# The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

Save this PDF as:

Size: px
Start display at page:

Download "The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures"

## Transcription

1 8.1 Name (print first and last) Per Date: 3/24 due 3/ Circles: Arcs and Central Angles Geometry Regents Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to determine relationships between them. (1) On page 1 of your circle notes, match the term and description with the diagram. Arc Center Circle Central Angle Diameter Intercepted Arc Major Arc Minor Arc Radius (2) An angle measure is determined by the number of degrees of between the sides of the angle. The measure of the angle drawn at right is. Arcs a, b, and c are drawn to show the rotation of the angle. The measure of arc a is, the measure of arc b is, and the measure of arc c is because all three arcs show the rotation of the angle which is. 40 a b c The measure of an arc is the measure of the central angle that intercepts it. (3) You may want to use an internet tool to view the relationship between a central angle and the arc it intercepts to see that it is what you described in #2 above. Complete a sketch for each example below. Be sure to label the arc measure and the central angle measure. (a) A central angle measures (b) A central angle measures (c) An arc measures Therefore, the intercepted arc measures 222. Therefore, the intercepted arc measures Therefore, the subtended central angle measures (d) Write a sentence that summarizes the relationship between the measure of a central angle and the measure of the arc it intercepts. BEFORE YOU GO ON: The sum of all non-overlapping central angles in a circle is so the measure of the sum all non-overlapping arcs is. Vertical angles are. And finally, angles or arcs with the same marks are.

2 8.1 (4) Apply vocabulary and the relationship you illustrated number (3) of this lesson. Finish for Homework & check. Find the measure of the arc or central angle indicated. Assume that lines which appear to be diameters are actual diameters.

3 8 CIRCLES NOTES PAGE (1) C B E C B E

4 8 CIRCLES NOTES PAGE (2)

5 s to cut, sort, and tape onto notes sheet : Diameter ( BC) : Diameter ( BC) : Diameter ( BC) A chord that passes through the center of a circle, OR, a segment drawn through the center of a circle with endpoints on the circle A chord that passes through the center of a circle, OR, a segment drawn through the center of a circle with endpoints on the circle A chord that passes through the center of a circle, OR, a segment drawn through the center of a circle with endpoints on the circle : Circle The set of all points in a plane equidistant from a center point : Circle The set of all points in a plane equidistant from a center point : Circle The set of all points in a plane equidistant from a center point : Center A point equidistant from every point on a circle : Center A point equidistant from every point on a circle : Center A point equidistant from every point on a circle : Radius ( AB) The distance between the center of a circle and each point on the circle often shown with a line segment connecting the two points : Radius ( AB) The distance between the center of a circle and each point on the circle often shown with a line segment connecting the two points : Radius ( AB) The distance between the center of a circle and each point on the circle often shown with a line segment connecting the two points : Arc ( AB ) : Arc ( AB ) : Arc ( AB ) a portion or part of the circumference of a circle a portion or part of the circumference of a circle a portion or part of the circumference of a circle : Major Arc ( BEC ) : Major Arc ( BEC ) : Major Arc ( BEC ) An arc that is greater than 180 An arc that is greater than 180 An arc that is greater than 180 : Minor Arc ( BC ) : Minor Arc ( BC ) : Minor Arc ( BC ) An arc that is less than 180 An arc that is less than 180 An arc that is less than 180 : Intercepted Arc ( BC ) : Intercepted Arc ( BC ) : Intercepted Arc ( BC ) An arc that is between the two intersections of the sides of an angle and the circle An arc that is between the two intersections of the sides of an angle and the circle An arc that is between the two intersections of the sides of an angle and the circle : Central Angle ( BAC ) : Central Angle ( BAC ) : Central Angle ( BAC ) An angle whose vertex is at the center of a circle. An angle whose vertex is at the center of a circle. An angle whose vertex is at the center of a circle.

