The method appeared to be a very powerful calculational tool in the quantum eld theory [3, 4]. Its generalizations [5] was applied even for the consis

Size: px
Start display at page:

Download "The method appeared to be a very powerful calculational tool in the quantum eld theory [3, 4]. Its generalizations [5] was applied even for the consis"

Transcription

1 On the gravity renormalization o shell. K. A. Kazakov, P. I. Pronin y and K. V. Stepanyantz z August 30, 997 Moscow State University, Physics Faculty, Department of Theoretical Physics. 734, Moscow, Russian Federation Abstract Using as an example the Einstein gravity with the cosmological constant, we discuss the calculation of renormalization group functions o shell. We found, that gauge dependent terms should be absorbed by the nonlinear renormalization of metric. Nevertheless, some terms can be included in the renormalization of Newton's constant. This ambiguity in the renormalization prescription is discussed.. The high energy behavior of the gravity interaction draws the attention of researchers for a very long time. It is well known, that the perturbation theory for the Einstein gravity diers much from the Yang-Mills case due to the dimensional coupling constant. Although the theory is not renormalizable and its contribution to the low energy physics is very small, a great number of new ideas and eld theory methods originate in the research of the gravity interaction. Here we should especially mention the background eld method []. In particular, it played the important role in the t'hooft and Veltman derivation of the algorithm for the one-loop divergences calculation [] (that allowed to obtain one-loop divergences for Einstein gravity). kirill@theor:phys:msu:su y petr@theor:phys:msu:su z stepan@theor:phys:msu:su

2 The method appeared to be a very powerful calculational tool in the quantum eld theory [3, 4]. Its generalizations [5] was applied even for the consistency proof of the higher covariant derivative method [6]. And nevertheless, there are some open questions associated with the application of this approach for the gravity theories. In particular, it is not quite clear why it is necessary to use motion equations for the renormalization. The application of the background eld method for Yang-Mills theory or other usual eld theory models does not require them at all. Nevertheless, in the quantum gravity the o shell result is gauge dependent. For example the special choice of gauge condition in the Einstein gravity can made the theory nite at the one-loop o shell. The main reason of motion equation using is that the on shell result was proven [7] to be gauge independent. In our opinion such renormalization is a rather special case. It will be much more natural to renormalize a theory o shell. Then the natural question is how to avoid the dependence on the nonphysical parameters? In this paper on the example of Einstein gravity with cosmological constant we formulate the prescription for the o shell renormalization so, that the renormalization of physical values is gauge independent. Gauge parameters are included in the renormalization of unphysical metric eld and Newton's constant. Using this approach we demonstrate, that the renormalization of cosmological constant is in a complete agreement with the on shell results. Our paper is organized as follows. In next section we calculate the oneloop counterterms in an arbitrary gauge for the Einstein gravity with the cosmological constant. The renormalization procedure o shell is constructed in the section 3. The nal section 4 is devoted to the discussion of the renormalization prescription ambiguity.. The action for the Einstein gravity with the cosmological constant has the following form where S =? k d 4 x p?g (R? ) +! () k = 6G; +????? ; ()

3 ! is the dimensionless coupling constant, is the cosmological constant, G is the Newton's constant and = p 3 d 4 x?gr R? 4R R + R (4) is the Euler number (topological invariant). The calculation of the one-loop counterterms can be performed in the framework of the background eld method []. In accordance with this method the dynamical eld can be rewritten as g = g + kh. The general coordinates invariance is xed by adding to the action (3) L gf = p?gg ; = p + r h? + g r h! (5) where and are an arbitrary real constants. For the quadratic in the quantum elds eective Lagrangian we have where L ef f =? h ; r +? + ( + ) ( + )! g g r (? ) + ( + ) g r r? ( + ) g r r + P h (6) P (()()) = R? g R + g R + g g (R? )? (R? ) g g (7) and ; = (g g + g g ) : (8) 3

