DC Circuits: Operational Amplifiers Hasan Demirel

Size: px
Start display at page:

Download "DC Circuits: Operational Amplifiers Hasan Demirel"

Transcription

1 DC Circuits: Operational Amplifiers Hasan Demirel

2 Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source. An operational amplifier has a very high input impedance and a very high gain.

3 Op Amps: Use of Op Amps Op amps can be configured in many different ways using resistors and other components. Most configurations use feedback. An op amp can be designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation, and integration.

4 Op Amps: Applications of Op Amps Amplifiers provide gains in voltage or current. Op amps can convert current to voltage. Op amps can provide a buffer between two circuits. Op amps can be used to implement integrators and differentiators. Op amps can be used to design filters (i.e. lowpass and bandpass filters).

5 Op Amps: Op Amp Symbol A typical op amp: (a) pin configuration, (b) circuit symbol.

6 Op Amps: Schematic diagram of op amp

7 A is the open-loop voltage gain. Op Amps: The Op Amp Model Inverting input Output Non-inverting input The differential input voltage The output voltage

8 Op Amps: Typical op amp parameters

9 Op Amps: Example 5.1: A 741 op amp has an open-loop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed- loop gain v 0 /v s. Determine current i when v s = 2 V. Figure 5.6: (a) original circuit, (b) the equivalent circuit.

10 Op Amps: Example 5.1: A 741 op amp has an open-loop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed- loop gain v 0 /v s. Determine current i when v s = 2 V. Apply KCL at node 1: (1) Apply KCL at node 0: (2)

11 Op Amps: Example 5.1: A 741 op amp has an open-loop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed- loop gain v 0 /v s. Determine current i when v s = 2 V. Substituting v 1 from Eq. (1) into Eq. (2) gives: This is called closed-loop gain, because the 20-kΩ feedback resistor closes the loop between the output and input terminals. From Eq. (1)

12 Op Amps: Ideal Op Amp An ideal op amp is an amplifier with infinite open-loop gain, infinite input resistance, and zero output resistance. To facilitate the understanding of op amp circuits, we will assume ideal op amps. An op amp is ideal if it has the following characteristics: 1. Infinite open-loop gain, A = 2. Infinite input resistance, R in = 3. Zero output resistance, R o =0

13 Op Amps: Ideal Op Amp An ideal op amp is an amplifier with infinite open-loop gain, infinite input resistance, and zero output resistance. 1. Ideal Op Amp Model 1. Infinite open-loop gain, A = 2. Infinite input resistance, R in = 3. Zero output resistance, R o =0

14 Op Amps: Ideal Op Amp Two important characteristics of the ideal op amp are: 1. The currents into both input terminals are zero. This is due to infinite input resistance. An infinite resistance between the input terminals implies that an open circuit exists there and current cannot enter the op amp. 2. The voltage across the input terminals is equal to zero. An ideal op amp has zero current into its two input terminals and the voltage difference between the two input terminals is equal to zero.

15 Op Amps: Ideal Op Amp Example 5.2: Use the ideal op amp model to calculate the closed-loop gain v 0 /v s. Find i o when v s = 1 V. v 2 vs v1 v2 v s KCL at inverting terminal (v 1 ): vs vo vs v v s KCL at output (v o ): o v 1 v o i o v v v 10 o s o (if v s = 1 V, then v o = 9V) i o ( ) ma

16 Op Amps: Inverting Amplifier Both the input signal and the feedback are applied at the inverting terminal of the op amp. Applying KCL at node 1: Noninverting terminal is grounded. An inverting amplifier reverses the polarity of the input signal while amplifying it.

17 Op Amps: Inverting Amplifier Example 5.3: Refer to the op amp in Fig If v i =0.5 V, calculate: (a) the output voltage v o, and (b) the current in the 10-kW resistor. (a) (b)

18 Op Amps: Inverting Amplifier Practice Problem 5.3: Find the output of the op amp circuit shown in Fig Calculate the current through the feedback resistor.

19 Op Amps: Example 5.1: A 741 op amp has an open-loop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed- loop gain v 0 /v s. Determine current i when v s = 2 V. Repeat Ex. 5.1 by using ideal op amp model.

20 Op Amps: Review To solve an op amp circuit, we usually apply KCL at one or both of the inputs. We then use the properties of the ideal model. The currents into both input terminals are zero. The voltage across the input terminals is equal to zero. We solve for the op amp output voltage.