6 ( ) : Chord BC A segment connecting 2 points on a circle : Chord ( BC) A segment connecting 2 points on a circle : Chord ( BC) A segment connecting 2 points on a circle : Congruent Chords ( BE CD) A pair of chords in a circle that are the same length. Congruent chords define congruent central angles and intercept congruent arcs. : Congruent Chords ( BE CD) A pair of chords in a circle that are the same length. Congruent chords define congruent central angles and intercept congruent arcs. : Congruent Chords ( BE CD) A pair of chords in a circle that are the same length. Congruent chords define congruent central angles and intercept congruent arcs. : Tangent ( l ) A line that passes through exactly 1 point of a circle : Tangent ( l ) A line that passes through exactly 1 point of a circle : Tangent ( l ) A line that passes through exactly 1 point of a circle : Secant AB ( ) : Secant AB ( ) : Secant AB ( ) A line that passes through 2 points of a circle A line that passes through 2 points of a circle A line that passes through 2 points of a circle : Parallel Chords ( AB CD) A pair of chords in the same circle that are parallel. The arcs intercepted by the parallel chords are congruent. : Parallel Chords ( AB CD) A pair of chords in the same circle that are parallel. The arcs intercepted by the parallel chords are congruent. : Parallel Chords ( AB CD) A pair of chords in the same circle that are parallel. The arcs intercepted by the parallel chords are congruent. : Chord Distance From Center The distance from the center of a circle to a chord in the circle. Chords that are equidistant from the center of the circle are congruent. : Chord Distance From Center The distance from the center of a circle to a chord in the circle. Chords that are equidistant from the center of the circle are congruent. : Chord Distance From Center The distance from the center of a circle to a chord in the circle. Chords that are equidistant from the center of the circle are congruent. : Diameter Chord Theorem A diameter is either the perpendicular bisector of a chord or it is neither perpendicular nor the bisector. : Diameter Chord Theorem A diameter is either the perpendicular bisector of a chord or it is neither perpendicular nor the bisector. : Diameter Chord Theorem A diameter is either the perpendicular bisector of a chord or it is neither perpendicular nor the bisector. : Radius Tangent Theroem A radius that intersects a tangent line at the point of tangency is perpendicular to the tangent line. : Radius Tangent Theroem A radius that intersects a tangent line at the point of tangency is perpendicular to the tangent line. : Radius Tangent Theroem A radius that intersects a tangent line at the point of tangency is perpendicular to the tangent line. : Inscribed Angles ( BDC ) An angle formed by 3 points on a circle, one of which is the vertex of the angle. : Inscribed Angles ( BDC ) An angle formed by 3 points on a circle, one of which is the vertex of the angle. : Inscribed Angles ( BDC ) An angle formed by 3 points on a circle, one of which is the vertex of the angle.

7 : Angles of Intersecting Chords By connecting 2 pairs of the angles formed by the intersecting chords. (half the sum of the arcs) : Segments of Intersecting Chords By connecting 2 pairs of any of the segments formed by the intersecting chords. : Angles of Intersecting Secants By connecting points where the : Segments of Intersecting Secants By connecting points where the of any of the segments formed by the intersecting secants. : Angles of Intersecting Tangents By connecting points where the tangents. (half the difference of the arcs) : Segments of Intersecting Tangents The segments between the intersection of the tangents and their intersections with the circles are congruent : Angles of Intersecting Chords By connecting 2 pairs of the angles formed by the intersecting chords. (half the sum of the arcs) : Segments of Intersecting Chords By connecting 2 pairs of any of the segments formed by the intersecting chords. : Angles of Intersecting Secants By connecting points where the : Segments of Intersecting Secants By connecting points where the of any of the segments formed by the intersecting secants. : Angles of Intersecting Tangents By connecting points where the tangents. (half the difference of the arcs) : Segments of Intersecting Tangents The segments between the intersection of the tangents and their intersections with the circles are congruent : Angles of Intersecting Chords By connecting 2 pairs of the angles formed by the intersecting chords. (half the sum of the arcs) : Segments of Intersecting Chords By connecting 2 pairs of any of the segments formed by the intersecting chords. : Angles of Intersecting Secants By connecting points where the : Segments of Intersecting Secants By connecting points where the of any of the segments formed by the intersecting secants. : Angles of Intersecting Tangents By connecting points where the tangents. (half the difference of the arcs) : Segments of Intersecting Tangents The segments between the intersection of the tangents and their intersections with the circles are congruent : Angles of Intersecting Secant and Tangent By connecting points where the : Segments of Intersecting Secant and Tangent By connecting points where the secant & tangent intersect the circle, similar triangles can be formed and used to find the measure of any of the segments formed by the intersecting lines. : Angles and Segments of Intersecting Secants and Tangents (vertex on the circle) These have the same relationship between arcs and angles as the inscribed angle Formula: : Angles of Intersecting Secant and Tangent By connecting points where the : Segments of Intersecting Secant and Tangent By connecting points where the secant & tangent intersect the circle, similar triangles can be formed and used to find the measure of any of the segments formed by the intersecting lines. : Angles and Segments of Intersecting Secants and Tangents (vertex on the circle) These have the same relationship between arcs and angles as the inscribed angle Formula: : Angles of Intersecting Secant and Tangent By connecting points where the : Segments of Intersecting Secant and Tangent By connecting points where the secant & tangent intersect the circle, similar triangles can be formed and used to find the measure of any of the segments formed by the intersecting lines. : Angles and Segments of Intersecting Secants and Tangents (vertex on the circle) These have the same relationship between arcs and angles as the inscribed angle Formula:

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### The Inscribed Angle Alternate A Tangent Angle

Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)

Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle

### Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES

Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central

### Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

### CIRCLE DEFINITIONS AND THEOREMS

DEFINITIONS Circle- The set of points in a plane equidistant from a given point(the center of the circle). Radius- A segment from the center of the circle to a point on the circle(the distance from the

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Question 29................... 2 Question 30...................

### 10.5 and 10.6 Lesson Plan

Title: Secants, Tangents, and Angle Measures 10.5 and 10.6 Lesson Plan Course: Objectives: Reporting Categories: Related SOL: Vocabulary: Materials: Time Required: Geometry (Mainly 9 th and 10 th Grade)

### Circle geometry theorems

Circle geometry theorems http://topdrawer.aamt.edu.au/geometric-reasoning/big-ideas/circlegeometry/angle-and-chord-properties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line

### Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

### Geometry Chapter 10 Study Guide Name

eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.

### For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### DO NOW Geometry Regents Lomac Date. due. Coordinate Plane: Equation of a Circle

DO NOW Geometry Regents Lomac 2014-2015 Date. due. Coordinate Plane: Equation of a Circle 8.5 (DN) TEAR OFF The Circle PAGE AND THEN DO THE DO NOW ON BACK OF PACKET (1) What do right triangles have to

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Inscribed Angle Theorem and Its Applications

: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different

### Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.

Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Unit 10 Geometry Circles. NAME Period

Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference

### CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

### Circle Geometry. Properties of a Circle Circle Theorems:! Angles and chords! Angles! Chords! Tangents! Cyclic Quadrilaterals

ircle Geometry Properties of a ircle ircle Theorems:! ngles and chords! ngles! hords! Tangents! yclic Quadrilaterals http://www.geocities.com/fatmuscle/hs/ 1 Properties of a ircle Radius Major Segment

### Set 1: Circumference, Angles, Arcs, Chords, and Inscribed Angles

Goal: To provide opportunities for students to develop concepts and skills related to circumference, arc length, central angles, chords, and inscribed angles Common Core Standards Congruence Experiment

### Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### Unknown Angle Problems with Inscribed Angles in Circles

: Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

### Lesson 19: Equations for Tangent Lines to Circles

Classwork Opening Exercise A circle of radius 5 passes through points ( 3, 3) and (3, 1). a. What is the special name for segment? b. How many circles can be drawn that meet the given criteria? Explain

### Circles Learning Strategies. What should students be able to do within this interactive?

Circles Learning Strategies What should students be able to do within this interactive? Select one of the four circle properties. Follow the directions provided for each property. Perform the investigations

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

### 1) Perpendicular bisector 2) Angle bisector of a line segment

1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through

### A geometric construction is a drawing of geometric shapes using a compass and a straightedge.

Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a

### Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard- Geometry Unit Overview In this unit, students will study formal definitions of basic figures,

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: School Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, June 16, 2009 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name of

### Tangents and Chords Off On a Tangent

SUGGESTED LERNING STRTEGIES: Group Presentation, Think/Pair/Share, Quickwrite, Interactive Word Wall, Vocabulary Organizer, Create Representations, Quickwrite circle is the set of all points in a plane

### CK-12 Geometry: Parts of Circles and Tangent Lines

CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.

### Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### Unit 1: Similarity, Congruence, and Proofs

Unit 1: Similarity, Congruence, and Proofs This unit introduces the concepts of similarity and congruence. The definition of similarity is explored through dilation transformations. The concept of scale

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

### A. 3y = -2x + 1. y = x + 3. y = x - 3. D. 2y = 3x + 3

Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x - 1 D. y = 3x + 1

### of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

### MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

### Circles. An Investigation of the Properties and Theorems of Arcs, Angles and Segments in Circles. Course 2R/2E 10 th Grade

Circles An Investigation of the Properties and Theorems of Arcs, Angles and Segments in Circles. Course 2R/2E 10 th Grade A 4 block (8 day) unit plan using Geometer s Sketchpad Developed by Mark Warren

### Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources Circle Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section. R1 I

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Lesson 6.3: Arcs and Angles

Lesson 6.3: Arcs and Angles In this lesson you will: make conjectures about inscribed angles in a circle investigate relationships among the angles in a cyclic quadrilateral compare the arcs formed when

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### Unit 3 Circles and Spheres

Accelerated Mathematics I Frameworks Student Edition Unit 3 Circles and Spheres 2 nd Edition March, 2011 Table of Contents INTRODUCTION:... 3 Sunrise on the First Day of a New Year Learning Task... 8 Is

### BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

### Geometry in a Nutshell

Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### 56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### circle the set of all points that are given distance from a given point in a given plane

Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Surface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry

Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem

Perpendicular Bisector Theorem A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Converse of the Perpendicular Bisector Theorem If a

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Objective: To distinguish between degree and radian measure, and to solve problems using both.

CHAPTER 3 LESSON 1 Teacher s Guide Radian Measure AW 3.2 MP 4.1 Objective: To distinguish between degree and radian measure, and to solve problems using both. Prerequisites Define the following concepts.

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

### Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### Vertex : is the point at which two sides of a polygon meet.

POLYGONS A polygon is a closed plane figure made up of several line segments that are joined together. The sides do not cross one another. Exactly two sides meet at every vertex. Vertex : is the point

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### Picture. Right Triangle. Acute Triangle. Obtuse Triangle

Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from

### MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

### Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

### INVERSION WITH RESPECT TO A CIRCLE

INVERSION WITH RESPECT TO A CIRCLE OLGA RADKO (DEPARTMENT OF MATHEMATICS, UCLA) 1. Introduction: transformations of the plane Transformation of the plane is a rule which specifies where each of the points

### Basics of Circles 9/20/15. Important theorems:

Basics of ircles 9/20/15 B H P E F G ID Important theorems: 1. A radius is perpendicular to a tangent at the point of tangency. PB B 2. The measure of a central angle is equal to the measure of its intercepted

### Lesson 1: Introducing Circles

IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

### Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

### Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

### Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle.

HPTR 11-1 hapter Review 11-1 Lines that Intersect ircles Identify each line or segment that intersects each circle. 1. m 2. N L K J n W Y X Z V 3. The summit of Mt. McKinley in laska is about 20,321 feet

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

### alternate interior angles

alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate