# - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -

Save this PDF as:

Size: px
Start display at page:

Download "- Know basic of refrigeration - Able to analyze the efficiency of refrigeration system -"

## Transcription

1 Refrigeration cycle

2 Objectives - Know basic of refrigeration - Able to analyze the efficiency of refrigeration system - contents Ideal Vapor-Compression Refrigeration Cycle Actual Vapor-Compression Refrigeration Cycle Cascade refrigeration systems Multistage compression refrigeration systems

3 Refrigeration cycle Refrigeration is the transfer of heat from a lower temperature region to a higher temperature region Refrigeration cycle is the vapor-compression refrigeration cycle, where the refrigerant is vaporized and condenses alternately and is compressed in the vapor phase.

4 Refrigerator and Heat Pump Cyclic refrigeration device operating between two constant temperature reservoirs. In the Carnot cycle heat transfers take place at constant temperature. If our interest is the cooling load, the cycle is called the Carnot refrigerator. If our interest is the heat load, the cycle is called the Carnot heat pump. (Reversed Carnot cycle)

5 Refrigerator & Heat pump Coefficient of performance, COP COP R COP Desired output COP= Require input Refrigerator: is used to maintain the refrigerated space at a low temperature by removing heat from it Cooling effect QL = = Work input W HP net, in Heat pump: heat transfers from a low-temperature medium to a high temperature medium Heating effect QH = = Work input W COP = COP + 1 HP R net, in

6 Carnot refrigerator or a Carnot heat pump The reversed Carnot cycle is the most efficient refrigeration cycle operating between two specified temperature levels. A refrigerator or heat pump that operates on the reversed Carnot cycle is called a Carnot refrigerator or a Carnot heat pump Desired output COP= Require input T H T L COP COP R, Carnot HP, Carnot L ( 2 1) ( )( 2 1) H ( 2 1) ( )( ) T s s TL = = T T s s T T H L H L T s s TH = = T T s s T T H L 2 1 H L

7 The reversed Carnot cycle is not a suitable model for refrigeration cycle! Process 2 3 involves the compression of a liquid-vapor mixture, which requires a compressor that will handle two phase. Process 4 1 involves the expansion of high-moisture-content refrigerant in a turbine. (Reversed Carnot cycle)

8 Ideal Vapor-Compression Refrigeration Cycle T P s h Process Description 1-2 Isentropic compression 2-3 Constant pressure heat rejection in the condenser 3-4 Throttling in an expansion valve 4-1 Constant pressure heat addition in the evaporator

9 Expansion valve Condenser Q H Q L Evaporator Compressor

10 Energy analysis From 1 st and 2 nd Law analysis for steady flow P h COP COP R HP Q L = = W net, in Q H = = W net, in h h h h h h h h

11 Example Refrigerant-134a is the working fluid in an ideal compression refrigeration cycle. The refrigerant leaves the evaporator at -20 o C and has a condenser pressure of 0.9 MPa. The mass flow rate is 3 kg/min. Find COP R and COP R, Carnot for the same T max and T min, and the tons of refrigeration. Use the Refrigerant-134a Tables State1 kj h Compressor inlet = kg o T1 = 20 C kj s1 = x1 = 1.0 kg K T s

12 State 2 Compressor exit kj h2s = P2s = P2 = 900kPa kg o kj T2 s = C s2s = s1 = kg K State3 kj h3 = Condenser exit kg P3 = 900kPa kj s3 = x3 = 0.0 kg K State 4 x Throttle exit T T C s h4 = h 3 4 = 1 = 20 o 4 4 = kj = kg K T s

13 COP R Q L m ( h h ) h h = = = W m ( h h) h h net, in T = ( ) ( ) kj kg kj kg = 3.44 s The tons of refrigeration (often called the cooling load or refrigeration effect) Q = m ( h h ) L 1 4 kg kj 1Ton = 3 ( ) min kg kj 211 min = 1.94Ton

14 COP R, Carnot = T H TL T L ( ) K = (43.79 ( 20)) K = 3.97 T s Another measure of the effectiveness of the refrigeration cycle is how much input power to the compressor, in horsepower, is required for each ton of cooling. The unit conversion is hp per ton of cooling. W net, in = Q COP L R hp hp = = Ton Ton

15 Actual Vapor-Compression Refrigeration Cycle Irreversibilities in various components - Pressure drop due to fluid friction - Heat transfer from or to surroundings

16 Example Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and -10 O C at a rate of 0.05 kg/s and laves at 0.8 MPa and 50 O C. The refrigerant is cooled in the condenser to 26 O C and 0.72 MPa and is throttled to 0.15 MPa. Disregarding any heat transfer and pressure drops in the connecting lines between the components, determine (a) the rate of heat removal from the refrigerated space and the power input to the compressor, (b) the isentropic efficiency of the compressor, and (c) the coefficient of performance of the refrigerator.

17

18

19

20 Cascade refrigeration systems Due to very low temperature, the temperature range in a single vapor compression refrigeration cycle become very large, Resulting low COP COP R Cooling effect QL = = Work input W T net, in Increase COP R by decreasing work input or increasing heat remove s

21 Cascade refrigeration systems Very low temperatures can be achieved by operating two or more vaporcompression systems in series, called cascading. A( 5 8) = B( 2 m 3) ( h2 h A 3) = m B ( h5 h8) Q m B ( h1 h L 4) COPRcascade, = = W m ( h h ) + m ( h h ) m h h m h h net, in A 6 5 B 2 1

22 Air conditioning system Evaporator Expansion valve Pump Condenser Pump Cooling tower

23 Example Consider a two-stage cascade refrigeration system operating between the pressure limits of 0.8 and 0.14 MPa. Each stage operates on an ideal vapor compression refrigeration cycle with refrigerant-134a as the working fluid. Heat rejection from the lower cycle to the upper cycle takes place in an adiabatic counterflow heat exchanger where both streams enter at about 0.32 MPa. (In practice, the working fluid of the lower cycle is at a higher pressure and temperature in the heat exchanger for effective heat transfer). If the mass flow rate of the refrigeration through the upper cycle is 0.05 kg/s, determine (a) (b) (c) the mass flow rate of the refrigeration through the lower cycle, the rate of heat removal from the refrigerated space and the power input to the compressor, and the coefficient of performance of this cascade refrigerator.

24

25

26

27 Multistage compression refrigeration systems When the fluid used throughout the cascade refrigeration system is the same, the heat exchanger between the stages can be replace by a mixing chamber, called a flash chamber.

28 Example Consider a two-stage compression refrigeration system operating between the pressure limits of 0.8 and 0.14 MPa. The working fluid is refrigerant-134a. The refrigerant leaves the condenser as a saturated liquid and is throttled to a flash chamber operating at 0.32 MPa. Part of the refrigerant evaporates during this flashing process, and this vapor is mixed with the refrigerant leaving the low pressure compressor. The mixture is then compressed to the condenser pressure by the high pressure compressor. 0.8 MPa 0.8 MPa 0.32 MPa 0.32 MPa 0.14 MPa 0.14 MPa

29 The liquid in the flash chamber is throttled to the evaporator pressure and cools the refrigerated space as it vaporizes in the evaporator. Assuming the refrigerant leaves the evaporator as a saturated vapor and both compressors are isentropic, determine (a) (b) (c) the fraction of the refrigerant that evaporates as it is throttled to the flash chamber, the amount of heat removed from the refrigerated space and the compressor work per unit mass of refrigerant flowing through the condenser, and the coefficient of performance.

30

31

32

### Chapter 11. Refrigeration Cycles

Chapter 11 Refrigeration Cycles The vapor compression refrigeration cycle is a common method for transferring heat from a low temperature space to a high temperature space. The figures below show the objectives

### Chapter 11, Problem 18.

Chapter 11, Problem 18. Refrigerant-134a enters the compressor of a refrigerator as superheated vapor at 0.14 MPa and 10 C at a rate of 0.12 kg/s, and it leaves at 0.7 MPa and 50 C. The refrigerant is

### Chapter 10: Refrigeration Cycles

Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

### 7 90 Water enters the pump of a steam power plant as saturated liquid at 20 kpa at a rate of 45 kg/s and exits at 6 MPa. Neglecting the changes in kin

7 58 An adiabatic pump is to be used to compress saturated liquid water at 10 kpa to a pressure to 15 MPa in a reversible manner. Determine the work input using (a) entropy data from the compressed liquid

### NOTES ON VAPOR-COMPRESSION REFRIGERATION

NOTES ON VAPOR-COMPRESSION REFRIGERATION Introduction The purpose of this lecture is to review some of the background material required to undertake the refrigeration laboratory. The Thermodynamics of

### Objectives CHAPTER 11 REFRIGERATION CYCLES THE REVERSED CARNOT CYCLE REFRIGERATORS AND HEAT PUMPS

CHAPTER 11 REFRIGERATION CYCLES Objectives Introduce the concepts of refrigerators and heat pumps and the measure of their performance. Analyze the ideal vapor-compression refrigeration cycle. Analyze

### UNIT 5 REFRIGERATION SYSTEMS

UNIT REFRIGERATION SYSTEMS Refrigeration Systems Structure. Introduction Objectives. Vapour Compression Systems. Carnot Vapour Compression Systems. Limitations of Carnot Vapour Compression Systems with

### Warm medium, T H T T H T L. s Cold medium, T L

Refrigeration Cycle Heat flows in direction of decreasing temperature, i.e., from ig-temperature to low temperature regions. Te transfer of eat from a low-temperature to ig-temperature requires a refrigerator

### UNIT-I. Workdone = HS HR 8.2 = 25 HR. Heat rejected (HR) = 20.8 kw ----

UNIT-I. A heat engine receives heat at the rate of 500 kj/min and gives an output of 8.2 kw. Determine the thermal efficiency and the rate of heat rejection. Given: Heat received by engine (HS) Work output

### UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

### The Vapor-Compression Refrigeration Cycle

The Vapor-Compression Refrigeration Cycle The first law of thermodynamics states that energy is conserved. We may express it as follows: Increase in internal energy of a system is equal to heat put into

### The Second Law of Thermodynamics

Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

### ES-7A Thermodynamics HW 3: 6-31, 38, 39, 53, 73, 76, 82, 86, 130, 131 Spring 2003 Page 1 of 5

ES-7A hermodynamics HW : 6-, 8, 9, 5, 7, 76, 8, 86, 0, Spring 00 Page of 5 6- Entropy change of water Given: Radiator with 0 L of superheated water vapor at 00 kpa and 00 C. Inlet and exit valves are closed,

### A HEAT ENGINE: PRODUCES WORK FROM HEAT BY WASTING A FRACTION OF HEAT INPUT TO A LOW TEMPERATURE RESERVOIR

RANKINE POWER GENERAION CYCE A EA ENGINE: PRODUCES WORK FROM EA BY WASING A FRACION OF EA INPU O A OW EMPERAURE RESERVOIR o C CARACERISICS s (kj/kg-k. Rankine cycle is a eat engine comprised of four internally

### ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

### Chapter 11. Amajor application area of thermodynamics is refrigeration, REFRIGERATION CYCLES. Objectives

A-PDF Split DEMO : Purchase from www.a-pdf.com to remove the watermark Chapter REFRIGERATION CYCLES Amajor application area of thermodynamics is refrigeration, which is the transfer of heat from a lower

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

### Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 29. The Vapor Compression Refrigeration (VCR) Cycle

Department of Mecanical Engineering ME 3 Mecanical Engineering Termodynamics Lecture 9 Te Vapor Compression Refrigeration (VCR) Cycle Refrigerator used for Cooling T H energy sougt Q in E energy tat costs

### 1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle?

1. Why are the back work ratios relatively high in gas turbine engines? 2. What 4 processes make up the simple ideal Brayton cycle? 3. For fixed maximum and minimum temperatures, what are the effect of

### Energy : ṁ (h i + ½V i 2 ) = ṁ(h e + ½V e 2 ) Due to high T take h from table A.7.1

6.33 In a jet engine a flow of air at 000 K, 00 kpa and 30 m/s enters a nozzle, as shown in Fig. P6.33, where the air exits at 850 K, 90 kpa. What is the exit velocity assuming no heat loss? C.V. nozzle.

### Thermodynamic cycle and machinery of. Vapor-compression. Heat pump and refrigerator

Thermodynamic cycle and machinery of Vapor-compression Heat pump and refrigerator Engineering Thermodynamics 2 Lab Report Maria Paknezhad March 15, 2006 Contents Introduction THEORY Ideal Vapor Compression

### Second Law of Thermodynamics Alternative Statements

Second Law of Thermodynamics Alternative Statements There is no simple statement that captures all aspects of the second law. Several alternative formulations of the second law are found in the technical

### Lesson 10 Vapour Compression Refrigeration Systems

Lesson 0 Vapour Compression Refrigeration Systems Version ME, II Kharagpur he specific objectives of the lesson: his lesson discusses the most commonly used refrigeration system, ie Vapour compression

### Entropy of a liquid or a solid

Entropy of a liquid or a solid 8.75 A piston cylinder has constant pressure of 000 kpa with water at 0 o C. It is now heated up to 00 o C. Find the heat transfer and the entropy change using the steam

### 1.5. Which thermodynamic property is introduced using the zeroth law of thermodynamics?

CHAPTER INTRODUCTION AND BASIC PRINCIPLES. (Tutorial). Determine if the following properties of the system are intensive or extensive properties: Property Intensive Extensive Volume Density Conductivity

### 20 m neon m propane 20

Problems with solutions:. A -m 3 tank is filled with a gas at room temperature 0 C and pressure 00 Kpa. How much mass is there if the gas is a) Air b) Neon, or c) Propane? Given: T73K; P00KPa; M air 9;

### Enhancement of Coefficient of Performance by Analysis of Flow through Vapour Compression Refrigeration cycle using CFD

ISSN (Online) 2393-8021 Enhancement of Coefficient of Performance by Analysis of Flow through Vapour Compression Refrigeration cycle using CFD Chethan kumar R 1, Dr. C. Badarinath 2, Mohan Kumar.C.P 3,

### ESO 201A/202. End Sem Exam 120 Marks 3 h 19 Nov Roll No. Name Section

ESO 201A/202 End Sem Exam 120 Marks 3 h 19 Nov 2014 Roll No. Name Section Answer Questions 1 and 2 on the Question Paper itself. Answer Question 3, 4 and 5 on the Answer Booklet provided. At the end of

### LECTURE-16. Simple Vapour Compression Refrigeration. Advantage and disadvantages of vapour compression and air refrigeration system:

Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-16 Simple Vapour Compression

### Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

### Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

### SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL SI UNIT PROBLEMS CHAPTER 9 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CONTENT SUBSECTION PROB NO. Correspondence table Concept-Study Guide Problems -20 Steady

### There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum

THERMODYNAMIC CYCLES There is no general classification of thermodynamic cycle. The following types will be discussed as those are included in the course curriculum 1. Gas power cycles a) Carnot cycle

### Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Refrigeration and Air Conditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 18 Worked Out Examples - I Welcome back in this lecture.

### Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

### Engineering design experience of an undergraduate thermodynamics course

World Transactions on Engineering and Technology Education Vol.10, No.1, 2012 2012 WIETE Engineering design experience of an undergraduate thermodynamics course Hosni I. Abu-Mulaweh & Abdulaziz A. Al-Arfaj

### Lesson 12 Multi-Stage Vapour Compression Refrigeration Systems. Version 1 ME, IIT Kharagpur 1

Lesson Multi-Stage Vapour Compression Refrigeration Systems Version ME, IIT Kharagpur The objectives of this lesson are to: Discuss limitations of single stage vapour compression refrigeration systems

### THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS JANUARY/APRIL 2013 Course Code and Title: Programme: THRM3001 Engineering Thermodynamics II Bachelor of Applied Sciences Date and Time:

### Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Process Integration Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Module - 6 Integration and placement of equipment Lecture - 4 Placement of Heat Engine,

### The thermal cycle with the highest theoretical efficiency is the Carnot cycle, consisting of two isotherms and two adiabats.

Carnot to Reality The thermal cycle with the highest theoretical efficiency is the Carnot cycle, consisting of two isotherms and two adiabats. η = W/Q in Carnot's theorem states that for a heat engine

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

### REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

### ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 STEAM POWER CYCLES When you have completed this tutorial you should be able to do the following. Explain

### 6.5 Simple Vapor Compression Refrigeration System:

6.5 Simple Vapor ompression Refrigeration System: A simple vapor compression refrigeration system consists of the following equipments: i) ompressor ii) ondenser iii) Expansion valve iv) Evaporator. B

### Sustainable Energy Utilization, Refrigeration Technology. A brief history of refrigeration. Björn Palm

Sustainable Energy Utilization, Refrigeration Technology Björn Palm bpalm@energy.kth.se This email message was generated automatically. Please do not send a reply. You are registered for the following

### δq T +S i S e +S gen S 2 S 1 = δq T + S i S 0 S 2 S 1 = 0 m A (s 2 s 1 ) A +m B (s 2 s 1 ) B = 0 TB,2 + Rln v A,1 +ln TB,1 0 = m A C v ln +C v ln

Two rigid tanks each contain 0 of N 2 gas at 000 K, 500 kpa. They are now thermally connected to a reversible heat pump, which heats one and cools the other with no heat transfer to the surroundings. When

### Chapter 6 Energy Equation for a Control Volume

Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,

### UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

UNIT-III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE Pure Substance A Pure substance is defined as a homogeneous material, which retains its chemical composition even though there may be a change

### THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

### CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS. Blank

CHAPTER 7 THE SECOND LAW OF THERMODYNAMICS Blank SONNTAG/BORGNAKKE STUDY PROBLEM 7-1 7.1 A car engine and its fuel consumption A car engine produces 136 hp on the output shaft with a thermal efficiency

### FE Thermodynamics Review. Dr. David R. Muñoz

FE Thermodynamics Review Dr. David R. Muñoz Definitions System collection of matter which we are interested in studying. Surroundings everything outside of the system. Universe system + surroundings. Pure

### Process chosen to calculate entropy change for the system

Chapter 6 Exaple 6.3-3 3. ---------------------------------------------------------------------------------- An insulated tank (V 1.6628 L) is divided into two equal parts by a thin partition. On the left

### Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Steam Power Cycle, Steam Nozzle Good afternoon everybody.

### ME 6404 THERMAL ENGINEERING. Part-B (16Marks questions)

ME 6404 THERMAL ENGINEERING Part-B (16Marks questions) 1. Drive and expression for the air standard efficiency of Otto cycle in terms of volume ratio. (16) 2. Drive an expression for the air standard efficiency

### REFRIGERATION SYSTEMS (PROCESS ENGINEERING EQUIPMENT DESIGN GUIDELINE)

Guidelines for Processing Plant KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia SOLUTIONS, STANDARDS, SOFTWARE www.klmtechgroup.com EQUIPMENT DESIGN

### OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT. TUTORIAL No. 8 STEAM CYCLES

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 4 STEAM AND GAS TURBINE POWER PLANT TUTORIAL No. 8 STEAM CYCLES 4 Understand the operation of steam and gas

### Fundamentals of Refrigeration Part 5 Refrigerants

Refrigerants PH Chart Fundamentals of Refrigeration Part 5 Refrigerants This diagram shows a simplified pressure/ enthalpy chart for a non specified refrigerant. The area contained within the envelope

### 256 Thermodynamics REFERENCES AND SUGGESTED READINGS PROBLEMS* Conservation of Mass

256 Thermodynamics unsteady-flow processes. During a steady-flow process, the fluid flows through the control volume steadily, experiencing no change with time at a fixed position. The mass and energy

### Sheet 8:Chapter C It is less than the thermal efficiency of a Carnot cycle.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 8:Chapter 9 9 2C How does the thermal

### VAPOUR-COMPRESSION REFRIGERATION SYSTEM

VAPOUR-COMPRESSION REFRIGERATION SYSTEM This case study demonstrates the modeling of a vapour compression refrigeration system using R22 as refrigerant. Both a steady-state and a transient simulation will

### PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

### Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements

Energy Analysis and Comparison of Advanced Vapour Compression Heat Pump Arrangements Stuart Self 1, Marc Rosen 1, and Bale Reddy 1 1 University of Ontario Institute of Technology, Oshawa, Ontario Abstract

### Modeling and Testing of an R-23/R-134a Mixed Refrigerant System for Low Temperature Refrigeration

Marquette University e-publications@marquette Mechanical Engineering Faculty Research and Publications Engineering, College of 1-1-2013 Modeling and Testing of an R-23/R-134a Mixed Refrigerant System for

### International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 ISSN

75 INCREASING THE EFFICIENCY OF REFRIGERATOR BY REDUCES THE LOSSES IN EVAPORATOR, COMPRESSOR AND CONDENSER Shruti Saxena Email id.. shruti11mec@gmail.com Abstract Domestic Refrigerator consumes significant

### SIMULATION OF THERMODYNAMIC ANALYSIS OF CASCADE REFRIGERATION SYSTEM WITH ALTERNATIVE REFRIGERANTS

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

### First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

Feiza Memet, Daniela-Elena Mitu ANALELE UNIVERSITĂŢII EFTIMIE MURGU REŞIŢA ANUL XVIII, NR. 3, 2011, ISSN 1453-7397 First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working

### Heat Engines and the Second Law of Thermodynamics

Heat Engines and the Second Law of Thermodynamics Heat Engines Reversible and Irreversible Processes The Carnot Engine Refrigerators and Heat Pumps The Second Law of Thermodynamics Homework Heat Engines

### UNIVERSITY ESSAY QUESTIONS:

UNIT I 1. What is a thermodynamic cycle? 2. What is meant by air standard cycle? 3. Name the various gas power cycles". 4. What are the assumptions made for air standard cycle analysis 5. Mention the various

### Open Cycle Refrigeration System

Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

### A Thermodynamic Property Chart as a Visual Aid to Illustrate the Interference Between Expansion Work Recovery and Internal Heat Exchange

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 006 A Thermodynamic Property Chart as a Visual Aid to Illustrate the Interference

### C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

### Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Brayton Cycle (Gas Turbine) for Propulsion Application

### DRAFT. Appendix C.2 - Air Conditioning Thermodynamics 1

Appendix C.2 - Air Conditioning Thermodynamics 1 To aid in discussing the alternative technologies, it is helpful to have a basic description of how air conditioning systems work. Heat normally flows from

### Chapter 5 The Second Law of Thermodynamics

Chapter 5 he Second aw of hermodynamics he second law of thermodynamics states that processes occur in a certain direction, not in just any direction. Physical processes in nature can proceed toward equilibrium

### Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

### JOURNAL OF MARITIME RESEARCH. A Performance Analysis on a Vapor Compression Refrigeration System Generated by the Replacement of R134a

JOURNAL OF MARITIME RESEARCH Vol XI. No. III (2014) pp 83 87 ISSN: 1697-4040, www.jmr.unican.es A Performance Analysis on a Vapor Compression Refrigeration System Generated by the Replacement of R134a

### ME 6404 THERMAL ENGINEERING UNIT I. Part-A

UNIT I Part-A 1. For a given compression ratio and heat addition explain why otto cycle is more efficient than diesel cycle? 2. Explain the effect of pressure ratio on the net output and efficiency of

### Reversible & Irreversible Processes

Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change

### An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

### Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

### Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Second Law and Available Energy - I Good morning, I welcome you to this

### Chapter 7 Vapor and Gas Power Systems

Chapter 7 Vapor and Ga Power Sytem In thi chapter, we will tudy the baic component of common indutrial power and refrigeration ytem. Thee ytem are eentially thermodyanmic cycle in which a working fluid

### Entropy and The Second Law of Thermodynamics

The Second Law of Thermodynamics (SL) Entropy and The Second Law of Thermodynamics Explain and manipulate the second law State and illustrate by example the second law of thermodynamics Write both the

### MEBS6006 Environmental Services I Refrigeration

MEBS6006 Environmental Services I http://www.hku.hk/bse/mebs6006 Refrigeration Dr. Benjamin P.L. Ho Department of Mechanical Engineering The University of Hong Kong E-mail: benjamin.ho@hku.hk November

### Efficiency Expressions for Combined Cycle

Sanjay Vijayaraghavan Email: sanv@ufl.edu D. Y. Goswami Email: goswami@ufl.edu Mechanical and Aerospace Engineering Department University of Florida, P.O. Box 116300 Gainesville, Florida 32611-6300 On

### Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

### Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 Web Site:

Engineering Software P.O. Box 2134, Kensington, MD 20891 Phone: (301) 919-9670 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Carnot Cycle Analysis Carnot Cycle Analysis by Engineering

Additional Information 1. Setting Coefficient of Performance (COP) Values for Reference Refrigerator (1) Selection of possible type of cooling systems except project cooling system - Considering the cooling

### Mass and Energy Analysis of Control Volumes

MAE 320-Chapter 5 Mass and Energy Analysis of Control Volumes Objectives Develop the conservation of mass principle. Apply the conservation of mass principle to various systems including steady- and unsteady-flow

### Construction of separating calorimeter is as shown in figure:

1. Title: Measurement of dryness fraction by Separating Calorimeter, Throttling Calorimeter, Separating and Throttling Calorimeter. 2. Learning objectives: 2.1. Intellectual skills: a) Measurement of Dryness

### Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

### Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics

Serway/Jewett: PSE 8e Problems Set Ch. 22-1 Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics Objective Questions 1. A steam turbine operates at a boiler

### a) the overall plant efficiency (the ratio of net electric power output to the energy input as fuel) b) the required rate of coal supply

ME 5 Tutorial, eek# - Ranke Cycle Consider a -fired steam power plant that produces 00M of electric power. The power plant operates on a simple ideal Ranke cycle with turbe let conditions of 5 MPa and

### Objectives. ordered motion is equal to mv 2 2. , where m and v are the mass and speed of the entire body. SECTION 5.4 ENERGY IN THERMAL SYSTEMS 277

Objectives Define the internal energy of a system. Describe two ways you can change a system s internal energy. Explain the first law of thermodynamics. Use the first law to solve problems involving internal

### Lesson 5 Review of fundamental principles Thermodynamics : Part II

Lesson 5 Review of fundamental principles Thermodynamics : Part II Version ME, IIT Kharagpur .The specific objectives are to:. State principles of evaluating thermodynamic properties of pure substances

### Practice Problems on Conservation of Energy. heat loss of 50,000 kj/hr. house maintained at 22 C

COE_10 A passive solar house that is losing heat to the outdoors at an average rate of 50,000 kj/hr is maintained at 22 C at all times during a winter night for 10 hr. The house is to be heated by 50 glass

### Pressure Enthalpy Explained

Pressure Enthalpy Explained Within the new F Gas course the requirement for an understanding of Pressure Enthalpy (Ph) graphs is proving to be a large learning curve for those who have not come across