300 PASCO ANALOG CHANNELS Science Workshop DATA LOGGING INSTRUCTIONS Science Workshop Interface 3. Open the document titled P31 Permanent magnet.ds The DataStudio document has a Workbook display. Read the instructions in the Workbook. PART II: Sensor Calibration and Equipment Setup You do not need to calibrate the Magnetic Field Sensor. 1. Place the meter stick on a flat surface away from the computer. 2. Place the Magnetic Field Sensor so the end of the rod is even with the zero end of the meter stick. 3. Select AXIAL by pressing the Field Selector Switch on the top of the sensor box. 4. Move the magnet away from the sensor. Zero the Magnetic Field Sensor by pressing the TARE button on the top of the sensor box. RADIAL/ AXIAL TARE 1X 10X 100X RADIAL/ AXIAL TARE 1X 10X 100X RANGE SELECT RANGE SELECT 5. Keeping the magnet away from the computer, place the magnet next to the m (5-cm) mark on the meter stick. 2

3 PART III: Data Recording 1. Before you start recording the data use the small compasses to map the magnetic field around the bar magnet. 2. Begin data recording. In DataStudio, arrange the Table display so you can see it clearly. Click the Start button. The button turns into a Keep and Stop button ( ). The magnetic field strength appears in the first cell in the Table display. Check to make sure that the strength is a large positive number. If it is not, flip the magnet to point the opposite pole towards the sensor. Click the Keep button to record the magnetic field strength. Note: If the default distance value does not correlate with the distance you measured for a given magnetic field strength, you may edit the distance. Select the Edit Data tool from the tool bar on the Table Display ( ). Click on the distance and type in the correct value. 3. Move the magnet m further away so that it is m from the end of the sensor. 3. Enter m for the distance. Record the data by clicking on Keep in DataStudio or Enter in ScienceWorkshop. 4. Repeat the process of moving the magnet by m increments, and recording the values until the magnetic field strength reaches about 10 Gauss, or does not change as the distance increases. 5. End data recording. 6. Repeat procedure 1 through 5 by taping two magnets together. Stop data recording by clicking on the Stop button. Analyzing the Data 1. Click to make the Graph display active. 2. Rescale the Graph axes to show the data and apply a fit to the data. Click the Scale to fit button ( ) to rescale the Graph axes. Next, click the Fit menu button ( ) and select Inverse Square. If the Mean Square Error is large, click and hold down on the mouse button while dragging the mouse to select a region of data. When the mouse button is released, the data points will be highlighted. Only highlighted data points will be used for the fit. 3. Record the equation of fit in the Data Table in the Lab Report section. 3

4 Lab Report Lab 11: Magnetic Field of a Permanent Magnet What Do You Think? How does the strength of the magnetic field of a permanent magnet change with distance? Data Table Item Equation of Fit single magnet Equation Equation of fit two magnets Questions 1. Does the magnetic field strength increase or decrease as the distance from the magnet is increased? 2. Is the relationship between magnetic field strength and distance linear? 4. Based on the results of the curve fit in the statistics area, what is the relationship between the magnetic field strength and the distance from the magnet? 5. Qualitatively describe the similarities and differences of your experimental results for the two magnets ( single and two taped together ones) used in the experiment. 4

5 Optional Repeat the activity with a different type of magnet. Optional Data Table Item Equation of Fit Equation Optional Questions 1. Does the magnetic field strength increase or decrease as the distance from the magnet is increased? 2. How does the plot of Magnetic Field Strength vs. Distance for this magnet compare with the plot for the original magnet? 5

### Activity P31: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

Name Class Date Activity P31: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetism P31 Permanent Magnet.DS P51 Permanent

### Experiment P51: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor)

PASCO scientific Vol. 2 Physics Lab Manual: P51-1 Experiment P51: Magnetic Field of a Permanent Magnet (Magnetic Field Sensor) Concept Time SW Interface Macintosh File Windows File magnetism 30 m 300/500/700

### Activity P13: Buoyant Force (Force Sensor)

July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

### Activity P13: Buoyant Force (Force Sensor)

Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment

### 33. Magnetic Field: Permanent Magnet

Name Period Date 33. Magnetic Field: Permanent Magnet Driving Question How do you think the strength of the magnetic field of a permanent magnet changes as you get farther away from the magnet. Background