4 The parentheses around couple of indices denote the symmetrization whereas parenthesis around four indices means the symmetrization with pairs' interchange at the same time. The ghost action obtained in the standard way is L gh = c g r? r r + R c : (9) To calculate the one-loop counterterms we use the general expressions given in [8, 5] and tensor package [9] for the analytical calculations system REDUCE. The o-shell one-loop counterterms including the contributions of both quantum and ghost elds are where? () = 6 (d? 4) d 4 x? R R? 4R R + R + (R? 4)(a R + a ) + a 3 (0R R + 5R? 60R + 0 ) (0) a = 5 (?5? 0? 5) ? 5 ; a = (? 3? 4?? ) + 4 3? 6? 9 5 ; a 3 = 60 ( ) + (?4 4? 8 3? ) + (4 4? 6? ) : () and we introduced the notation?. In particular, in the case = 0 this expression is in agreement with results [0]. The one-loop on-shell counterterms (R = g ) also coincide with the well-known result [] 53? () = 6 d 4 x : () (d? 4) 3. The above calculations show, that the eective action depends on the gauge parameters. Nevertheless, physical values must be gauge independent R R? 58 5

5 So, ambiguous terms should be absorbed by the renormalization of unmeasurable values, for example metric eld. For this purpose we will use the following nonlinear renormalization [, 0] g! g B = g +! B = + c 4 6 (d? 4) k ; 6 (d? 4)c Rg + c g + c 3 R ; G! G B = G + c 5 6 (d? 4) G : (3) Then the bare Lagrangian takes the form L(g) B = L(g ) + 6 (d? 4) p?g h g (R? )? R (c Rg + c g + c 3 R )? c 4? c 5 (R? ) i + O(R 3 ): (4) L(g B ) + L should be nite. It leads to the following equations for the coecients c : : : c 5 : They can be rewritten as?c 3 + 0a 3 = 0; c + c 3 + a + 5a 3 = 0;?4c + c? c 3? c 5? 4a + a? 60a 3 = 0;?4c? c 4 + c 5? 58 5? 4a + 0a 3 = 0: (5) c =?a? 0a 3 ; c = c 5? a + 30a 3 ; c 3 = 0a 3 ; c 4 =? 9 5? c 5: (6) 5

6 4. (6) means, there is an ambiguity in the renormalization: gauge dependent terms can be absorbed in the renormalization either of metric tensor or of Newton's constant. Is it necessary to nd a "true" prescription of renormalization? We believe, that it is not. Really, the ambiguity does not aect physical values. The metric eld is not measurable, because motion of a classical particle is completely dened by connection. As for the Newton's constant, in the considered model it is a pure multiplicative factor in the Lagrangian, or by the other words an unessential constant []. Moreover, we are able to avoid the ambiguity by introducing so that the Lagrangian will be = k ; G = k g ; (7) L = p?g (R(G)? ) +!: (8) (Here will already be an essential constant.) The renormalization of G and does not include an arbitrary constant as above, G! G + 6 (d? 4) (?a? 0a 3 )Rg + (?a + 30a 3 )c g +0a 3 R ;!? (d? 4) : (9) and coincides with the on shell result. So, we see, that the ambiguity comes from the fact, that in this particular model Newton's constant is only multiplicative factor and is not contained in the motion equations. If matter elds are added to the Lagrangian, the generalization of (7) will made them dimensionless, for example! = k. Therefore, this substitution allows to avoid the specication of the mass scale and renormalize only physical dimensionless values. 6

7 References [] B.DeWitt Dynamical Theory Groups and Fields (Gordon and Breach, New York, 965). [] t'hooft G. and Veltman M., Ann. Inst. Henri Poincare 0, 69, (974). [3] C.Lee and C.Rim, Nucl.Phys. B 55, 439, (985). [4] S.Ichinose and M.Omote, Nucl.Phys. B 03,, (98). [5] P.Pronin and K.Stepanyantz, Nucl. Phys. B 485, 57, (997). [6] P.Pronin and K.Stepanyantz, hep-th/ [7] R.Kallosh and I.Tuitin, Sov.Journal of Nucl.Phys., 7, 98, (973). [8] P.Pronin and K.Stepanyantz, in: "Gravity, Particles and Space-time", ed.: P.Pronin and G.Sardanashvili, World Scientic, Singapure, (996), (hep-th/ ). [9] P.Pronin and K.Stepanyantz, in: "New Computing Technick in Physics Research. IV.", ed.: B.Denby and D.Perred-Gallix, World Scientic, Singapure, (995). [0] R.Kallosh, O.Tarasov and I.Tyutin, Nucl. Phys. B 37, 45, (978). [] S.Christensen and M.Du, Nucl. Phys. B 70, 480, (980). [] S.Weinberg, in: "General relativity", ed.: S.Hawking and W.Israel, Cambridge University Press, Cambridge, (979). 7

Gravity and running coupling constants

Gravity and running coupling constants Gravity and running coupling constants 1) Motivation and history 2) Brief review of running couplings 3) Gravity as an effective field theory 4) Running couplings in effective field theory 5) Summary 6)

More information

A tentative theory of large distance physics

A tentative theory of large distance physics hep-th/0204131 RUNHETC-2002-12 A tentative theory of large distance physics Daniel Friedan Department of Physics and Astronomy Rutgers, The State University of New Jersey Piscataway, New Jersey, USA and

More information

Rev. Mat. Iberoam, 17 (1), 49{419 Dynamical instability of symmetric vortices Lus Almeida and Yan Guo Abstract. Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

Euclidean quantum gravity revisited

Euclidean quantum gravity revisited Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,

More information

A tentative theory of large distance physics

A tentative theory of large distance physics Published by Institute of Physics Publishing for SISSA/ISAS Received: May 3, 2002 Revised: October 27, 2003 Accepted: October 27, 2003 A tentative theory of large distance physics Daniel Friedan Department

More information

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong

More information

The Einstein field equations

The Einstein field equations The Einstein field equations Part I: the right-hand side Atle Hahn GFM, Universidade de Lisboa Lisbon, 21st January 2010 Contents: 1 Einstein field equations: overview 2 Special relativity: review 3 Classical

More information

arxiv:gr-qc/0604127v2 15 Aug 2006

arxiv:gr-qc/0604127v2 15 Aug 2006 Numerical Bianchi I solutions in semi-classical gravitation Sandro D. P. Vitenti Instituto de Física, UnB Campus Universitário Darcy Ribeiro Cxp 4455, 7919-97, Brasília DF Brasil arxiv:gr-qc/64127v2 15

More information

Renormalization and Effective Field Theory

Renormalization and Effective Field Theory Renormalization and Effective Field Theory Kevin Costello This is a preliminary version of the book Renormalization and Effective Field Theory published by the American Mathematical Society (AMS). This

More information

old supersymmetry as new mathematics

old supersymmetry as new mathematics old supersymmetry as new mathematics PILJIN YI Korea Institute for Advanced Study with help from Sungjay Lee Atiyah-Singer Index Theorem ~ 1963 Calabi-Yau ~ 1978 Calibrated Geometry ~ 1982 (Harvey & Lawson)

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology with Rafael Porto (IAS) arxiv: 1302.4486 v2 soon! (with details) Capra16; Dublin, Ireland; July

More information

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on

More information

hep-th/9502163 28 Feb 1995

hep-th/9502163 28 Feb 1995 February 7, 1995 ITP-SB-95-04 SUPER YANG-MILLS THEORY AS A RANDOM MATRIX MODEL W. Siegel 1 hep-th/950163 8 Feb 1995 Institute for Theoretical Physics State University of New York, Stony Brook, NY 11794-3840

More information

arxiv:1506.04001v2 [hep-th] 22 Jun 2015

arxiv:1506.04001v2 [hep-th] 22 Jun 2015 Superfield Effective Potential for the -form field C. A. S. Almeida,, F. S. Gama,, R. V. Maluf,, J. R. Nascimento,, and A. Yu. Petrov, Departamento de Física, Universidade Federal do Ceará (UFC), Caixa

More information

The Essence of Gravitational Waves and Energy

The Essence of Gravitational Waves and Energy The Essence of Gravitational Waves and Energy F. I. Cooperstock Department of Physics and Astronomy University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) March 26, 2015 Abstract We discuss

More information

arxiv:1506.04001v3 [hep-th] 15 Sep 2015

arxiv:1506.04001v3 [hep-th] 15 Sep 2015 Superfield Effective Potential for the -form field C. A. S. Almeida,, F. S. Gama,, R. V. Maluf,, J. R. Nascimento,, and A. Yu. Petrov, Departamento de Física, Universidade Federal do Ceará (UFC), Caixa

More information

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000

arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 arxiv:physics/0004029v1 [physics.ed-ph] 14 Apr 2000 Lagrangians and Hamiltonians for High School Students John W. Norbury Physics Department and Center for Science Education, University of Wisconsin-Milwaukee,

More information

Gravity as an Emergent Phenomenon

Gravity as an Emergent Phenomenon Gravity as an Emergent Phenomenon John Jeffrey Damasco 19 December 2012 Abstract While general relativity explains gravitational interactions well, it only answers the question of the nature of gravity

More information

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013 A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Orbital Dynamics of an Ellipsoidal Body

Orbital Dynamics of an Ellipsoidal Body Orbital Dynamics of an Ellipsoidal Body Akash Gupta Indian Institute of Technology Kanpur The purpose of this article is to understand the dynamics about an irregular body like an asteroid or a comet by

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg

More information

THE MEANING OF THE FINE STRUCTURE CONSTANT

THE MEANING OF THE FINE STRUCTURE CONSTANT THE MEANING OF THE FINE STRUCTURE CONSTANT Robert L. Oldershaw Amherst College Amherst, MA 01002 USA rloldershaw@amherst.edu Abstract: A possible explanation is offered for the longstanding mystery surrounding

More information

CURRICULUM VITAE. Name: Nihat Sadik Deger Date and Place of Birth: February 6 1972, Ankara, Turkey

CURRICULUM VITAE. Name: Nihat Sadik Deger Date and Place of Birth: February 6 1972, Ankara, Turkey CURRICULUM VITAE PERSONAL INFORMATION Name: Nihat Sadik Deger Date and Place of Birth: February 6 1972, Ankara, Turkey CONTACT INFORMATION Address: Bogazici University Department of Mathematics Phone:

More information

Effective actions for fluids from holography

Effective actions for fluids from holography Effective actions for fluids from holography Based on: arxiv:1405.4243 and arxiv:1504.07616 with Michal Heller and Natalia Pinzani Fokeeva Jan de Boer, Amsterdam Benasque, July 21, 2015 (see also arxiv:1504.07611

More information

arxiv:hep-th/0409006v3 21 Sep 2004

arxiv:hep-th/0409006v3 21 Sep 2004 IUB-TH-411 Non-abelian black strings Betti Hartmann School of Engineering and Sciences, International University Bremen (IUB, 28725 Bremen, Germany (Dated: December 23, 213 arxiv:hep-th/496v3 21 Sep 24

More information

arxiv:1303.1326v1 [q-bio.qm] 6 Mar 2013

arxiv:1303.1326v1 [q-bio.qm] 6 Mar 2013 CALT-68-896 Enumeration of RNA complexes via random matrix theory arxiv:1303.136v1 [q-bio.qm] 6 Mar 013 Jørgen E. Andersen 1, Leonid O. Chekhov 3,4, R. C. Penner 1,, Christian M. Reidys 5, Piotr Su lkowski,6,7

More information

Einstein s theory of relativity

Einstein s theory of relativity Department of Mathematics, Institute of Origins, December 5, 2008 Overview UCL Institute of Origins Origins UCL has established the Institute of Origins to promote world leading research in topics related

More information

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM Alexei Sheplyakov Joint Institute for Nuclear Research, Dubna, Russia SUSY 07 Karlsruhe, July 31, 2007 version

More information

PS 320 Classical Mechanics Embry-Riddle University Spring 2010

PS 320 Classical Mechanics Embry-Riddle University Spring 2010 PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: reynodb2@erau.edu web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

STRING THEORY: Past, Present, and Future

STRING THEORY: Past, Present, and Future STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013

arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry arxiv:1408.3381v1 [physics.gen-ph] 17 Sep 2013 Krzysztof Rȩbilas

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

Assessment Plan for Learning Outcomes for BA/BS in Physics

Assessment Plan for Learning Outcomes for BA/BS in Physics Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate

More information

h 2 m e (e 2 /4πɛ 0 ).

h 2 m e (e 2 /4πɛ 0 ). 111 111 Chapter 6. Dimensions 111 Now return to the original problem: determining the Bohr radius. The approximate minimization predicts the correct value. Even if the method were not so charmed, there

More information

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries

Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Noncritical String Theory

Noncritical String Theory Noncritical String Theory Sander Walg Master s thesis Supervisor: Prof. Dr. Jan de Boer University of Amsterdam Institute for Theoretical Physics Valckenierstraat 65 1018 XE Amsterdam The Netherlands August

More information

arxiv:hep-th/0212049v3 5 Sep 2003

arxiv:hep-th/0212049v3 5 Sep 2003 A hint of renormalization Bertrand Delamotte Laboratoire de Physique Théorique et Hautes Energies. Universités Paris VI, Pierre et Marie Curie, Paris VII, Denis Diderot, 2 Place Jussieu, 75251 Paris Cedex

More information

Einstein Gravitation and Newton Gravitation Roger J.Anderton

Einstein Gravitation and Newton Gravitation Roger J.Anderton Einstein Gravitation and Newton Gravitation Roger J.Anderton R.J.Anderton@btinternet.com Some people say a picture can convey a thousand words so this is a pictorial attempt to try to convey the differences

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ( c Robert J. Serfling Not for reproduction or distribution) We have seen how to summarize a data-based relative frequency distribution by measures of location and spread, such

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

arxiv:hep-ph/9902288v1 9 Feb 1999

arxiv:hep-ph/9902288v1 9 Feb 1999 A Quantum Field Theory Warm Inflation Model VAND-TH-98-01 Arjun Berera Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA arxiv:hep-ph/9902288v1 9 Feb 1999 Abstract A

More information

It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2

It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2 It Must Be Beautiful: Great Equations of Modern Science CONTENTS The Planck-Einstein Equation for the Energy of a Quantum by Graham Farmelo E = mc 2 by Peter Galison The Einstein Equation of General Relativity

More information

ABSTRACT. We prove here that Newton s universal gravitation and. momentum conservation laws together reproduce Weinberg s relation.

ABSTRACT. We prove here that Newton s universal gravitation and. momentum conservation laws together reproduce Weinberg s relation. The Speed of Light and the Hubble parameter: The Mass-Boom Effect Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, Spain ABSTRACT. We prove here that Newton s universal

More information

Kaluza-Klein for Kids. William O. Straub Pasadena, California 91104 June 27, 2014

Kaluza-Klein for Kids. William O. Straub Pasadena, California 91104 June 27, 2014 Kaluza-Klein for Kids William O. Straub Pasadena, California 91104 June 27, 2014 Abstract A very elementary overview of the original Kaluza-Klein theory is presented, suitable for undergraduates who want

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

APPLICATIONS OF TENSOR ANALYSIS

APPLICATIONS OF TENSOR ANALYSIS APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER

More information

arxiv:hep-th/0403041v2 7 May 2004

arxiv:hep-th/0403041v2 7 May 2004 IUB-TH-041 Spherically symmetric Yang-Mills solutions in a (4 + n)- dimensional space-time Yves Brihaye and Fabien Clement Faculté des Sciences, Université de Mons-Hainaut, 7000 Mons, Belgium arxiv:hep-th/0403041v

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

How Gravitational Forces arise from Curvature

How Gravitational Forces arise from Curvature How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

A Globally Convergent Primal-Dual Interior Point Method for Constrained Optimization Hiroshi Yamashita 3 Abstract This paper proposes a primal-dual interior point method for solving general nonlinearly

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Introduction to Logistic Regression

Introduction to Logistic Regression OpenStax-CNX module: m42090 1 Introduction to Logistic Regression Dan Calderon This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Gives introduction

More information

Exploring dark energy models with linear perturbations: Fluid vs scalar field. Masaaki Morita (Okinawa Natl. College Tech., Japan)

Exploring dark energy models with linear perturbations: Fluid vs scalar field. Masaaki Morita (Okinawa Natl. College Tech., Japan) Exploring dark energy models with linear perturbations: Fluid vs scalar field Masaaki Morita (Okinawa Natl. College Tech., Japan) September 11, 008 Seminar at IAP, 008 1 Beautiful ocean view from my laboratory

More information

Journal of Theoretics Journal Home Page

Journal of Theoretics Journal Home Page Journal of Theoretics Journal Home Page MASS BOOM VERSUS BIG BANG: THE ROLE OF PLANCK S CONSTANT by Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, SPAIN e-mail: aalfonso@euita.upm.es

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

Mining Enginer, Universidad de Santiago de Chile. (1998-2000) Bachelor in applied Physics, Universidad de Santiago de Chile.

Mining Enginer, Universidad de Santiago de Chile. (1998-2000) Bachelor in applied Physics, Universidad de Santiago de Chile. Curriculum Vitae Name: Andrés Fernando Anabalón Dupuy. Date of Birth: 08-05-1979. Citizenship: Chilean. Address: Avenida San Martin 1020, Viña del Mar, Chile. Passport Number: 13623455-2. Email: andres.anabalon@uai.cl

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

DOCTOR OF PHILOSOPHY IN PHYSICS

DOCTOR OF PHILOSOPHY IN PHYSICS DOCTOR OF PHILOSOPHY IN PHYSICS The Doctor of Philosophy in Physics program is designed to provide students with advanced graduate training in physics, which will prepare them for scientific careers in

More information

The future of string theory

The future of string theory JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 7 JULY 2001 The future of string theory John H. Schwarz a) California Institute of Technology, Pasadena, California 91125 Received 2 January 2001; accepted

More information

arxiv:hep-lat/0511043v1 21 Nov 2005

arxiv:hep-lat/0511043v1 21 Nov 2005 On the Infrared Gluon Propagator arxiv:hep-lat/0511043v1 21 Nov 2005 P. J. Silva, O. Oliveira Centro de Física Computacional Departamento de Física Universidade de Coimbra 3004-516 Coimbra Portugal March

More information

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized

More information

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

World of Particles Big Bang Thomas Gajdosik. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde

AMPLIFICATION OF ATOMIC WAVES BY STIMULATED EMISSION OF ATOMS. Christian J. Borde AMPLIFIATION OF ATOMI WAVES BY STIMULATED EMISSION OF ATOMS hristian J. Borde Laboratoire de Physique des Lasers, NRS/URA 8, Universite Paris-Nord, Villetaneuse, France. INTRODUTION: The recent development

More information

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016 Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a

More information

RedListing as a New Means to Combat Spam. MailFoundry December 7, 2006

RedListing as a New Means to Combat Spam. MailFoundry December 7, 2006 RedListing as a New Means to Combat Spam MailFoundry December 7, 2006 1 Contents 1 What is RedListing? 3 2 What impact will this have on my Mail? 3 3 What impact will this have on my MailFoundry appliance?

More information

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS

SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS Fundamental Journal of Modern Physics Vol. 7, Issue, 014, Pages 53-6 Published online at http://www.frdint.com/ SPATIAL COORDINATE SYSTEMS AND RELATIVISTIC TRANSFORMATION EQUATIONS J. H. FIELD Departement

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

MATHEMATICS BONUS FILES for faculty and students http://www2.onu.edu/~mcaragiu1/bonus_files.html

MATHEMATICS BONUS FILES for faculty and students http://www2.onu.edu/~mcaragiu1/bonus_files.html MATHEMATICS BONUS FILES for faculty and students http://www2onuedu/~mcaragiu1/bonus_fileshtml RECEIVED: November 1 2007 PUBLISHED: November 7 2007 Solving integrals by differentiation with respect to a

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

3. Reaction Diffusion Equations Consider the following ODE model for population growth

3. Reaction Diffusion Equations Consider the following ODE model for population growth 3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent

More information

arxiv:1107.3468v4 [gr-qc] 7 Oct 2011

arxiv:1107.3468v4 [gr-qc] 7 Oct 2011 Quantum gravity stability of isotropy in homogeneous cosmology Bogusław Broda arxiv:07.3468v4 [gr-qc] 7 Oct 0 Abstract Department of Theoretical Physics, University of Łódź, Pomorska 49/53, PL 90-36 Łódź,

More information

A Nate on Dynamics and Kinematics*

A Nate on Dynamics and Kinematics* A Nate on Dynamics and Kinematics* Geoffrey P. Bingham At the Fourth International Conference on Event Perception and Action in Trieste this past summer. Karl Newell. Bruce Kay. and I had a brief discussion

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Modified Gravity and the CMB

Modified Gravity and the CMB Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Dimensional crossover in the non-linear sigma model

Dimensional crossover in the non-linear sigma model INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 48 (4) 300 306 AGOSTO 00 Dimensional crossover in the non-linear sigma model Denjoe O Connor Departmento de Física, CINVESTAV, IPN Apdo. Post. 4-740, México D.F.

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Cover Page. Author: Vu, Van Thieu Title: Opportunities for performance optimization of applications through code generation Issue Date: 2012-03-22

Cover Page. Author: Vu, Van Thieu Title: Opportunities for performance optimization of applications through code generation Issue Date: 2012-03-22 Cover Page The handle http://hdl.handle.net/1887/18622 holds various files of this Leiden University dissertation. Author: Vu, Van Thieu Title: Opportunities for performance optimization of applications

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects

On closed-form solutions of a resource allocation problem in parallel funding of R&D projects Operations Research Letters 27 (2000) 229 234 www.elsevier.com/locate/dsw On closed-form solutions of a resource allocation problem in parallel funding of R&D proects Ulku Gurler, Mustafa. C. Pnar, Mohamed

More information

OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1)

OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1) OpenStax-CNX module: m32633 1 Quadratic Sequences Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Activity 1: Using base ten blocks to model operations on decimals

Activity 1: Using base ten blocks to model operations on decimals Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations

An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations An elementary proof of Wigner's theorem on quantum mechanical symmetry transformations University of Szeged, Bolyai Institute and MTA-DE "Lendület" Functional Analysis Research Group, University of Debrecen

More information