21 Op Amps: Noninverting Amplifier A noninverting amplifier is an op amp circuit designed to provide a positive voltage gain. Apply KCL at inverting terminal: (1) Apply eq. (1) into eq (2): (2) Then:

22 Op Amps: Voltage Follower A voltage follower (or unity gain amplifier) has the output voltage equal to the input voltage. Voltage follower is a noninverting amplifier with:

23 Op Amps: Noninverting Amplifier Example 5.5: For the op amp circuit below, calculate the output voltage v o.

24 Op Amps: Summing Amplifier (Inverting Summer) Apply KCL at node a:

25 Op Amps: Summing Amplifier (Inverting Summer) Apply KCL at node a: Note that Then,

26 Op Amps: Summing Amplifier (Inverting Summer) Example 5.6: Find v o and i o in the op amp circuit shown below.

27 Op Amps: Difference Amplifier Apply KCL at node a: Apply KCL at node b: But

28 Op Amps: Difference Amplifier Difference amplifier must reject a signal common to the two inputs, the amplifier must have the property that v o =0, when v 1 = v 2. This property exists when: When this property is satisfied The op amp circuit is a difference amplifier If R 2 = R 1 and R 3 = R 4 The difference amplifier becomes A subtractor circuit:

29 Op Amps: Cascaded Op Amp Circuits A cascade connection is a head-to-tail arrangement of two or more op amp circuits such that the output of one is the input of the next. The overall gain of the cascade connection is the product of the gains of the individual op amp circuits

30 Op Amps: Cascaded Op Amp Circuits Example 5.9: Find v 0 and i 0 in the circuit below.

31 Op Amps: Cascaded Op Amp Circuits Example 5.10: Find v 1 = 1 V and v 2 = 2 V, find v 0 in the circuit below.

Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer

Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer Electrical Engineering Chapter: Operational Amplifiers / Operationsverstärker Michael E. Auer Source of figures: Alexander/Sadiku: Fundamentals of Electric Circuits, McGraw-Hill Chapter Content Basics

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

More information

Operational Amplifiers (Op-Amps)

Operational Amplifiers (Op-Amps) Chapter 18 Operational Amplifiers (Op-Amps) Introduction to Operational Amplifiers The standard Operational amplifier has two input terminals, the inverting (-) and noninverting (+) FIGURE 18-3 Practical

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal

More information

Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available

More information

The output signal may be of the same form as the input signal, i.e. V in produces V out

The output signal may be of the same form as the input signal, i.e. V in produces V out What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

More information

Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

More information

8.4 Advanced RC Filters

8.4 Advanced RC Filters 8.4 Advanced Filters high pass filter including gain and Bode plots cascaded low pass filters band pass filters band rejection filter - the twin-t impedance matching problems an ideal operational amplifier

More information

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

More information

Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 ) Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

More information

Analog Signal Conditioning

Analog Signal Conditioning Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP 1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Operational Amplifiers

Operational Amplifiers perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging

More information

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS. o/p OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

More information

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Non-ideal Op Amps

EE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Non-ideal Op Amps EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) vs Non-ideal Op Amps Op Amp A 0 Non-ideal Op Amp A < < > 0 Other non-ideal characteristics:

More information

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

More information

Operational Amplifiers

Operational Amplifiers 662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Common-mode and Differentialmode signals 25.7 Voltage Gains of DA 25.9

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers

CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a direct-coupled, differential-input, highgain voltage amplifier, usually packaged in the

More information

Module 2: Op Amps Introduction and Ideal Behavior

Module 2: Op Amps Introduction and Ideal Behavior Module 2: Op Amps Introduction and Ideal Behavior Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering Introduce Op Amps and examine ideal behavior School of

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

Peggy Alavi Application Engineer September 3, 2003

Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency. FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

More information

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

More information

Chapter No. 3 Differential Amplifiers

Chapter No. 3 Differential Amplifiers Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a direct-coupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

EAC215 Homework 4. Page 1 of 6

EAC215 Homework 4. Page 1 of 6 EAC215 Homework 4 Name: 1. An integrated circuit (IC) op-amp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does

More information

EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

More information

Current Feedback Op Amp Applications Circuit Guide

Current Feedback Op Amp Applications Circuit Guide Current Feedback Op Amp Applications Circuit Guide Introduction No two high-speed application are the same or at least it seems that way. Nonetheless, while every system has its particular requirements,

More information

Chapter 2 Objectives

Chapter 2 Objectives Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

6: Operational Amplifiers

6: Operational Amplifiers 6: Operational s Operational Inverting 6: Operational s E1.1 Analysis of Circuits (2016-8877) Operational s: 6 1 / 12 Operational 6: Operational s Operational Inverting An op amp (operational amplifier)

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Digital to Analog Conversion DAC Conversion

Digital to Analog Conversion DAC Conversion Digital to Analog Conversion DAC Conversion D/A conversion is the process of converting a digitally coded signal into an Analog voltage or current that is proportional (linear response) to the digital

More information

3. Common Mode Rejection Ratio: Part I

3. Common Mode Rejection Ratio: Part I 3. ommon Mode ejection atio: Part I 3. Introduction In general, an instrumentation amplifier is required to amplify the difference between two input signals or voltages, and as shown in Fig.. However,

More information

ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp)

ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp) ECG-Amplifier MB Jass 2009 Daniel Paulus / Thomas Meier Operation amplifier (op-amp) Properties DC-coupled High gain electronic ec c voltage amplifier Inverting / non-inverting input and single output

More information

Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator

Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator M.B. Patil, IIT Bombay 1 Op Amp ircuits Inverting and Non-inverting Amplifiers, Integrator, Differentiator Introduction An Operational Amplifier (Op Amp) is a versatile building block used in a variety

More information

Lab 9: Op Amps Lab Assignment

Lab 9: Op Amps Lab Assignment 3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

More information

Current vs. Voltage Feedback Amplifiers

Current vs. Voltage Feedback Amplifiers Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

More information

Homework Assignment 06

Homework Assignment 06 Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. Typically, the C-E saturation voltage for a BJT, namely V CE(sat), is in the range of (circle one) Answer: (a) (a) 0.2 1.0 V

More information

Analog Input Buffer Architectures

Analog Input Buffer Architectures Analog Input Buffer Architectures by Kevin L Tretter 1. Introduction There are many considerations that must be taken into account when designing and implementing an analog input buffer. These include

More information

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 2-24-05 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to

More information

Building the AMP Amplifier

Building the AMP Amplifier Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

More information

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers Electronics most instruments work on either analog or digital signals we will discuss circuit basics parallel and series circuits voltage dividers filters high-pass, low-pass, band-pass filters the main

More information

Part 2: Operational Amplifiers

Part 2: Operational Amplifiers Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations

EE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error

More information

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

More information

Chapter 08. Methods of Analysis

Chapter 08. Methods of Analysis Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning C-C Tsai Outline Source Conversion Mesh Analysis Nodal Analysis Delta-Wye ( -Y) Conversion Bridge Networks

More information

First and Second Order Filters

First and Second Order Filters First and Second Order Filters These functions are useful for the design of simple filters or they can be cascaded to form high-order filter functions First Order Filters General first order bilinear transfer

More information

[a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below:

[a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below: P 3.3 [a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below: [b] The 800Ω and 1200Ω resistors are in series, as are the 300Ω and 200Ω resistors. The simplified circuit is

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

Fully Differential Op Amps Made Easy

Fully Differential Op Amps Made Easy Application Report SLOA099 - May 2002 Fully Differential Op Amps Made Easy Bruce Carter High Performance Linear ABSTRACT Fully differential op amps may be unfamiliar to some designers. This application

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

multivibrators using IC 555 (2turns)

multivibrators using IC 555 (2turns) Advanced Electronics Lab Experiments (P243) 1. Study of basic configuration of OPAMP (IC-741), Simple mathematical operations and its use as comparator and Schmitt trigger(2 turns) 2. Differentiator, Integrator

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

5-Band Graphic Equalizer

5-Band Graphic Equalizer EE 410 Final Linear Electronic Design Spring 2008 5-Band Graphic Equalizer Dylan Gaffney Owen Gaffney Justin Spagnuolo Joe Tearpock Kevin Brown 2 INTRODUCTION The design project being discussed in this

More information

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

More information

Zener Diodes. Zener Diode Symbols

Zener Diodes. Zener Diode Symbols Zener Diodes A Zener diode is a special purpose diode that is designed to operate in the reverse breakdown region of the diode s characteristic curve. Regular diodes will be destroyed if they are used

More information

Kirchhoff s Voltage Law

Kirchhoff s Voltage Law BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

More information

Op-Amps Experiment Theory

Op-Amps Experiment Theory EE 4/00 Operational mplifiers Op-mps Experiment Theory. Objective The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier ( op-amp for

More information

The Electronic Scale

The Electronic Scale The Electronic Scale Learning Objectives By the end of this laboratory experiment, the experimenter should be able to: Explain what an operational amplifier is and how it can be used in amplifying signal

More information

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

More information

Problem set #5 EE 221, 09/26/ /03/2002 1

Problem set #5 EE 221, 09/26/ /03/2002 1 Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

More information

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive

More information

FEEDBACK INTRODUCTION

FEEDBACK INTRODUCTION FEEDBACK INTRODUCTION Most physical systems incorporate some form of feedback. Feedback can be either negative (degenerative) or positive (regenerative). In amplifier design, negative feedback is applied

More information

CHAPTER 7 FILTERS, LOADING AND OP-AMPS

CHAPTER 7 FILTERS, LOADING AND OP-AMPS CHAPTE 7 FILTES, LOADING AND OP-AMPS INTODUCTION Sometimes we make measurements and what is measured is a combination of what we wished to measure and noise. This noise could be caused by the electronic

More information

Homework #6 Solution

Homework #6 Solution 1. The noninverting op-amp configuration shown to the right provides a direct implementationn of a feedback loop. (a) Assume that the op amp has infinite input resistance and zero output resistance. Find

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Chapter 12. RL Circuits. Objectives

Chapter 12. RL Circuits. Objectives Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

More information

AN-581 APPLICATION NOTE

AN-581 APPLICATION NOTE a AN-58 APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062-906 Tel: 78/329-4700 Fax: 78/326-8703 www.analog.com Biasing and Decoupling Op Amps in Single Supply Applications by Charles Kitchin

More information

Basic DACs for Electronic Engineers

Basic DACs for Electronic Engineers No. AN9741 July 1997 Intersil Linear Basic DACs for Electronic Engineers Author: Ronald Mancini Why and Where are DACs Used? The name is digital-to-analog converter, and the function of a DAC, as the name

More information

Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers)

Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Part A. Common-Emitter Amplifier 1. For the circuit shown in Figure 1, the transistor parameters are β = 100 and V A =. Design the

More information

Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

More information

2. Introduction and Chapter Objectives

2. Introduction and Chapter Objectives Real Analog - Circuits Chapter 2: Circuit Reduction 2. Introduction and Chapter Objectives In Chapter, we presented Kirchoff s laws (which govern the interactions between circuit elements) and Ohm s law

More information

Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

More information

4. Experiment D1: Operational Amplifier

4. Experiment D1: Operational Amplifier 4. Experiment D1: Operational Amplifier 4.1. Aim The aim of this experiment is to investigate some properties of real op-amps which are not present in `ideal' op-amps, but which affect practical op-amp

More information

APPLICATION BULLETIN

APPLICATION BULLETIN APPLICATION BULLETIN Mailing Address: PO Box 00 Tucson, AZ 87 Street Address: 70 S. Tucson Blvd. Tucson, AZ 870 Tel: (0) 7- Twx: 90-9- Telex: 0-9 FAX (0) 889-0 Immediate Product Info: (800) 8- EXTENDING

More information

Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

More information

Smart Lighting Controller!!

Smart Lighting Controller!! Smart Lighting Controller!! 1! Smart lighting! No need to spend energy lighting the room if!» It s already bright enough from natural light!» There s nobody in the room! Idea is to detect these things,

More information

Op Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps

Op Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The open-loop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:

More information

A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved

A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved The summing network in mixing consoles is an easily misunderstood

More information

AN-937 APPLICATION NOTE

AN-937 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062-906, U.S.A. Tel: 78.329.4700 Fax: 78.46.33 www.analog.com Designing Amplifier Circuits: How to Avoid Common Problems by Charles Kitchin

More information

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

More information

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment. Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

More information

The Operational Amplfier Lab Guide

The Operational Amplfier Lab Guide EECS 100 Lab Guide Bharathwaj Muthuswamy The Operational Amplfier Lab Guide 1. Introduction COMPONENTS REQUIRED FOR THIS LAB : 1. LM741 op-amp integrated circuit (IC) 2. 1k resistors 3. 10k resistor 4.

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

Dual High Speed, Implanted BiFET Op Amp AD644

Dual High Speed, Implanted BiFET Op Amp AD644 a FEATURES Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk 124 db at 1 khz Low Bias Current: 35 pa max Warmed Up Low Offset Voltage: 500 V max Low Input Voltage

More information

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The is an integrated class-b output amplifier in a 13-lead single-in-line (SIL) plastic power package.

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

More information

Electronics The application of bipolar transistors

Electronics The application of bipolar transistors Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using

More information

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.

More information