### Magnetism. ***WARNING: Keep magnets away from computers and any computer disks!***

Magnetism This lab is a series of experiments investigating the properties of the magnetic field. First we will investigate the polarity of magnets and the shape of their field. Then we will explore the

### Physics Labs with Computers, Vol. 2 P38: Conservation of Linear Momentum 012-07001A

Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P38 Linear Momentum.DS P16 Cons. of Momentum

### ( t) = gt. y( t) = 1 2 gt 2

Name Date Acceleration of a Freely Falling Picket Fence Equipment Needed Qty Equipment Needed Qty Smart Pulley System (ME-6838) 1 Universal Table Clamp (ME-9376) 1 Picket Fence (ME-9377A) 1 What Do You

### Name Class Date. Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor)

Activity P25: Transforming Gravitational Potential Energy to Kinetic Energy (Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P25 GPE to KE.DS (See end of activity)

### where m is the mass of the water, c is the specific heat of water (1 cal/g C), and T is the change in temperature of the water.

Activity P47: Electrical Equivalent of Heat (Voltage Sensor and Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P47 EEH.DS P39 EEH P39_EEH.SWS Equipment Needed Qty

### Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

### Activity P38: Conservation of Linear Momentum (Motion Sensors)

Name Class Date Activity P38: Conservation of Linear Momentum (Motion Sensors) Equipment Needed Qty Equipment Needed Qty Motion Sensor (CI-6742) 2 Dynamics Cart (w/ Track) 2 Balance (SE-8723) 1 2.2 m Track

### Activity P35: Light Intensity in Double-Slit and Single-Slit Diffraction Patterns (Light Sensor, Rotary Motion Sensor)

Activity P35: Light Intensity in Double-Slit and Single-Slit Diffraction Patterns (Light Sensor, Rotary Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Interference P35 Diffraction.ds

### Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

### Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

### Acceleration of a Cart on an Inclined Plane. What happens to the acceleration of a cart as it moves up and down an inclined plane?

Name Date Acceleration of a Cart on an Inclined Plane Equipment Needed Qty Equipment Needed Qty Photogate and Bracket 1 Dynamics Cart (inc. w/ Track) 1 Bumper 1 Ruler 1 Base and Support Rod 1 1.2 m Track

### Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

### Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2006 Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil OBJECTIVES 1. To learn how to visualize magnetic field lines

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### Electrical Equivalent of Heat

Electrical Equivalent of Heat 7EM Object: Apparatus: To determine the electrical equivalent of heat. Power amplifier, temperature sensor, balance, resistor for heating water (10 Ω, 1W), calorimeter, wires,

### Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P50 RC Circuit.DS (See end of activity) (See end of activity)

### Experiment 7: Forces and Torques on Magnetic Dipoles

MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

### Efficiency of a Motor and a Generator

Efficiency of a Motor and a Generator 6EM Object: Apparatus: The purpose of this laboratory activity is to determine the efficiency of an electric motor and the efficiency of an electric generator. Electric

### Experiment 9: Biot -Savart Law with Helmholtz Coil

Experiment 9: Biot -Savart Law with Helmholtz Coil ntroduction n this lab we will study the magnetic fields of circular current loops using the Biot-Savart law. The Biot-Savart Law states the magnetic

### Experiment 6: Magnetic Force on a Current Carrying Wire

Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of

### Activity P45: Resonant Modes and the Speed of Sound (Voltage Sensor, Power Output)

Activity P45: Resonant Modes and the Speed of Sound (Voltage Sensor, Power Output) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Waves P45 Speed of Sound 2.DS P36 Speed of Sound P36_MACH.SWS

### Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

### Charged Particles Moving in an Magnetic Field

rev 12/2016 Charged Particles Moving in an Magnetic Field Equipment for Part 1 Qty Item Parts Number 1 Magnetic Field Sensor CI-6520A 1 Zero Gauss Chamber EM-8652 1 Dip Needle SF-8619 1 Angle Indicator

### PHYS-2212 LAB Ohm s Law and Measurement of Resistance

Objectives PHYS-2212 LAB Ohm s Law and Measurement of Resistance Part I: Comparing the relationship between electric current and potential difference (voltage) across an ohmic resistor with the voltage-current

### Motion 1. 1 Introduction. 2 The Motion Sensor

Motion 1 Equipment: DataStudio, motion sensor mounted about 25 cm above lab bench, Data studio files mot1.ds and mot2.ds. Lab Report: Describe procedures not given in the write up. Submit data graphs where

### Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

### Simple Harmonic Motion

Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

### Electrical Equivalent of Heat Apparatus

Name Class Date Electrical Equivalent of Heat Equipment Needed Temperature Sensor Current Sensor Voltage Sensor Electrical Equivalent of Heat Apparatus Balance Digital Multimeter Low Voltage Power Supply

### Exploring Magnetism. DataQuest

Exploring Magnetism Magnetism is the force of attraction or repulsion between a magnet and something else. Magnets attract materials made of iron, nickel, or cobalt. Can you think of five things to which

### ELECTRICITE ET MAGNETISME.

Created by Neevia Personal Converter trial version Physique Fondamentale ELECTRICITE ET MAGNETISME. LA LOI D INDUCTION DE FARADAY (Faraday Law Induction) Magnetic Flux Faraday's Law of Induction Lenz's

### The Nerve as a Capacitor

HPP Activity 72v1 The Nerve as a Capacitor Exploration - How Does a Neuron Transmit a Signal? Electrical processes are essential to the working of the human body. The transmission of information in the

### Newton s Laws of Motion

Newton s Laws of Motion OBJECTIVES to validate Newton s Laws of Motion EQUIPMENT horizontal dynamic track and safety stopper on one end PASCO carts with a small reflector motion detector connected to the

### Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

### Acceleration Due to Gravity

Activity 5 PS-2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### The moment of inertia of a rod rotating about its centre is given by:

Pendulum Physics 161 Introduction This experiment is designed to study the motion of a pendulum consisting of a rod and a mass attached to it. The period of the pendulum will be measured using three different

### Learning to Use a Magnetic Field Sensor

Learning to Use a Magnetic Field Sensor Have you ever played with magnets? One reason why they are fun and interesting is that they can have an effect on objects around them. This is because magnets are

### GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

### Evaluation copy. Ohm s Law. Computer

Ohm s Law Computer 22 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical

### Chapter 5. Magnetic Fields and Forces. 5.1 Introduction

Chapter 5 Magnetic Fields and Forces Helmholtz coils and a gaussmeter, two of the pieces of equipment that you will use in this experiment. 5.1 Introduction Just as stationary electric charges produce

### Experiment P-52 Magnetic Field

1 Experiment P-52 Magnetic Field Objectives To learn about basic properties of magnets. To study the magnetic field around a bar magnet through a magnetic field sensor. Modules and Sensors PC + NeuLog

### Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

### Work and Energy. W =!KE = KE f

Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

### MAG Magnetic Fields revised July 24, 2012

MAG Magnetic Fields revised July 24, 2012 (You will do two experiments; this one (in Rock 402) and the Magnetic Induction experiment (in Rock 403). Sections will switch rooms and experiments half-way through

### Uniform Circular Motion

Uniform Circular Motion Object: To investigate the force required to move a mass along a circular path. Verify the theoretical expression for that force in terms of the frequency of rotation, the radius

### Archimedes' Principle

Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the

### Part 1: Background - Graphing

Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

### P150A Experimental Lab #7 Ohm s Law (Ver A 10/12)

Ohm s Law The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical resistance

### Free Fall and Projectile Motion

Phsics 44 Free Fall and Projectile Motion Introduction Part I : Free Fall This experiment is designed to stud the one-dimensional motion of an object that is accelerated b the force of gravit. It also

### Summary of important mathematical operations and formulas (from first tutorial):

EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a

### Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design)

Partner 1: Lab 3 - Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data

### Mechanical. Equivalent of Heat Tube

Mechanical Instruction Manual Manual No. 012-08780A Equivalent of Heat Tube Model No. ET-8781 Equivalent of Heat Tube Model No. ET-8781 Table of Contents Equipment List... 3 Introduction... 4 Theory...

### The Magnetic Field in a Slinky

V mv The Magnetic Field in a Slinky Experiment 29 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current

Page 1 of 8 test2labh_status.txt Use Internet Explorer for this laboratory. Save your work often. NADN ID: guest49 Section Number: guest All Team Members: Your Name: SP212 Lab: Faraday's Law and Inductance

### Archimedes Principle

rev 12/2016 Archimedes Principle Equipment Qty Item Parts Number 1 Force Sensor, Economy CI-6746 1 Lab Jack SE-9373 1 Beaker SE-7288 1 250 ml Graduated Cylinder 1 Large Rod ME-8738 1 Small Rod ME-8988

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

### Scientific Graphing in Excel 2010

Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.

