Internet Protocol (IP)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Internet Protocol (IP)"

Transcription

1 TCP/IP CIS 218/238

2 Internet Protocol (IP) The Internet Protocol (IP) is responsible for ensuring that data is transferred between two Intenret hosts based on a 32 bit address. To be ROUTABLE, a protocol must specify a NETWORK ADDRESS for each device that exists on the network. The network address usually consists of a network number and a host or workstation number and a route out of the local network (gateway). All TCP/IP enabled devices connected to the Internet have an Internet Protocol (IP) address.. The Internet Assigned Numbers Authority (IANA) is the organization responsible for assigning IP addresses to Internet Service Providers (ISPs) and deciding which ones should be used for the public Internet and which ones should on private networks.

3 IP Addressing Network numbers are specified by a class designated by the value of the first number in the address. The network number encompasses one or more of the octet values as indicated by the SUBNET MASK, host portion is indicated by the zero position in the mask. (IP) Version 4 addresses consist of 4 numbers valued separated by periods; so called dotted quad notation. IP addresses are in reality a string of 32 binary digits or bits. For ease of use, network engineers often divide these 32 bits into four sets of 8 bits (or octets), each representing a number from 0 to 255. Each number is then separated by a period (.) to create the familiar dotted decimal notation, so-called dotted quad notation is for readability. This dotted quad number contains both the network and host number delineated by a subnet mask. IP address classes are assigned by the value of the first octet A: 0-127, B: , C: , D: , E: etc. The subnet mask represents 1 s in the network portion, zeros in the host portion of the number. Normal subnet masks are assigned by class A: 8 bits, B: 16 bits, C 24 bits. Only IP network classes A, B and C are of concern for host addressability. Class D and E are special purpose address classes used for other functions like IGMP.

4 IP Address Rules Address Rules - Network addresses 0, 127 and 255 are reserved values; 0 and 255 are broadcast; 127 is for local loopback. Network addresses starting with are reserved for IGMP processes. - Host addresses 0 (or all zeros) and 255 (all 1 s) are not allowed as they are reserved for broadcast - IP network addresses , (Loopback) , and are reserved for private Intranets - All other class A-C addresses are available for use on the public Internet. Except the Private IP address range. - Private addresses cannot be used on the Internet (not routed) though used o internal networks. This this problem is overcome by Network Address Translation - NAT. Whether or not your computer has a network interface card it will have a built-in IP address with which network-aware applications can communicate with one another. This IP address is defined as and is frequently referred to as localhost.

5 IP Protocols The two most popular transportation mechanisms used in IP are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides a communication service at an intermediate level between an application program and the Internet Protocol (IP). TCP is a guaranteed delivery mechanism as opposed to UDP which simply delivers packets as sent. When the type of transport protocol has been determined, the TCP/UDP header is then inspected for the "port" value, which is used to determine which network application on the computer should process the data. Certain programs are assigned specific ports as recognized by the Internet Consortium Reqest for Comment (RFC). For example, port 80 is reserved for HTTP Web traffic, and port 25 is reserved for SMTP . Ports below 1024 are reserved for privileged system functions, and those above 1024 are generally reserved for nonsystem third-party applications.

6 TCP/IP Network Model Note the link layer is undefined in the IP protocol suite.

7 User Datagram Protocol (UDP) UDP is a connectionless protocol. Sometimes described as a stateless protocol. Data is sent on a "best effort" basis with the machine that sends the data having no means of verifying whether the data was correctly received by the remote machine. UDP is usually used for applications in which the data sent is not mission-critical. It is also used when data needs to be broadcast to all available servers on a locally attached network where the creation of dozens of TCP connections would consume excessinve resources.

8 Transport Control Protocol (TCP) TCP opens up a virtual connection between the client and server programs running. TCP keeps track of the packets sent by giving each one a sequence number with the remote server sending back acknowledgment packets confirming correct delivery. The sender keeps a record of each packet it sends, and waits for acknowledgment before sending the next packet. This technique requires the receiver to respond with an acknowledgment message as it receives the data. The number of bytes waited before acknowledgement is known as the TCP window size. This window size can change based on network performance and reliability a so-called sliding window size. Programs that use TCP therefore have a means of detecting connection failures and requesting the retransmission of missing packets. TCP is a connection-oriented (stateful) protocol. The sender also keeps a timer from when the packet was sent, and retransmits a packet if the timer expires. The timer is needed in case a packet gets lost or corrupted.

9 TCP Connection Establishment Before exchanging data on a TCP session, a connection must be established on the destination (service) port. The host initiating the connection sends a segment with the SYN bit set in TCP header. The target replies with a segment with the SYN and ACK bits set, to which the originating server replies with a segment with the ACK bit set. This SYN, SYN- ACK, ACK mechanism is often called the "three-way handshake". Before a client attempts to connect with a server, the server must first bind to a port to open it up for connections: this is called a passive open. Once the passive open is established, a client may initiate an active open. To establish a connection, the three-way (or 3-step) handshake occurs: - The active open is performed by the client sending a SYN to the server. - In response, the server replies with a SYN-ACK. - Finally the client sends an ACK back to the server.

10 TCP Connection Establishment At this point, both the client and server have received an acknowledgment of the connection. Usually when a connection is made from a client computer requesting data to the server that contains the data: The client selects a random previously unused "source" port greater than 1024 and queries the server on the "destination" port specific to the application. If it is an HTTP request, the client will use a source port of, say, 2049 and query the server on port 80 (HTTP). The server recognizes the port 80 request as an HTTP request and passes on the data to be handled by the Web server software. When the Web server software replies to the client, it tells the TCP application to respond back to port 2049 of the client using a source port of port 80. The client keeps track of all its requests to the server's IP address and will recognize that the reply on port 2049 isn't a request initiation for "NFS", but a response to the initial port 80 HTTP query.

11 TCP Connection Example Here is a modified packet trace obtained from an ethereal program: hosta -> hostb TCP 1443 > http [SYN] Seq=9766 Ack=0 Win=5840 Len=0 hostb -> hosta TCP http > 1443 [SYN, ACK] Seq=8404 Ack=9767 Win=5792 Len=0 hosta -> hostb TCP 1443 > http [ACK] Seq=9767 Ack=8405 Win=5840 Len=0 hosta -> hostb HTTP HEAD/HTTP/1.1 hostb -> hosta TCP http > 1443 [ACK] Seq=8405 Ack=9985 Win=54 Len=0 hostb -> hosta HTTP HTTP/ OK hosta -> hostb TCP 1443 > http [ACK] Seq=9985 Ack=8672 Win=6432 Len=0 hostb -> hosta TCP http > 1443 [FIN, ACK] Seq=8672 Ack=9985 Win=54 Len=0 hosta -> hostb TCP 1443 > http [FIN, ACK] Seq=9985 Ack=8673 Win=6432 Len=0 hostb -> hosta TCP http > 1443 [ACK] Seq=8673 Ack=9986 Win=54 In this trace, the sequence number represents the serial number of the first byte of data in the segment. So in the first line, a random value of 9766 was assigned to the first byte and all subsequent bytes for the connection from this host will be sequentially tracked. This makes the second byte in the segment number 9767, the third number 9768 etc. The acknowledgment number or Ack, not to be confused with the ACK bit, is the byte serial number of the next segment it expects to receive from the other end, and the total number of bytes cannot exceed the Win or window value that follows it. If data isn't received correctly, the receiver will re-send the requesting segment asking for the information to be sent again. The TCP code keeps track of all this along with the source and destination ports and IP addresses to ensure that each unique connection is serviced correctly.

12 Data Transfer The data portion of the IP packet contains a TCP or UDP segment sandwiched inside. Only the TCP segment header contains sequence information, but both the UDP and the TCP segment headers track the port being used. The source/destination port and the source/destination IP addresses of the client & server computers are then combined to uniquely identify each data flow. - During data transfer, TCP enforces: - Ordered data transfer - the destination host rearranges according to sequence numbe - Retransmission of lost packets - any cumulative stream not acknowledged will be retransmitted - Discarding duplicate packets - Error-free data transfer - Flow control - limits the rate a sender transfers data to guarantee reliable delivery. When the receiving host's buffer fills, then next acknowledgement contains a 0 in the window size, to stop transfer and allow the data in the buffer to be processed - Congestion control using TCP sliding window The communication then continues with a series of segment exchanges, each with the ACK bit set. When one of the servers needs to end the communication, it sends a segment to the other with the FIN and ACK bits set, to which the other server also replies with a FIN-ACK segment also. The communication terminates with a final ACK from the server that wanted to end the session.

13 TCP Connection Termination The connection termination phase uses, at most, a four-way handshake, with each side of the connection terminating independently. When an endpoint wishes to stop its half of the connection, it transmits a FIN packet, which the other end acknowledges with an ACK. Therefore, a typical tear-down requires a pair of FIN and ACK segments from each TCP endpoint. A connection can be "half-open", in which case one side has terminated its end, but the other has not. The side that has terminated can no longer send any data into or receive any data from the connection, but the other side can (but generally if it tries, this should result in no acknowledgment and therefore a timeout, or else result in a positive RST, and either way thereby the destruction of the half-open socket). It is also possible to terminate the connection by a 3-way handshake, when host A sends a FIN and host B replies with a FIN & ACK (merely combines 2 steps into one) and host A replies with an ACK. This is the most common method of connection termination. It is possible for both hosts to send FINs simultaneously then both just have to ACK. This could possibly be considered a 2-way handshake since the FIN/ACK sequence is done in parallel for both directions.

14 TCP Connection Termination Some host TCP stacks may implement a "half-duplex" close sequence, as Linux or HP-UX do. If such a host actively closes a connection but still has not read all the incoming data the stack already received from the link, this host will send a RST instead of a FIN. This allows a TCP application to be sure that the remote application has read all the data the former sent - waiting the FIN from the remote side when it will actively close the connection. Unfortunately, the remote TCP stack cannot distinguish between a Connection Aborting RST and this Data Loss RST - both will cause the remote stack to throw away all the data it received, but the application still didn't read. Some application protocols may violate the OSI model layers, using the TCP open/close handshaking for the application protocol open/close handshaking - these may find the RST problem on active close. Each IP packet has a Time to Live (TTL) section that keeps track of the number of network devices the packet has passed through to reach its destination. The server sending the packet sets the initial TTL value, and each network device that the packet passes through then reduces this value by 1. If the TTL value reaches 0, the network device will discard the packet. This mechanism helps to ensure that bad routing on the Internet won't cause packets to aimlessly loop around the network without being removed. TTLs therefore help to reduce the clogging of data circuits with unnecessary traffic.

15 TCP Session States Because TCP is a stateful protocol, session status is kept track of as it moves from state-to-state: Common TCP Session States: LISTEN SYN-SENT SYN-RECEIVED ESTABLISHED FIN-WAIT-1 FIN-WAIT-2 CLOSE-WAIT CLOSING LAST-ACK TIME-WAIT CLOSED

16 TCP Session States TCP session states are displayed on a TCP/IP host using the netstat an command: netstat -an Active Connections Proto Local Address Foreign Address State TCP : :0 LISTENING TCP : :0 LISTENING TCP : :0 LISTENING TCP : :1533 ESTABLISHED TCP : :1352 CLOSE_WAIT TCP : :30999 ESTABLISHED TCP : :0 LISTENING TCP : :443 TIME_WAIT TCP : :443 ESTABLISHED UDP :427 *:* UDP :445 *:* UDP :1045 *:*

17 TCP Session States LISTEN: represents waiting for a connection request from any remote TCP and port. (usually set by TCP servers). SYN-SENT: represents waiting for the remote TCP to send back a TCP packet with the SYN and ACK flags set. (usually set by TCP clients). SYN-RECEIVED: represents waiting for the remote TCP to send back an acknowledgment after having sent back a connection acknowledgment to the remote TCP. (usually set by TCP servers). ESTABLISHED: represents that the port is ready to receive/send data from/to the remote TCP. (set by TCP clients and servers). TIME-WAIT: represents waiting for enough time to pass to be sure the remote TCP received the acknowledgment of its connection termination request. According to RFC 793 a connection can stay in TIME-WAIT for a maximum of four minutes. FIN-WAIT, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, CLOSED all relate to various states of TCP session termination depending on the method used (described above)

18 TCP/IP Session State Diagram

19 ICMP Protocol and TCP/IP ICMP provides a suite of error, control, and informational messages for use by the operating system. IP packets will occasionally arrive at a server with corrupted data due to any number of reasons including a bad connection; electrical interference, or even misconfiguration. The server will usually detect this by examining the packet and correlating the contents to what it finds in the IP header's error control section. It will then issue an ICMP reject message to the original sending machine saying that the data should be re-sent because the original transmission was corrupted. ICMP also includes echo and echo reply messages used by the Linux ping command to confirm network connectivity. ICMP TTL expired messages are also sent by network devices back to the originating server whenever the TTL in a packet is decremented to zero. Note there is a UDP echo command that performs thae same function as ICMP PING. ON some systems the PING command can be used for either protocol.

20 Common TCP/UDP Port Numbers Application Port # Echo (UDP PING) UDP: 7 FTP TCP: 20, 21 TELNET TCP: 23 SMTP TCP: 25 DNS UDP: 53 DHCP UDP: 67 (server) 68 (client) TFTP UDP: 69 HTTP: TCP:80

21 Address Resolution Protocol (ARP) ARP is a Link Layer protocol that resolves IP addresses to local area network (LAN) MAC addresses. This function is an add-on to the original TCP/IP protocol suite because TCP/IP was originally created as a wide-area network protocol, not a LAN protocol. On Ethernet networks, these packets use an EtherType of 0x0806, and are sent to the broadcast MAC address of FF:FF:FF:FF:FF:FF. On a local network the target IP address will hear the broadcast ARP request and repsond with an ARP response reversing MAC and IP source and destination IP address, substituting it s own MAC address for the broadcast address on the repsonse packet. If the IP address is not on the loca lsubnet, the TCP/IP stack will arp for the nearest gateway addres s to that IP address. ARP tables are usually kept in memory for a limited period of time. After an entry times out, the ARP broadcast process must be repeated. The arp a command can usually is used to display the in-memory ARP table: - >arp a Interface: x10005 Internet Address Physical Address Type d0-01-e4-c4-00 dynamic

22 Common TCP/IP Commands ping (address): establish network connectivity to a specific address using ICMP or UDP. traceroute, tracert (address): trace the network gateways to a specific address. Used to trace the networks you go thru to get there. arp a: dump the in-memory ARP table. netstat: display network statistics info such as routing table (-rn) or sessions (-an). ifconfig, ipconfig: display or set network interface information (UNIX, Windows). telnet (address) <port #>: in addition to the traditional usage, also used by network engineers for simple port scanning. That is, is this application <port#> open on server at (address). nslookup resolve DNS name to IP address or vice-versa hostname display hostname ss system sockets

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe

More information

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address

Procedure: You can find the problem sheet on Drive D: of the lab PCs. 1. IP address for this host computer 2. Subnet mask 3. Default gateway address Objectives University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 Lab.4 Basic Network Operation and Troubleshooting 1. To become familiar

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Technical Support Information Belkin internal use only

Technical Support Information Belkin internal use only The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

Unix System Administration

Unix System Administration Unix System Administration Chris Schenk Lecture 08 Tuesday Feb 13 CSCI 4113, Spring 2007 ARP Review Host A 128.138.202.50 00:0B:DB:A6:76:18 Host B 128.138.202.53 00:11:43:70:45:81 Switch Host C 128.138.202.71

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

TCP Performance Management for Dummies

TCP Performance Management for Dummies TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

BASIC ANALYSIS OF TCP/IP NETWORKS

BASIC ANALYSIS OF TCP/IP NETWORKS BASIC ANALYSIS OF TCP/IP NETWORKS INTRODUCTION Communication analysis provides powerful tool for maintenance, performance monitoring, attack detection, and problems fixing in computer networks. Today networks

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

LESSON 3.6. 98-366 Networking Fundamentals. Understand TCP/IP

LESSON 3.6. 98-366 Networking Fundamentals. Understand TCP/IP Understand TCP/IP Lesson Overview In this lesson, you will learn about: TCP/IP Tracert Telnet Netstat Reserved addresses Local loopback IP Ping Pathping Ipconfig Protocols Anticipatory Set Experiment with

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Transport Layer. Chapter 3.4. Think about

Transport Layer. Chapter 3.4. Think about Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is

More information

2057-15. First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring

2057-15. First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring 2057-15 First Workshop on Open Source and Internet Technology for Scientific Environment: with case studies from Environmental Monitoring 7-25 September 2009 TCP/IP Networking Abhaya S. Induruwa Department

More information

Internet Protocols. Background CHAPTER

Internet Protocols. Background CHAPTER CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected

More information

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet

1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet Review questions 1 Data information is sent onto the network cable using which of the following? A Communication protocol B Data packet C Media access method D Packages 2 To which TCP/IP architecture layer

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

2. IP Networks, IP Hosts and IP Ports

2. IP Networks, IP Hosts and IP Ports 1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Homework 3 TCP/IP Network Monitoring and Management

Homework 3 TCP/IP Network Monitoring and Management Homework 3 TCP/IP Network Monitoring and Management Hw3 Assigned on 2013/9/13, Due 2013/9/24 Hand In Requirement Prepare a activity/laboratory report (name it Hw3_WebSys.docx) using the ECET Lab report

More information

Troubleshooting Tools

Troubleshooting Tools Troubleshooting Tools An overview of the main tools for verifying network operation from a host Fulvio Risso Mario Baldi Politecnico di Torino (Technical University of Turin) see page 2 Notes n The commands/programs

More information

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description

8-bit Microcontroller. Application Note. AVR460: Embedded Web Server. Introduction. System Description AVR460: Embedded Web Server Introduction Intelligent homes will be connected to the Internet and require a microcontroller to communicate with the other network devices. The AVR embedded web server can

More information

Computer Networks I Laboratory Exercise 1

Computer Networks I Laboratory Exercise 1 Computer Networks I Laboratory Exercise 1 The lab is divided into two parts where the first part is a basic PC network TCP/IP configuration and connection to the Internet. The second part is building a

More information

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) April 25, 2015 5:22pm c 2015 Avinash Kak, Purdue

More information

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2

Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Network-Oriented Software Development Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Topics Layering TCP/IP Layering Internet addresses and port numbers Encapsulation

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Cape Girardeau Career Center CISCO Networking Academy Bill Link, Instructor. 2.,,,, and are key services that ISPs can provide to all customers.

Cape Girardeau Career Center CISCO Networking Academy Bill Link, Instructor. 2.,,,, and are key services that ISPs can provide to all customers. Name: 1. What is an Enterprise network and how does it differ from a WAN? 2.,,,, and are key services that ISPs can provide to all customers. 3. Describe in detail what a managed service that an ISP might

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

Understanding Layer 2, 3, and 4 Protocols

Understanding Layer 2, 3, and 4 Protocols 2 Understanding Layer 2, 3, and 4 Protocols While many of the concepts well known to traditional Layer 2 and Layer 3 networking still hold true in content switching applications, the area introduces new

More information

Hands On Activities: TCP/IP Network Monitoring and Management

Hands On Activities: TCP/IP Network Monitoring and Management Hands On Activities: TCP/IP Network Monitoring and Management 1. TCP/IP Network Management Tasks TCP/IP network management tasks include Examine your physical and IP network address Traffic monitoring

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet

Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

Outline. CSc 466/566. Computer Security. 18 : Network Security Introduction. Network Topology. Network Topology. Christian Collberg

Outline. CSc 466/566. Computer Security. 18 : Network Security Introduction. Network Topology. Network Topology. Christian Collberg Outline Network Topology CSc 466/566 Computer Security 18 : Network Security Introduction Version: 2012/05/03 13:59:29 Department of Computer Science University of Arizona collberg@gmail.com Copyright

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

Overview of TCP/IP. TCP/IP and Internet

Overview of TCP/IP. TCP/IP and Internet Overview of TCP/IP System Administrators and network administrators Why networking - communication Why TCP/IP Provides interoperable communications between all types of hardware and all kinds of operating

More information

Chapter 8 Security Pt 2

Chapter 8 Security Pt 2 Chapter 8 Security Pt 2 IC322 Fall 2014 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose and K.W. Ross,

More information

DO NOT REPLICATE. Analyze IP. Given a Windows Server 2003 computer, you will use Network Monitor to view and analyze all the fields of IP.

DO NOT REPLICATE. Analyze IP. Given a Windows Server 2003 computer, you will use Network Monitor to view and analyze all the fields of IP. Advanced TCP/IP Overview There is one primary set of protocols that runs networks and the Internet today. In this lesson, you will work with those protocols: the Transmission Control Protocol (TCP) and

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

Host Fingerprinting and Firewalking With hping

Host Fingerprinting and Firewalking With hping Host Fingerprinting and Firewalking With hping Naveed Afzal National University Of Computer and Emerging Sciences, Lahore, Pakistan Email: 1608@nu.edu.pk Naveedafzal gmail.com Abstract: The purpose

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

TCP/IP Network Essentials. Linux System Administration and IP Services

TCP/IP Network Essentials. Linux System Administration and IP Services TCP/IP Network Essentials Linux System Administration and IP Services Layers Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet are

More information

Cisco Configuring Commonly Used IP ACLs

Cisco Configuring Commonly Used IP ACLs Table of Contents Configuring Commonly Used IP ACLs...1 Introduction...1 Prerequisites...2 Hardware and Software Versions...3 Configuration Examples...3 Allow a Select Host to Access the Network...3 Allow

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

Network Programming TDC 561

Network Programming TDC 561 Network Programming TDC 561 Lecture # 1 Dr. Ehab S. Al-Shaer School of Computer Science & Telecommunication DePaul University Chicago, IL 1 Network Programming Goals of this Course: Studying, evaluating

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Network Protocol Configuration

Network Protocol Configuration Table of Contents Table of Contents Chapter 1 Configuring IP Addressing... 1 1.1 IP Introduction... 1 1.1.1 IP... 1 1.1.2 IP Routing Protocol... 1 1.2 Configuring IP Address Task List... 2 1.3 Configuring

More information

Chapter 8 Network Security

Chapter 8 Network Security [Computer networking, 5 th ed., Kurose] Chapter 8 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 84Securing 8.4 e-mail 8.5 Securing TCP connections: SSL 8.6 Network

More information

NAT & IP Masquerade. Internet NETWORK ADDRESS TRANSLATION INTRODUCTION. NAT & IP Masquerade Page 1 of 5. Internal PC 192.168.0.25

NAT & IP Masquerade. Internet NETWORK ADDRESS TRANSLATION INTRODUCTION. NAT & IP Masquerade Page 1 of 5. Internal PC 192.168.0.25 NAT & IP Masquerade Page 1 of 5 INTRODUCTION Pre-requisites TCP/IP IP Address Space NAT & IP Masquerade Protocol version 4 uses a 32 bit IP address. In theory, a 32 bit address space should provide addresses

More information

Firewalls. Chapter 3

Firewalls. Chapter 3 Firewalls Chapter 3 1 Border Firewall Passed Packet (Ingress) Passed Packet (Egress) Attack Packet Hardened Client PC Internet (Not Trusted) Hardened Server Dropped Packet (Ingress) Log File Internet Border

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

15-441 Project 3, Fall 2001 Stateful Functionality in IP Layer Out: Thursday, November 1, 2001 Due: Tuesday, December 4, 2001

15-441 Project 3, Fall 2001 Stateful Functionality in IP Layer Out: Thursday, November 1, 2001 Due: Tuesday, December 4, 2001 15-441 Project 3, Fall 2001 Stateful Functionality in IP Layer Out: Thursday, November 1, 2001 Due: Tuesday, December 4, 2001 1. Introduction In Project 2 we asked you to implement the IP layer of the

More information

IP Routing Features. Contents

IP Routing Features. Contents 7 IP Routing Features Contents Overview of IP Routing.......................................... 7-3 IP Interfaces................................................ 7-3 IP Tables and Caches........................................

More information

TCP/IP Networking Terms you ll need to understand: Techniques you ll need to master:

TCP/IP Networking Terms you ll need to understand: Techniques you ll need to master: 5 TCP/IP Networking Terms you ll need to understand: Subnet mask Subnetting Classless Interdomain Routing (CIDR) Transmission Control Protocol/Internet Protocol (TCP/IP) Address Resolution Protocol (ARP)

More information

Internetworking Microsoft TCP/IP on Microsoft Windows NT 4.0

Internetworking Microsoft TCP/IP on Microsoft Windows NT 4.0 Internetworking Microsoft TCP/IP on Microsoft Windows NT 4.0 Course length: 5 Days Course No. 688 - Five days - Instructor-led Introduction This course provides students with the knowledge and skills required

More information

Load Balancing. Final Network Exam LSNAT. Sommaire. How works a "traditional" NAT? Un article de Le wiki des TPs RSM.

Load Balancing. Final Network Exam LSNAT. Sommaire. How works a traditional NAT? Un article de Le wiki des TPs RSM. Load Balancing Un article de Le wiki des TPs RSM. PC Final Network Exam Sommaire 1 LSNAT 1.1 Deployement of LSNAT in a globally unique address space (LS-NAT) 1.2 Operation of LSNAT in conjunction with

More information

TCP/IP, Addressing and Services

TCP/IP, Addressing and Services TCP/IP, Addressing and Services S. Hussain Ali M.S. (Computer Engineering) Department of Computer Engineering King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia 1 Topics Covered in this

More information

Subnetting,Supernetting, VLSM & CIDR

Subnetting,Supernetting, VLSM & CIDR Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal

More information

Internet Concepts. What is a Network?

Internet Concepts. What is a Network? Internet Concepts Network, Protocol Client/server model TCP/IP Internet Addressing Development of the Global Internet Autumn 2004 Trinity College, Dublin 1 What is a Network? A group of two or more devices,

More information

Port Scanning. Objectives. Introduction: Port Scanning. 1. Introduce the techniques of port scanning. 2. Use port scanning audit tools such as Nmap.

Port Scanning. Objectives. Introduction: Port Scanning. 1. Introduce the techniques of port scanning. 2. Use port scanning audit tools such as Nmap. Port Scanning Objectives 1. Introduce the techniques of port scanning. 2. Use port scanning audit tools such as Nmap. Introduction: All machines connected to a LAN or connected to Internet via a modem

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

Introduction to Analyzer and the ARP protocol

Introduction to Analyzer and the ARP protocol Laboratory 6 Introduction to Analyzer and the ARP protocol Objetives Network monitoring tools are of interest when studying the behavior of network protocols, in particular TCP/IP, and for determining

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer)

cnds@napier Slide 1 Introduction cnds@napier 1 Lecture 6 (Network Layer) Slide 1 Introduction In today s and next week s lecture we will cover two of the most important areas in networking and the Internet: IP and TCP. These cover the network and transport layer of the OSI

More information

Firewalls. Basic Firewall Concept. Why firewalls? Firewall goals. Two Separable Topics. Firewall Design & Architecture Issues

Firewalls. Basic Firewall Concept. Why firewalls? Firewall goals. Two Separable Topics. Firewall Design & Architecture Issues CS 155 May 20, 2004 Firewalls Basic Firewall Concept Separate local area net from internet Firewall John Mitchell Credit: some text, illustrations from Simon Cooper Router All packets between LAN and internet

More information

Introduction to Network Security Lab 1 - Wireshark

Introduction to Network Security Lab 1 - Wireshark Introduction to Network Security Lab 1 - Wireshark Bridges To Computing 1 Introduction: In our last lecture we discussed the Internet the World Wide Web and the Protocols that are used to facilitate communication

More information

Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP)

Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP) Tik-110.350 Computer Networks (3 cr) Spring 2000 Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP) Professor Arto Karila Helsinki University of Technology E-mail: Arto.Karila@hut.fi

More information

Scapy. On-the-fly Packet Generation by codemonk@u-sys.org. Dienstag, 10. Januar 12

Scapy. On-the-fly Packet Generation by codemonk@u-sys.org. Dienstag, 10. Januar 12 Scapy On-the-fly Packet Generation by codemonk@u-sys.org 1 Overview Repetition of network basics Python Basics Scapy Basics Example: SYN Scan Hands-on: Traceroute Promiscuous Scan ARP Spoofing 2 Layers

More information

Network Security. Chapter 3. Cornelius Diekmann. Version: October 21, 2015. Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik

Network Security. Chapter 3. Cornelius Diekmann. Version: October 21, 2015. Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Network Security Chapter 3 Cornelius Diekmann Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Version: October 21, 2015 IN2101, WS 15/16, Network Security 1 Security Policies and

More information

IP addressing and forwarding Network layer

IP addressing and forwarding Network layer The Internet Network layer Host, router network layer functions: IP addressing and forwarding Network layer Routing protocols path selection RIP, OSPF, BGP Transport layer: TCP, UDP forwarding table IP

More information

Network and Services Discovery

Network and Services Discovery A quick theorical introduction to network scanning January 8, 2016 Disclaimer/Intro Disclaimer/Intro Network scanning is not exact science When an information system is able to interact over the network

More information

Internetworking and IP Address

Internetworking and IP Address Lecture 8 Internetworking and IP Address Motivation of Internetworking Internet Architecture and Router Internet TCP/IP Reference Model and Protocols IP Addresses - Binary and Dotted Decimal IP Address

More information

TCP/IP Security Problems. History that still teaches

TCP/IP Security Problems. History that still teaches TCP/IP Security Problems History that still teaches 1 remote login without a password rsh and rcp were programs that allowed you to login from a remote site without a password The.rhosts file in your home

More information

Attack Lab: Attacks on TCP/IP Protocols

Attack Lab: Attacks on TCP/IP Protocols Laboratory for Computer Security Education 1 Attack Lab: Attacks on TCP/IP Protocols Copyright c 2006-2010 Wenliang Du, Syracuse University. The development of this document is funded by the National Science

More information

Network Pop Quiz 5 Brought to you by www.rmroberts.com please visit our site!

Network Pop Quiz 5 Brought to you by www.rmroberts.com please visit our site! Network Pop Quiz 5 Brought to you by www.rmroberts.com please visit our site! This is a set of questions to help you prepared for the CompTIA Network+ certification examination. You should not exceed twenty

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Компјутерски Мрежи NAT & ICMP

Компјутерски Мрежи NAT & ICMP Компјутерски Мрежи NAT & ICMP Riste Stojanov, M.Sc., Aleksandra Bogojeska, M.Sc., Vladimir Zdraveski, B.Sc Internet AS Hierarchy Inter-AS border (exterior gateway) routers Intra-AS interior (gateway) routers

More information

Internet Firewall CSIS 3230. Internet Firewall. Spring 2012 CSIS 4222. net13 1. Firewalls. Stateless Packet Filtering

Internet Firewall CSIS 3230. Internet Firewall. Spring 2012 CSIS 4222. net13 1. Firewalls. Stateless Packet Filtering Internet Firewall CSIS 3230 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 8.8: Packet filtering, firewalls, intrusion detection Ch

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX

Understanding TCP/IP. Introduction. What is an Architectural Model? APPENDIX APPENDIX A Introduction Understanding TCP/IP To fully understand the architecture of Cisco Centri Firewall, you need to understand the TCP/IP architecture on which the Internet is based. This appendix

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

Lab PC Network TCP/IP Configuration

Lab PC Network TCP/IP Configuration Lab PC Network TCP/IP Configuration Objective Identify tools used to discover a computer network configuration with various operating systems. Gather information including connection, host name, Layer

More information

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7

20-CS-6053-00X Network Security Spring, 2014. An Introduction To. Network Security. Week 1. January 7 20-CS-6053-00X Network Security Spring, 2014 An Introduction To Network Security Week 1 January 7 Attacks Criminal: fraud, scams, destruction; IP, ID, brand theft Privacy: surveillance, databases, traffic

More information

NETWORK LAYER/INTERNET PROTOCOLS

NETWORK LAYER/INTERNET PROTOCOLS CHAPTER 3 NETWORK LAYER/INTERNET PROTOCOLS You will learn about the following in this chapter: IP operation, fields and functions ICMP messages and meanings Fragmentation and reassembly of datagrams IP

More information

TCP/IP and the Internet

TCP/IP and the Internet TCP/IP and the Internet Computer networking today is becoming more and more entwined with the internet. By far the most popular protocol set in use is TCP/IP (Transmission Control Protocol/Internet Protocol).

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

Basic Network Configuration

Basic Network Configuration Basic Network Configuration 2 Table of Contents Basic Network Configuration... 25 LAN (local area network) vs WAN (wide area network)... 25 Local Area Network... 25 Wide Area Network... 26 Accessing the

More information