ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!

Size: px
Start display at page:

Download "ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!"

Transcription

1 Math 0, Final Exam, Term 3 IANSWER KEY I I Q II MM I VI I V I V3 I V 4 I : a e b c e a b a c d! 3 a d e d c i 4 a a a e a 5 a e d e c! 6 a a d e c 7 a e c d c 8 a d d b b! 9 a c d b e 0 a c a c a : a a a e b i a b e d a 3 a c d d d 4 a d b c C i 5 a b c d a I 6 a e d a e 7 a d c a d 8 a d c d e 9 a d a d e 0 a d b b c. a c c c e i a b a d e IE' a.e d d e 4 a a d d a L.::.:.. 5 a c e. a c ffi a a c e a I 7 a c 0.. c 8 a c c d a I --"\>

2 King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 0 Final Exam Term 3 Sunday 9//03 Net Time Allowed: 80 minutes MASTER VERSION

3 Math 0, Final Exam, Term 3 Page of 4 IMASTER I. An equation for the tangent line to the curve y atx = 0 is x-i x+l (a) y = x-i (b) y=3x-i (c) y = -x-i (d) y = 4x+ (e) y = 3x - x. lim x-+-l+ "';x + t--( ~m (a) (b) 00 (c) 0 (d) (e) _\ o-t )en o ~ (-7 ~ ) -00 -::r :=.$0 \\VV\ ---===- "j...'f -\-t F+I _o(j

4 Math 0, Final Exam, Term 3 Page of 4 imasteri 3. Where is f(x) = In( - y'x) continuous? \n Hs do m~ ; (a) [0,) \., {X ) X?'-'..) _"" \- 'J X / n (- y)<.----"-/.r::: > ~ <. \ ~') x < ~ (b) (0,) (c) (0,00) Ccm.bll'IYlj, \jje ~~ o!sxl..\ (d) (,00) (e) (0,00) l'\ --- n... n 4. f: (~+ k) = Z* ~ak.. k=l n K. -= f\ (= n...::::- \( -+ al _ i. L ~ k. ::::) - n I<~I,.. Y'\ '\ (Y\-+-I) (a) n +n+ -+ ~...~ (b) n+n 3 = '" (c) -+n ~+Y\~~ n (d) _+n n n (e) n n+ -+ ntv\~l)

5 Math 0, Final Exam, Term 3 Page 3 of 4 IMASTER I 5. The slope of the normal line to the curve y3 + tan(x) = cos(3xy) when x = 0 is.. X=o (a) 3 (b) (c) (d) 5 (e) If lim f(x) ~ 4 = 5, then lim x f(x) = x-t3 X - x-t3 +b9-lt == 5 AI \'ly\"~ \'W\ "-3 Q~ '.. (.. )C~'?, (a) 'VI ().~ \ \l'i\ (.\' od -4) == (J (b) 5 ~~3,\~ ~\><) :4 "f-l3. (c) 0 =-, -. 3.l.\ (d) 5 (e) -4 -rhw» \' "m 'i.~s -;r+6<)

6 Math 0, Final Exam, Term 3 Page 4 of 4 JMASTERJ 7. If f(x) = 0x + tanx, then f(3) (x) = ' ;f 't<) ~ 0 X -I-~ S~c.. X. f('v)::::?-o+':l. (a) sec x(sec x+tan x) I, J.. ;{ seo( ~cx~nx." _ 0 + s.ec"-x.fc:tnx - '. L a s..eck. # (b) 0 sec 4 x + sec x tan x tt, S- ( '.. X S-R<: x + 'Jl'lt\)( J., I L--tdr '><.f he} ~ O ".s.ec~ "" r' (e) sec x(sec x - tan x) 8. Let H(x) = f(xg(x) -). If f(4) = 6,'(4) = -5, g() = 3, andg'() = -, then H'() = '(:;r lx) -). L'-::i- <J' (-xl - ~('X)J HI ft.) :;. f ~ (a) 5 I [:cj()+:)cz)) H'(-) -:. f (J.t)c z.j--). (b) -6 := f I ( 4) ~ [a(-.) + 3. J (c) 0 ';:, _ 5 (-4+?:» (d) -5 (e) - 5 (-I) -)