### Acceleration of Gravity

Acceleration of Gravity Introduction: In this experiment, several objects' motion are studied by making several measurements of the objects position (or displacement) at different times. Since the objects

### A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel

A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel Pre-lab Assignment: Introduction Reading: 1. Chapter sections 1.4-1.6 in Brown, LeMay, Bursten, and Murphy. 2. This lab handout!

### CHM 152 LL, Determining the Identity of an Unknown Diprotic Acid

CHM 152 LL, Determining the Identity of an Unknown Diprotic Acid A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

### DO NOT REMOVE THE MAGNET FROM ITS PROTECTIVE PLASTIC CASE!

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 8.02 Fall 2003 Experiment 9: Magnetic Force on Current-Carrying Wires OBJECTIVES To predict and verify the nature of the magnetic force acting on a current-carrying

### Experiment 5 ~ Friction

Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using

### The Magnetic Field of a Permanent Magnet

Introduction The of a Permanent Magnet A bar magnet is called a dipole since it has two poles, commonly labeled North and South. Breaking a magnet in two does not produce two isolated poles; each fragment

### Part 2: Measuring Magnetic Force

Name: Date: Period: Part 1: Iron Filings Activity Student Sheet #4: Three Ways to Generate Electricity 1. Place a piece of paper on top of firm plastic surface 2. Place bar magnet in the middle of the

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

### Static and Kinetic Friction. = k

Name Partner Names Static and Kinetic Friction New Concepts/Questions to ask yourself before lab: 1. What is friction? Explain the difference between static & kinetic friction using a real life example.

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Diffraction and Interference of Light

Diffraction and Interference of Light Theory: When light encounters an opaque barrier with an opening that is not too large relative to the wavelength, it will bend around the edges to illuminate the space

### Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

### L03 The Coefficient of Static Friction 1. Pre-Lab Exercises

L03 The Coefficient of Static Friction 1 Full Name: Lab Section: Pre-Lab Exercises Hand this in at the beginning of the lab period. The grade for these exercises will be included in your lab grade this

### Physics Lab 2 PROJECTILE MOTION

PROJECTILE MOTION Introduction: By rolling a steel marble down a ramp and measuring its horizontal range, you can calculate the marble's launch velocity. To confirm this velocity with an independent measurement,

### Applications of Newton's Laws

Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that we will apply. Apparatus: Pasco track, Pasco

### Coefficient of Friction Using a Force Sensor and a Motion Sensor

Physics Laboratory Manual n Loyd LABORATORY 7A Coefficient of Friction Using a Force Sensor and a Motion Sensor OBJECTIVES o Investigate the coefficient of static friction between a felt-covered wood block

### Electromagnetic Induction

. Electromagnetic Induction Concepts and Principles Creating Electrical Energy When electric charges move, their electric fields vary. In the previous two chapters we considered moving electric charges

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### Magnetic Fields Lab. Station #1 à Determining Magnetic Flux Lines

Magnetic Fields Lab Regents Physics Name Mr. Putnam Station #1 à Determining Magnetic Flux Lines You must FIRST FIND WHICH END of your compass needle that points Geographic North. THIS WILL BE THE NORTH

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

### Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Calibration Curve Procedure Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry. Make sure you

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Specific Heat (Temperature Sensor)

43 Specific Heat (Temperature Sensor) Thermodynamics: Calorimetry; specific heat Equipment List DataStudio file: 43 Specific Heat.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor) 1 Temperature

### Experiment P-17 Magnetic Field Strength

1 Experiment P-17 Magnetic Field Strength Objectives To learn about basic properties of magnets. To study the relationship between magnetic field strength and the distance from the magnet. Modules and

### Equilibrium. To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium

Equilibrium Object To determine the mass of unknown objects by utilizing the known force requirements of an equilibrium situation. 2 Apparatus orce table, masses, mass pans, metal loop, pulleys, strings,

### Evaluation copy. Centripetal Acceleration on a Turntable. computer OBJECTIVES MATERIALS

Computer 20 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merry-go-round so you could scare the unfortunate riders as they traveled around

### User's Guide Document Number: A

User's Guide Document Number: 012-14016A User's Guide PASCO Capstone User's Guide Document Number: 012-14016A Limited Warranty For a description of the product warranty, see the PASCO scientific catalog.

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

### Experiment 4 Analysis by Gas Chromatography

Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has.

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases