Perimeter and area formulas for common geometric figures:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Perimeter and area formulas for common geometric figures:"

Transcription

1 Lesson : Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles, triangles, rhombuses, parallelograms, trapezoids, and kites. Vocabulary: Base of a parallelogram Height of a parallelogram Height of a triangle CA Std 8.0: Students know, derive, and solve problems involving perimeter, circumference, area, volume, lateral area, and surface area of common geometric figures. CA Std 10.0: Students compute areas of polygons, including rectangles, scalene triangles, equilateral triangles, rhombi, parallelograms, and trapezoids. Altitude of a parallelogram Base of a triangle Height of a trapezoid Base & height (altitude of a parallelogram) Base & height of a triangle Bases & Height of a trapezoid Perimeter and area formulas for common geometric figures: Rectangle P= b + h A= bh Square P = 4s A = s Triangle P = a + b + c Circle Parallelogram Trapezoid P = a + b A= bh Rhombus P = 4s Kite P = a+b 1

2 Example 1: Using the perimeter to find area The perimeter of a rectangle is 48 The perimeter of a rectangle is 34 ft and the base is 8ft. What is the inches and the height is 10 inches. area? Find the area of the rectangle. The perimeter of a rectangle is 36cm and the base is 10cm. Find the area of the rectangle. Example : Using area to find perimeter. A square and a rectangle have A square and a rectangle have equal areas. If the rectangle is 9cm equal areas. If the rectangle is 7 by 4cm. What is the perimeter of inches by 3 inches. What is the the square? perimeter of the square? A square and a rectangle have equal areas. If the rectangle is 16cm by 9cm. What is the perimeter of the square? Example 3: Finding areas parallelograms. Find the area of each parallelogram. Find the area of a parallelogram with the base 1 m and height 9 m. Find the area of each parallelogram. Example 4: Finding a missing dimension. Find the value of h in the Find the value of h in the parallelogram parallelogram Find the value of h in the parallelogram

3 Example 5: Finding the area of the shaded region (triangles): Example 6: Finding the area of trapezoid. Find the area of trapezoid ABCD. What is the area of trapezoid PQRS? (Using a right triangle ) Find the area of trapezoid. Example 7: Finding areas of rhombuses and kites: a) Finding the area of a rhombus: a) Finding the area of a rhombus: a) Finding the area of a rhombus: b) Find the area of a kite: b) Find the area of a kite: b) Find the area of a kite: 3

4 10 3 Areas of Regular Polygons: Focused Learning Target: I will be able to CA Std 10.0: Students compute areas of polygons, Find the area of a regular polygon including rectangles, scalene triangles, equilateral Vocabulary: triangles, rhombi, parallelograms, and trapezoids. Radius of a regular polygon Apothem Radius is the distance from the center to a vertex. Apothem is the perpendicular distance from the center to a side Example 1: Finding angle measures: Find the measure of each numbered angle. A portion of a regular hexagon has apothem and radii drawn. Find the measure of each numbered angle. Find the measure of each numbered angle. Example : Finding the area of a regular polygon: Finding the area of each regular Finding the area of each regular polygon. Round your answer to the polygon. Round your answer to the nearest tenth. nearest tenth. Finding the area of each regular polygon. Round your answer to the nearest tenth. Notice: Regular hexagons have 30 o 60 o 90 o triangles within their 6 equilateral triangles. 4

5 10 4 Perimeters and Areas of Similar Figures: Focused Learning Target: I will be able to find the perimeters and areas of similar figures CA Std 11.0: Students determine how changes in dimensions affect the perimeter and area of common geometric figures. Finding Ratios in Similar Figures: The trapezoids below are similar. The ratio of the lengths of the corresponding sides is 6 or. 9 3 a) Find the ratio (smaller to larger) of the perimeters. b) Find the ratio (smaller to larger) of the areas. The pentagons below are similar. a) Find the ratio of the lengths of the corresponding sides. b) Find the ratio (smaller to larger) of the perimeters. c) Find the ratio (smaller to larger) of the areas. You try: The triangles below are similar. a) Find the ratio of the lengths of the corresponding sides. b) Find the ratio (smaller to larger) of the perimeters. c) Find the ratio (smaller to larger) of the areas. 5

6 If you know the area of one of two similar figures, you can find the other by using proportions. Finding areas using similar figures: The area of the smaller regular pentagon is about 7.5cm. Approximate the area of the larger regular pentagon. We ll do one: The two triangles below are similar. The area of the larger triangle is about the smaller triangle. 65m. Approximate the area of You Try: The two trapezoids below are similar. The area of the larger trapezoid is about 10in. To the nearest tenth, find the area of the smaller trapezoid. Application Problems: For some medical imaging, the scale is 3:1. That means that if an image is 3cm long, then the corresponding length on the person s body is 1cm. Find the actual area of a lesion if its image has area of.7cm We ll do one: Two similar rectangles have areas 7in and 48in. The length of one side of the larger rectangle is 16 in, what are the dimensions of both rectangles? You Try: 6

7 Two rectangles are similar. The smaller has an area of 60in and the shorter side is 6in long. The larger has a shorter side that is 8 in long. Find the area of the larger rectangle. Challenge problem: Draw a square with an area 8in. Draw a nd square with an area that is four times as large. What is the ratio of their perimeters? 10 6 Circles and Arcs Focused Learning Target: I will be able to Find the measures of central angles and arcs Find circumference and arc length CA STD 7.0 Students prove and use theorems involving the properties of circles. CA STD 8.0 Students know, derive, and solve problems involving circumference. Vocabulary: Circle Center Radius Congruent circles Diameter Central Angle Semicircle Minor Arc Major Arc Circumference Pi ( ) Concentric Circles 7

8 Example Identifying Arcs You try: From the picture to the left, identify a minor arc: From the picture to the left, identify a minor arc: From the picture to the left, identify a minor arc: A semicircle: A major arc: A semicircle: A major arc: A semicircle: A major arc: You try: From the picture to the left, find the measure of each arc: From the picture to the left, find the measure of each arc: From the picture to the left, find the measure of each arc: a. a. a. b. b. b. 8

9 Find the circumference of the circle. Leave your answer in terms of The diameter of a bicycle wheel is in. To the nearest whole number, how many revolutions does the wheel make when the bicycle travels 100 ft? The radius of a tire is 1 in. To the nearest whole number, how many revolutions does the tire make when the car travels 580 ft? As we ve seen so far, the measure of an arc is in degrees out of 360 o. Arc length is different because it refers to the distance around a circle; a fraction of a circle s circumference. 9

10 Find the length of the minor arc XY: Find the length of the major arc XPY: Find the length of a semicircle with radius 1.3 m. Leave your answer in terms of. 10

11 10 7 Areas of Circles and Sectors Focused Learning Target: I will be able to Find the areas of circles and sectors Find segments of circles Vocabulary: Sector of a circle Segment of a circle CA STD 8.0 Students know, derive, and solve problems involving circumference and area of common geometric figures Sector of a circle is a region bounded by an arc of the circle and the two radii to the arc s endpoints. Segment of a circle is a part of a circle bounded by an arc and the segment joining its endpoints How much more pizza is in a 1 in pizza compared to a 10 in. pizza? We ll do one: Two sprinklers spray water in a circular path. One sprinkler sprays in a circle with 6 ft. diameter, the larger sprays with an 8 ft diameter. How much more ground is covered by the larger sprinkler? You try: How much more pizza does a 14 in. pizza have compared to a 1 in. pizza 11

12 Find the area of sector ZOM. Leave your answer in terms of. We ll do one: Find the area of the shaded sector of a circle. Leave your answer in terms of. You Try: Find the area of the shaded sector of a circle. Leave your answer in terms of. A part of a circle bounded by an arc and the segment joining its endpoints is a segment of a circle. To find the area of a segment for a minor arc, draw radii to form a sector. The area of the segment equals the area of the sector minus the area of the triangle formed. 1

13 Find the area of the shaded segment. Leave your answer in terms of. Finding the area of shaded segment. Round your answer to the nearest tenth. You Try: Finding the area of shaded segment. Round your answer to the nearest tenth. Find the shaded region. Leave your answer in terms of. 13

14 We ll do one: Find the shaded region. Leave your answer in terms of. Challenge A: Find the area of the shaded region. Leave your answer in terms of. Challenge B: Find the total area of the shaded segments. Round your answer to the nearest tenth. 14

10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles 10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

More information

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same. Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

More information

Unit 7 Syllabus: Area

Unit 7 Syllabus: Area Date Period Day Topic Unit 7 Syllabus: Area 1 Areas of Parallelograms and Triangles 2 Areas of Trapezoids, Rhombuses and Kites 3 Areas of Regular Polygons 4 Quiz 5 Perimeters and Areas of Similar Figures

More information

Area. Area Overview. Define: Area:

Area. Area Overview. Define: Area: Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

More information

Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?

Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane

More information

A. Areas of Parallelograms 1. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh.

A. Areas of Parallelograms 1. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh. Geometry - Areas of Parallelograms A. Areas of Parallelograms. If a parallelogram has an area of A square units, a base of b units, and a height of h units, then A = bh. A B Ex: See how VDFA V CGB so rectangle

More information

SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid

SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.

More information

10.1 Areas of Quadrilaterals and triangles

10.1 Areas of Quadrilaterals and triangles 10.1 Areas of Quadrilaterals and triangles BASE AND HEIGHT MUST FORM A RIGHT ANGLE!! Draw the diagram, write the formula and SHOW YOUR WORK! FIND THE AREA OF THE FOLLOWING:. A rectangle with one side of

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Targets LT9-1: Solve problems involving the perimeter and area of

More information

Geometry Chapter 9 Extending Perimeter, Circumference, and Area

Geometry Chapter 9 Extending Perimeter, Circumference, and Area Geometry Chapter 9 Extending Perimeter, Circumference, and Area Lesson 1 Developing Formulas for Triangles and Quadrilaterals Learning Target (LT-1) Solve problems involving the perimeter and area of triangles

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

8-3 Perimeter and Circumference

8-3 Perimeter and Circumference Learn to find the perimeter of a polygon and the circumference of a circle. 8-3 Perimeter Insert Lesson and Title Circumference Here perimeter circumference Vocabulary The distance around a geometric figure

More information

Review for Final - Geometry B

Review for Final - Geometry B Review for Final - Geometry B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A model is made of a car. The car is 4 meters long and the model is 7 centimeters

More information

Special case: Square. The same formula works, but you can also use A= Side x Side or A= (Side) 2

Special case: Square. The same formula works, but you can also use A= Side x Side or A= (Side) 2 Geometry Chapter 11/12 Review Shape: Rectangle Formula A= Base x Height Special case: Square. The same formula works, but you can also use A= Side x Side or A= (Side) 2 Height = 6 Base = 8 Area = 8 x 6

More information

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources:

Geometry Honors: Extending 2 Dimensions into 3 Dimensions. Unit Overview. Student Focus. Semester 2, Unit 5: Activity 30. Resources: Online Resources: Geometry Honors: Extending 2 Dimensions into 3 Dimensions Semester 2, Unit 5: Activity 30 Resources: SpringBoard- Geometry Online Resources: Geometry Springboard Text Unit Overview In this unit students

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side

More information

Applications for Triangles

Applications for Triangles Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given

More information

PERIMETERS AND AREAS

PERIMETERS AND AREAS PERIMETERS AND AREAS 1. PERIMETER OF POLYGONS The Perimeter of a polygon is the distance around the outside of the polygon. It is the sum of the lengths of all the sides. Examples: The perimeter of this

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

10-1. Areas of Parallelograms and Triangles. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary

10-1. Areas of Parallelograms and Triangles. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary - Areas of Parallelograms and Triangles Vocabulary Review The diagram below shows the different types of parallelograms. Parallelogram Rhombus Rectangle Square Underline the correct word to complete each

More information

Solutions Section J: Perimeter and Area

Solutions Section J: Perimeter and Area Solutions Section J: Perimeter and Area 1. The 6 by 10 rectangle below has semi-circles attached on each end. 6 10 a) Find the perimeter of (the distance around) the figure above. b) Find the area enclosed

More information

10.1 Geometry Areas of Parallelograms, Triangles and Heron s Formula

10.1 Geometry Areas of Parallelograms, Triangles and Heron s Formula Name Due Date 4/10 https://www.youtube.com/watch?v=eh5zawhrioo 10.1 Geometry Areas of Parallelograms, Triangles and Heron s Formula Area of a Rectangle: A= Area of a Square: A= Area of a Parallelogram:

More information

43 Perimeter and Area

43 Perimeter and Area 43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study

More information

Honors Geometry Final Exam Study Guide

Honors Geometry Final Exam Study Guide 2011-2012 Honors Geometry Final Exam Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In each pair of triangles, parts are congruent as marked.

More information

Line AB (no Endpoints) Ray with Endpoint A. Line Segments with Endpoints A and B. Angle is formed by TWO Rays with a common Endpoint.

Line AB (no Endpoints) Ray with Endpoint A. Line Segments with Endpoints A and B. Angle is formed by TWO Rays with a common Endpoint. Section 8 1 Lines and Angles Point is a specific location in space.. Line is a straight path (infinite number of points). Line Segment is part of a line between TWO points. Ray is part of the line that

More information

3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks)

3. If AC = 12, CD = 9 and BE = 3, find the area of trapezoid BCDE. (Mathcounts Handbooks) EXERCISES: Triangles 1 1. The perimeter of an equilateral triangle is units. How many units are in the length 27 of one side? (Mathcounts Competitions) 2. In the figure shown, AC = 4, CE = 5, DE = 3, and

More information

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units 1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

More information

Chapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!

Chapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret

More information

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable. Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

More information

Study Guide. 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. Note: Figure is not drawn to scale.

Study Guide. 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. Note: Figure is not drawn to scale. Study Guide Name Test date 6.g.1 Find the area of triangles, quadrilaterals, and other polygons. 1. Note: Figure is not drawn to scale. If x = 14 units and h = 6 units, then what is the area of the triangle

More information

Geometry Concepts. Figures that lie in a plane are called plane figures. These are all plane figures. Triangle 3

Geometry Concepts. Figures that lie in a plane are called plane figures. These are all plane figures. Triangle 3 Geometry Concepts Figures that lie in a plane are called plane figures. These are all plane figures. Polygon No. of Sides Drawing Triangle 3 A polygon is a plane closed figure determined by three or more

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

More information

Areas of Rectangles and Parallelograms

Areas of Rectangles and Parallelograms CONDENSED LESSON 8.1 Areas of Rectangles and Parallelograms In this lesson you will Review the formula for the area of a rectangle Use the area formula for rectangles to find areas of other shapes Discover

More information

Name: Class: Date: Geometry Chapter 3 Review

Name: Class: Date: Geometry Chapter 3 Review Name: Class: Date: ID: A Geometry Chapter 3 Review. 1. The area of a rectangular field is 6800 square meters. If the width of the field is 80 meters, what is the perimeter of the field? Draw a diagram

More information

You can use the postulates below to prove several theorems.

You can use the postulates below to prove several theorems. Using Area Formulas You can use the postulates below to prove several theorems. AREA POSTULATES Postulate Area of a Square Postulate The area of a square is the square of the length of its side, or s.

More information

Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.12 Circles Study Guide Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

More information

Geometry Final Exam Review Worksheet

Geometry Final Exam Review Worksheet Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.

More information

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams: Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of

More information

Chapter 11 Resource Masters

Chapter 11 Resource Masters Chapter 11 Resource Masters 11-1 Study Guide and Intervention Areas of Parallelograms and Triangles Areas of Parallelograms Any side of a parallelogram can be called a base. The height of a parallelogram

More information

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters

2 feet Opposite sides of a rectangle are equal. All sides of a square are equal. 2 X 3 = 6 meters = 18 meters GEOMETRY Vocabulary 1. Adjacent: Next to each other. Side by side. 2. Angle: A figure formed by two straight line sides that have a common end point. A. Acute angle: Angle that is less than 90 degree.

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

Upper Elementary Geometry

Upper Elementary Geometry Upper Elementary Geometry Geometry Task Cards Answer Key The unlicensed photocopying, reproduction, display, or projection of the material, contained or accompanying this publication, is expressly prohibited

More information

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINAL EXAM REVIEW GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

More information

11-2 Areas of Trapezoids, Rhombi, and Kites. Find the area of each trapezoid, rhombus, or kite. 1. SOLUTION: 2. SOLUTION: 3.

11-2 Areas of Trapezoids, Rhombi, and Kites. Find the area of each trapezoid, rhombus, or kite. 1. SOLUTION: 2. SOLUTION: 3. Find the area of each trapezoid, rhombus, or kite. 1. 2. 3. esolutions Manual - Powered by Cognero Page 1 4. OPEN ENDED Suki is doing fashion design at 4-H Club. Her first project is to make a simple A-line

More information

Geometry Vocabulary. Created by Dani Krejci referencing:

Geometry Vocabulary. Created by Dani Krejci referencing: Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path

More information

Estimating Angle Measures

Estimating Angle Measures 1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle

More information

Perimeter and Area. An artist uses perimeter and area to determine the amount of materials it takes to produce a piece such as this.

Perimeter and Area. An artist uses perimeter and area to determine the amount of materials it takes to produce a piece such as this. UNIT 10 Perimeter and Area An artist uses perimeter and area to determine the amount of materials it takes to produce a piece such as this. 3 UNIT 10 PERIMETER AND AREA You can find geometric shapes in

More information

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?

1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? 1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional

More information

*1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle.

*1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle. Students: 1. Students deepen their understanding of measurement of plane and solid shapes and use this understanding to solve problems. *1. Understand the concept of a constant number like pi. Know the

More information

CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry. Chapter 2 CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

More information

Geometry of 2D Shapes

Geometry of 2D Shapes Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Grade 8 Mathematics Geometry: Lesson 2

Grade 8 Mathematics Geometry: Lesson 2 Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside

More information

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book

GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas

More information

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

More information

Line. A straight path that continues forever in both directions.

Line. A straight path that continues forever in both directions. Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

Unit 10 Perimeter and Area Dillinger

Unit 10 Perimeter and Area Dillinger CK-12 FOUNDATION Unit 10 Perimeter and Area Dillinger CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide.

More information

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.

Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min. Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles

More information

9 Area, Perimeter and Volume

9 Area, Perimeter and Volume 9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right

More information

are radii of the same circle. So, they are equal in length. Therefore, DN = 8 cm.

are radii of the same circle. So, they are equal in length. Therefore, DN = 8 cm. For Exercises 1 4, refer to. 1. Name the circle. The center of the circle is N. So, the circle is 2. Identify each. a. a chord b. a diameter c. a radius a. A chord is a segment with endpoints on the circle.

More information

Final Review Problems Geometry AC Name

Final Review Problems Geometry AC Name Final Review Problems Geometry Name SI GEOMETRY N TRINGLES 1. The measure of the angles of a triangle are x, 2x+6 and 3x-6. Find the measure of the angles. State the theorem(s) that support your equation.

More information

11 Perimeter and Area

11 Perimeter and Area www.ck12.org CHAPTER 11 Perimeter and Area Chapter Outline 11.1 TRIANGLES AND PARALLELOGRAMS 11.2 TRAPEZOIDS, RHOMBI, AND KITES 11.3 AREAS OF SIMILAR POLYGONS 11.4 CIRCUMFERENCE AND ARC LENGTH 11.5 AREAS

More information

Target To know the properties of a rectangle

Target To know the properties of a rectangle Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles

More information

28. [Area / Volume] cm 2. in = =

28. [Area / Volume] cm 2. in = = 8. [ / Volume] Skill 8. Calculating the area of polygons by counting squares and triangles on a square grid (). Count the number of fully shaded squares on the grid. If necessary add on the number of half

More information

Signs, Signs, Every Place There Are Signs! Area of Regular Polygons p. 171 Boundary Lines Area of Parallelograms and Triangles p.

Signs, Signs, Every Place There Are Signs! Area of Regular Polygons p. 171 Boundary Lines Area of Parallelograms and Triangles p. C H A P T E R Perimeter and Area Regatta is another word for boat race. In sailing regattas, sailboats compete on courses defined by marks or buoys. These courses often start and end at the same mark,

More information

MCA Formula Review Packet

MCA Formula Review Packet MCA Formula Review Packet 1 3 4 5 6 7 The MCA-II / BHS Math Plan Page 1 of 15 Copyright 005 by Claude Paradis 8 9 10 1 11 13 14 15 16 17 18 19 0 1 3 4 5 6 7 30 8 9 The MCA-II / BHS Math Plan Page of 15

More information

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318) Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

More information

Junior Math Circles November 18, D Geometry II

Junior Math Circles November 18, D Geometry II 1 University of Waterloo Faculty of Mathematics Junior Math Circles November 18, 009 D Geometry II Centre for Education in Mathematics and Computing Two-dimensional shapes have a perimeter and an area.

More information

Integrated Algebra: Geometry

Integrated Algebra: Geometry Integrated Algebra: Geometry Topics of Study: o Perimeter and Circumference o Area Shaded Area Composite Area o Volume o Surface Area o Relative Error Links to Useful Websites & Videos: o Perimeter and

More information

1) Find perimeter and area of the figure. 2) Find perimeter and area of the figure.

1) Find perimeter and area of the figure. 2) Find perimeter and area of the figure. WS#1: PERIMETER AND AREA (H) NAME PD 1) Find perimeter and area of the figure. 2) Find perimeter and area of the figure. For the following exercises, use the figure and measurements below to find the indicated

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

FS Geometry EOC Review

FS Geometry EOC Review MAFS.912.G-C.1.1 Dilation of a Line: Center on the Line In the figure, points A, B, and C are collinear. http://www.cpalms.org/public/previewresource/preview/72776 1. Graph the images of points A, B, and

More information

12-4 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h

12-4 Volumes of Prisms and Cylinders. Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h Find the volume of each prism. The volume V of a prism is V = Bh, where B is the area of a base and h The volume is 108 cm 3. The volume V of a prism is V = Bh, where B is the area of a base and h the

More information

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes) Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

More information

Geo - CH9 Practice Test

Geo - CH9 Practice Test Geo - H9 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the area of the parallelogram. a. 35 in 2 c. 21 in 2 b. 14 in 2 d. 28 in 2 2.

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

Area Long-Term Memory Review Review 1

Area Long-Term Memory Review Review 1 Review 1 1. To find the perimeter of any shape you all sides of the shape.. To find the area of a square, you the length and width. 4. What best identifies the following shape. Find the area and perimeter

More information

Lesson 12.1 Skills Practice

Lesson 12.1 Skills Practice Lesson 12.1 Skills Practice Name Date Introduction to Circles Circle, Radius, and Diameter Vocabulary Define each term in your own words. 1. circle A circle is a collection of points on the same plane

More information

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

More information

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular)

Su.a Supported: Identify Determine if polygons. polygons with all sides have all sides and. and angles equal angles equal (regular) MA.912.G.2 Geometry: Standard 2: Polygons - Students identify and describe polygons (triangles, quadrilaterals, pentagons, hexagons, etc.), using terms such as regular, convex, and concave. They find measures

More information

11-4 Areas of Regular Polygons and Composite Figures

11-4 Areas of Regular Polygons and Composite Figures 1.In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. SOLUTION: Center: point F, radius:,

More information

Perimeter ABC = a + b + c. 5. Perimeter of parallelogram = 2 x sum of lengths of adjacent sides.

Perimeter ABC = a + b + c. 5. Perimeter of parallelogram = 2 x sum of lengths of adjacent sides. Class 7 ( CBSE ) / Chap 11 /Perimeter & Area. Chapter Facts. 1. Perimeter of a rectangle = 2 (length + breadth) 2. Perimeter of a square = 4 length of its side. Also, side of a square = perimeter 4 3.

More information

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.

Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square. Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional

More information

MENSURATION. Definition

MENSURATION. Definition MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters

More information

24HourAnswers.com. Online Homework. Focused Exercises for Math SAT. Skill Set 10: Circles

24HourAnswers.com. Online Homework. Focused Exercises for Math SAT. Skill Set 10: Circles 24HourAnswers.com Online Homework Focused Exercises for Math SAT Skill Set 10: Circles Many of the problems in this exercise set came from The College Board, writers of the SAT exam. 1. Which of the following

More information

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ = AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

More information

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

More information

Working in 2 & 3 dimensions Revision Guide

Working in 2 & 3 dimensions Revision Guide Tips for Revising Working in 2 & 3 dimensions Make sure you know what you will be tested on. The main topics are listed below. The examples show you what to do. List the topics and plan a revision timetable.

More information

BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

More information

YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR! DETAILED SOLUTIONS AND CONCEPTS - SIMPLE GEOMETRIC FIGURES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3. Form: 201

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3. Form: 201 Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 3 Description: Geometry Topic 6: Circles Form: 201 1. Which method is valid for proving

More information

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice.

Circumference Pi Regular polygon. Dates, assignments, and quizzes subject to change without advance notice. Name: Period GPreAP UNIT 14: PERIMETER AND AREA I can define, identify and illustrate the following terms: Perimeter Area Base Height Diameter Radius Circumference Pi Regular polygon Apothem Composite

More information