7 Math 0, Final Exam, Term 3 Page 5 of 4 jmasterj 9. Using a suitable linear approximation, (.000)500 ~ (a).0 (b).0 (c).0 (d) 0.00 (e) \ e6 0 -= It- \00.:'>-;::' = I + To =- \~.o x 3 + x - X - : I 0. Let f(x) = 3 If R is the number of removx -x able discontinuities of f and I is the number of infinite discontinuities of f, then fix) "",y... 'L (x+..j _!X+'Z.) ~ -X (')(L_\)-- (a) R = and = (b) R = and = (c) R = 0 and =3 (d) R = 3 and =0 Q<-f- L ) (x- -I) --~ "X ()( -I) (X+L) (X-I) (xt-i) -=~) ~+,'l.. - I x 9'(.~ :!,.I (e) R = 3 and =3

8 Math 0, Final Exam, Term 3 Page 6 of 4 IMASTER I. If Newton's Method is used to estimate the x-coordinate of the point of intersection of the curves y = sin (x + ;) and y = In(x + ) with Xo = 0, then Xl = "T\ f (x):;: \Yl (-x..-r.f) - SIf\('X+ ~ } pi. (a) 0.5 (?<) - x..+~ _ CoscX,... "'i: ) t (Xol (b) 0.3 ::>; -= 'Xc, - f I(~).\ (e} :::: 0 (c) 0. -::: o - -f/(o) (d) z. (e) -0. -l. lim (../x + 3x - 3Vx-x) = x-+oo (a) -00 II tr\ )(~ 0iJ (b) 00 :;::;. c0 Ixl ( ~ \+ ~ (\-.3).- ) - 3~ \ - ~ (c) 0 (d) -3 -co (e) 4

9 Math 0, Final Exam, Term 3 Page 7 of 4 IMASTER I dy 3. If dx = cosx - 3 secxtanx and y(rr) = ' theny(o) = (a) 7 (b) ~ 4 (c) 3 5 (d) (e) 4. A hot air balloon, rising straight up from a level field, is tracked by a boy 00 m on the ground from the lifting point. If the balloon is rising at a constant rate of 50m/min, then the rate of change of the boy's elevation angle (} when II 7r. v = 4 IS cj ~ _ 56 mlm,,, dt: (a) 0.5 rad/min (b) 0.0 rad/min (c) 0.05 rad/min (d) 0.05 rad/min (e) 0.5 rad/min

10 Math 0, Final Exam, Term 3 imasteri 5. lim ( + x)~ \'" (\+:,:9 X-l>OO \ \ '\ (\ + l,:x) :. - Z \ \i\?c.. In ~ ~- -.\\"\)(' \.,(\+ x...,) (a) J \tw- \" J := ~~...." (b) e (c) J (d) e (e) \ -.. Vz e 6. The absolute maximum value of f(x) - sin(x) + cos(4x) on the interval [0, ~] is equal to (a) 3 - (b) I f("i<):::o (c) 3 (d) v'3 (e) + v'3

11 Math 0, Final Exam, Term 3 Page 9 of 4 IMASTER I 7. (b) yin 0 (c) yx In(x + 0) (d) yx(x + 0) xy (e) In(x + 0) ex 8. The graph of f(x) = X e + (a) is concave up on (-00,0) (b) is concave up on (0, 00) (c) has two inflection points (d) has no inflection points (e) is concave up on (-00, 00) X e --c "'.)( (e+i)~ e (ft-- it~ ) (ex+) ;. J J II (x) =D ::}e" ('/ up o d<3>v,,\ t ty't\.e. \(v \..ectlvn. t

12 Math 0, Final Exam, Term 3 Page 0 of 4 IMASTER I 9. Let f(x) = a:x + /3x +" wherea: 0, /3" are constants. The value of c that satisfies the conclusion of the Mean Value Theorem for f on the interval [3,7] is (a) 5 /('><) =- ;{on< -+ ~ r CC) :! (b) 6 Q,c(L+~ - - (c) 3.5 (d) 4.5 (e) 4 ~d c +Lfp.:zrolc..\'() -~C:~) i-3,., ) t- _ ('-<;'" t- f3 +Y) - (0.x+-'~ Lf -= 400( 400( c.:: ~D( ,.'-(f == 5 I 0 to, 0. The number of critical points of f(x) (x - X 3 )-/3 is --<.f/'5 t) f I i ( x"}),( t - :,:x J (-,.) = - 3 'X (a), -- X -t I_~X - - S3 5'('.) =.0 - (b) 3 ~/("y') ONE-b (c) 4 (d) 5 (e)

13 Math 0, Final Exam, Term 3 Page of 4 IMASTER I. The function f(x) = x4-4 x3+ 4X + 4 has (a) a local max at X = and a local min at X = 0 and X (b) a local max at X = 0 and a local min at X = (c) a local max at X = and a local min at X = - (d) a local max at X = and a local min at X = 0 and X = (e) a local max at X = and a local min at X = and X = 0 f ),,..."S _' X'l.. + '6'X... (~) -::. '...-A S, :-4-':(( rx 'Z.-?:'x+z-) \- 0 :::: 4): (X-I) (')(-'.) /, /-> ~ "./ WI,y\ YI'lMC Jf('i) -:: C :=::::) x::: (};) \) l hi'>". The function g(x) = e-; is (a) increasing on (-00,0) and (0, (0) (b) increasing on (-00, 0) and decreasing on (0, 00) (c) decreasing on (0, (0) (d) increasing on (0,) and decreasing on (, (0) (e) decreasing on (-00,0) and (0, (0). -:z. ( 3 6<).: e X -IlL I >D ~cjj X;fQ ~' - -t 0 /' t-?

14 Math 0, Final Exam, Term 3 - cot X) 3. Ify tan- ( ' then y' + cot x (a) ~ esc)<. (b) 0 " Q C'5.c. )< '\ (c) - ~ -+. Ctj!;)<. + (~::..., =- G:-Cot x)"z.-+_(\-(o~y.. "'l ~ -+.\_~e t. :l al f'( ::: esc x (d) csc X -:: :::. ~ C>c.)< ~ :) L \+ (at )( (e) +csc x <. 't. ~ (tx + Cot ')( 4. A rectangle has its base on the x-axis and its upper two vertices on the parabola y = - x What is the largest area that the rectangle can have? (a) 3 (b) 30 (c) 0v' (d) 8V6 (e) 8 A=?::-~ A (x) =?( (P--~ 3 _ ::.4 x - 'l. x.. I ~4 A (x) :::?L = ']. -,) AI ('<) = ti AIr (x) = _. x..., f\ () G 'x.. ~ (?-} (\~-4) -:: X ex ~ 0) AII( ) -:: _4 (Ii.<.. CJ { >(Y\ oj'/..

15 Math 0, Final Exam, Term 3 Page 3 of 4 IMASTER I 5. ( X) Ix ~+ dx= x (b) --+-+C x 8 X (d) - x - ln Ixl + 4" + C (e) + (In Ixl)-l + 4 x + C x 6. Using 00 rectangles of equal width and right endpoints, the area below the graph of f (x) = 4x 3 and above interval [0,] is approximately equal to I:::... '.-0' 'x =: 0 + Ln k :: -;:; bx ':: ~r;; t:. '/ ( a).00 A - L ~ ('X~) [) " (l - I(:..=" l"\, \<-)~,.., k.. L =..:::::::; "" \''' \ Y\ - - c-) ~L (b).0 "'" ~ _, "~Z\ J'.. - " k 3 =:4" l'y\c;+') - ~ ~ V\. () C 03 - '4 '- =\ '\ ".. (d).0 :::: (n +~) '= (I +~ ) ) L ~) == \,0\ (e).00 Alto - ( + '-'ll I _.0. 0

16 Math 0, Final Exam, Term 3 Page 4 of 4 IMASTER I 7. If the curves y = x + bx + a and y = ex - x have a common tangent line at the point (,), then a-tlb+e = (a) ~ 0 (b) 4; (c) 4 (d) - (e) -3.So. o 8. If a is a positive real number and then a = (a) 6 (b) 8 (c) 4 (d) 7 -t-hey) \c -(V'\ ~) '" eo. :l..j 0{. ~ 64, s;.; "So 0\.::: G (e) 9

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013

Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013 Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman E-mail address: erdman@pdx.edu Contents Preface ix Part 1. PRELIMINARY MATERIAL

More information

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.

AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing. The Calculus BC Exam AP Calculus BC Exam SECTION I: Multiple-Choice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Solutions to Practice Problems for Test 4

Solutions to Practice Problems for Test 4 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

AP Calculus AB 2003 Scoring Guidelines Form B

AP Calculus AB 2003 Scoring Guidelines Form B AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Calculus AB 2014 Scoring Guidelines

Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

AP Calculus AB 2004 Free-Response Questions

AP Calculus AB 2004 Free-Response Questions AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

More information

4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters 4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012 X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010 MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

More information

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100

TOPPER Sample Paper - I. Class : XI MATHEMATICS. Questions. Time Allowed : 3 Hrs Maximum Marks: 100 TOPPER Sample Paper - I Class : XI MATHEMATICS Questions Time Allowed : 3 Hrs Maximum Marks: 100 1. All questions are compulsory.. The question paper consist of 9 questions divided into three sections

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Techniques of Integration

Techniques of Integration 8 Techniques of Integration Over the next few sections we examine some techniques that are frequently successful when seeking antiderivatives of functions. Sometimes this is a simple problem, since it

More information

AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +

More information

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124

Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124 Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

Don't Forget the Differential Equations: Finishing 2005 BC4

Don't Forget the Differential Equations: Finishing 2005 BC4 connect to college success Don't Forget the Differential Equations: Finishing 005 BC4 Steve Greenfield available on apcentral.collegeboard.com connect to college success www.collegeboard.com The College

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function.

Good Questions. Answer: (a). Both f and g are given by the same rule, and are defined on the same domain, hence they are the same function. Good Questions Limits 1. [Q] Let f be the function defined by f(x) = sin x + cos x and let g be the function defined by g(u) = sin u + cos u, for all real numbers x and u. Then, (a) f and g are exactly

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

Analyzing Piecewise Functions

Analyzing Piecewise Functions Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions All questions in the Math Level 1 and Math Level Tests are multiple-choice questions in which you are asked to choose the

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,

More information

Solutions - Homework sections 17.7-17.9

Solutions - Homework sections 17.7-17.9 olutions - Homework sections 7.7-7.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points - and therefore the triangle between them - are on the plane x +

More information

INTEGRATING FACTOR METHOD

INTEGRATING FACTOR METHOD Differential Equations INTEGRATING FACTOR METHOD Graham S McDonald A Tutorial Module for learning to solve 1st order linear differential equations Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

AP Calculus AB 2006 Scoring Guidelines

AP Calculus AB 2006 Scoring Guidelines AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

How To Understand The Theory Of Algebraic Functions

How To Understand The Theory Of Algebraic Functions Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Exam #3 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

More information

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

More information

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

Homework #2 Solutions

Homework #2 Solutions MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, January 8, 014 1:15 to 4:15 p.m., only Student Name: School Name: The possession

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

x), etc. In general, we have

x), etc. In general, we have BASIC CALCULUS REFRESHER. Introduction. Ismor Fischer, Ph.D. Dept. of Statistics UW-Madison This is a very condensed and simplified version of basic calculus, which is a prerequisite for many courses in

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Visualizing Differential Equations Slope Fields. by Lin McMullin

Visualizing Differential Equations Slope Fields. by Lin McMullin Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should

More information

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015

Function Name Algebra. Parent Function. Characteristics. Harold s Parent Functions Cheat Sheet 28 December 2015 Harold s s Cheat Sheet 8 December 05 Algebra Constant Linear Identity f(x) c f(x) x Range: [c, c] Undefined (asymptote) Restrictions: c is a real number Ay + B 0 g(x) x Restrictions: m 0 General Fms: Ax

More information

Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

Introduction to Differential Calculus. Christopher Thomas

Introduction to Differential Calculus. Christopher Thomas Mathematics Learning Centre Introduction to Differential Calculus Christopher Thomas c 1997 University of Sydney Acknowledgements Some parts of this booklet appeared in a similar form in the booklet Review

More information