DC Circuits: Operational Amplifiers Hasan Demirel


 Amberly Craig
 2 years ago
 Views:
Transcription
1 DC Circuits: Operational Amplifiers Hasan Demirel
2 Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source. An operational amplifier has a very high input impedance and a very high gain.
3 Op Amps: Use of Op Amps Op amps can be configured in many different ways using resistors and other components. Most configurations use feedback. An op amp can be designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation, and integration.
4 Op Amps: Applications of Op Amps Amplifiers provide gains in voltage or current. Op amps can convert current to voltage. Op amps can provide a buffer between two circuits. Op amps can be used to implement integrators and differentiators. Op amps can be used to design filters (i.e. lowpass and bandpass filters).
5 Op Amps: Op Amp Symbol A typical op amp: (a) pin configuration, (b) circuit symbol.
6 Op Amps: Schematic diagram of op amp
7 A is the openloop voltage gain. Op Amps: The Op Amp Model Inverting input Output Noninverting input The differential input voltage The output voltage
8 Op Amps: Typical op amp parameters
9 Op Amps: Example 5.1: A 741 op amp has an openloop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed loop gain v 0 /v s. Determine current i when v s = 2 V. Figure 5.6: (a) original circuit, (b) the equivalent circuit.
10 Op Amps: Example 5.1: A 741 op amp has an openloop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed loop gain v 0 /v s. Determine current i when v s = 2 V. Apply KCL at node 1: (1) Apply KCL at node 0: (2)
11 Op Amps: Example 5.1: A 741 op amp has an openloop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed loop gain v 0 /v s. Determine current i when v s = 2 V. Substituting v 1 from Eq. (1) into Eq. (2) gives: This is called closedloop gain, because the 20kΩ feedback resistor closes the loop between the output and input terminals. From Eq. (1)
12 Op Amps: Ideal Op Amp An ideal op amp is an amplifier with infinite openloop gain, infinite input resistance, and zero output resistance. To facilitate the understanding of op amp circuits, we will assume ideal op amps. An op amp is ideal if it has the following characteristics: 1. Infinite openloop gain, A = 2. Infinite input resistance, R in = 3. Zero output resistance, R o =0
13 Op Amps: Ideal Op Amp An ideal op amp is an amplifier with infinite openloop gain, infinite input resistance, and zero output resistance. 1. Ideal Op Amp Model 1. Infinite openloop gain, A = 2. Infinite input resistance, R in = 3. Zero output resistance, R o =0
14 Op Amps: Ideal Op Amp Two important characteristics of the ideal op amp are: 1. The currents into both input terminals are zero. This is due to infinite input resistance. An infinite resistance between the input terminals implies that an open circuit exists there and current cannot enter the op amp. 2. The voltage across the input terminals is equal to zero. An ideal op amp has zero current into its two input terminals and the voltage difference between the two input terminals is equal to zero.
15 Op Amps: Ideal Op Amp Example 5.2: Use the ideal op amp model to calculate the closedloop gain v 0 /v s. Find i o when v s = 1 V. v 2 vs v1 v2 v s KCL at inverting terminal (v 1 ): vs vo vs v v s KCL at output (v o ): o v 1 v o i o v v v 10 o s o (if v s = 1 V, then v o = 9V) i o ( ) ma
16 Op Amps: Inverting Amplifier Both the input signal and the feedback are applied at the inverting terminal of the op amp. Applying KCL at node 1: Noninverting terminal is grounded. An inverting amplifier reverses the polarity of the input signal while amplifying it.
17 Op Amps: Inverting Amplifier Example 5.3: Refer to the op amp in Fig If v i =0.5 V, calculate: (a) the output voltage v o, and (b) the current in the 10kW resistor. (a) (b)
18 Op Amps: Inverting Amplifier Practice Problem 5.3: Find the output of the op amp circuit shown in Fig Calculate the current through the feedback resistor.
19 Op Amps: Example 5.1: A 741 op amp has an openloop voltage gain of 2x10 5, input resistance of 2 MΩ, and output resistance of 50 Ω. The op amp is used in the circuit shown in Fig. 5.6(a). Find the closed loop gain v 0 /v s. Determine current i when v s = 2 V. Repeat Ex. 5.1 by using ideal op amp model.
20 Op Amps: Review To solve an op amp circuit, we usually apply KCL at one or both of the inputs. We then use the properties of the ideal model. The currents into both input terminals are zero. The voltage across the input terminals is equal to zero. We solve for the op amp output voltage.
21 Op Amps: Noninverting Amplifier A noninverting amplifier is an op amp circuit designed to provide a positive voltage gain. Apply KCL at inverting terminal: (1) Apply eq. (1) into eq (2): (2) Then:
22 Op Amps: Voltage Follower A voltage follower (or unity gain amplifier) has the output voltage equal to the input voltage. Voltage follower is a noninverting amplifier with:
23 Op Amps: Noninverting Amplifier Example 5.5: For the op amp circuit below, calculate the output voltage v o.
24 Op Amps: Summing Amplifier (Inverting Summer) Apply KCL at node a:
25 Op Amps: Summing Amplifier (Inverting Summer) Apply KCL at node a: Note that Then,
26 Op Amps: Summing Amplifier (Inverting Summer) Example 5.6: Find v o and i o in the op amp circuit shown below.
27 Op Amps: Difference Amplifier Apply KCL at node a: Apply KCL at node b: But
28 Op Amps: Difference Amplifier Difference amplifier must reject a signal common to the two inputs, the amplifier must have the property that v o =0, when v 1 = v 2. This property exists when: When this property is satisfied The op amp circuit is a difference amplifier If R 2 = R 1 and R 3 = R 4 The difference amplifier becomes A subtractor circuit:
29 Op Amps: Cascaded Op Amp Circuits A cascade connection is a headtotail arrangement of two or more op amp circuits such that the output of one is the input of the next. The overall gain of the cascade connection is the product of the gains of the individual op amp circuits
30 Op Amps: Cascaded Op Amp Circuits Example 5.9: Find v 0 and i 0 in the circuit below.
31 Op Amps: Cascaded Op Amp Circuits Example 5.10: Find v 1 = 1 V and v 2 = 2 V, find v 0 in the circuit below.
Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer
Electrical Engineering Chapter: Operational Amplifiers / Operationsverstärker Michael E. Auer Source of figures: Alexander/Sadiku: Fundamentals of Electric Circuits, McGrawHill Chapter Content Basics
More informationOperational Amplifiers
Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with
More informationOperational Amplifiers
Operational Amplifiers Introduction The operational amplifier (opamp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the opamp
More informationOperational Amplifiers (OpAmps)
Chapter 18 Operational Amplifiers (OpAmps) Introduction to Operational Amplifiers The standard Operational amplifier has two input terminals, the inverting () and noninverting (+) FIGURE 183 Practical
More informationOperational amplifiers
Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Lowgain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal
More informationOperational Amplifiers  Configurations and Characteristics
Operational Amplifiers  Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available
More informationThe output signal may be of the same form as the input signal, i.e. V in produces V out
What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input
More informationPart I: Operational Amplifiers & Their Applications
Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Noninverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp
More information8.4 Advanced RC Filters
8.4 Advanced Filters high pass filter including gain and Bode plots cascaded low pass filters band pass filters band rejection filter  the twint impedance matching problems an ideal operational amplifier
More informationOPERATIONAL AMPLIFIER
MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins
More informationMaterial and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )
Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the nonideal characteristics of the operational amplifier. The characteristics that will be investigated include
More informationAnalog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
More informationOperational Amplifiers
1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
More informationSchool of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
More informationEXPERIMENT 1.2 CHARACTERIZATION OF OPAMP
1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical
More informationBasic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
More informationOperational Amplifiers
perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging
More informationOPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
More informationLab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Nonideal Op Amps
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) vs Nonideal Op Amps Op Amp A 0 Nonideal Op Amp A < < > 0 Other nonideal characteristics:
More informationELECTRONICS. EE 42/100 Lecture 8: OpAmps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: OpAmps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
More informationOperational Amplifiers
662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Commonmode and Differentialmode signals 25.7 Voltage Gains of DA 25.9
More informationChapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (OpAmp) Operational amplifiers (opamps) are very high gain dc coupled amplifiers with differential inputs; they are used
More informationCIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers
CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a directcoupled, differentialinput, highgain voltage amplifier, usually packaged in the
More informationModule 2: Op Amps Introduction and Ideal Behavior
Module 2: Op Amps Introduction and Ideal Behavior Dr. Bonnie H. Ferri Professor and Associate Chair School of Electrical and Computer Engineering Introduce Op Amps and examine ideal behavior School of
More informationFrequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
More informationOperational Amplifiers: Part 2. Nonideal Behavior of Feedback Amplifiers DC Errors and LargeSignal Operation
Operational Amplifiers: Part 2 Nonideal Behavior of Feedback Amplifiers DC Errors and LargeSignal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions
More informationSeries and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
More informationPeggy Alavi Application Engineer September 3, 2003
OpAmp Basics Peggy Alavi Application Engineer September 3, 2003 OpAmp Basics Part 1 OpAmp Basics Why opamps Opamp block diagram Input modes of OpAmps Loop Configurations Negative Feedback Gain Bandwidth
More informationOPERATIONAL AMPLIFIERS
INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
More informationFILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.
FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in
More informationR f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response
ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response
More informationChapter No. 3 Differential Amplifiers
Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a directcoupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall
More informationMAS.836 HOW TO BIAS AN OPAMP
MAS.836 HOW TO BIAS AN OPAMP OpAmp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an opamp circuit, the operating characteristic
More informationEAC215 Homework 4. Page 1 of 6
EAC215 Homework 4 Name: 1. An integrated circuit (IC) opamp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does
More informationEE 1202 Experiment #7 Signal Amplification
EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to
More informationCurrent Feedback Op Amp Applications Circuit Guide
Current Feedback Op Amp Applications Circuit Guide Introduction No two highspeed application are the same or at least it seems that way. Nonetheless, while every system has its particular requirements,
More informationChapter 2 Objectives
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More information6: Operational Amplifiers
6: Operational s Operational Inverting 6: Operational s E1.1 Analysis of Circuits (20168877) Operational s: 6 1 / 12 Operational 6: Operational s Operational Inverting An op amp (operational amplifier)
More information2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
More informationDigital to Analog Conversion DAC Conversion
Digital to Analog Conversion DAC Conversion D/A conversion is the process of converting a digitally coded signal into an Analog voltage or current that is proportional (linear response) to the digital
More information3. Common Mode Rejection Ratio: Part I
3. ommon Mode ejection atio: Part I 3. Introduction In general, an instrumentation amplifier is required to amplify the difference between two input signals or voltages, and as shown in Fig.. However,
More informationECGAmplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (opamp)
ECGAmplifier MB Jass 2009 Daniel Paulus / Thomas Meier Operation amplifier (opamp) Properties DCcoupled High gain electronic ec c voltage amplifier Inverting / noninverting input and single output
More informationOp Amp Circuits. Inverting and Noninverting Amplifiers, Integrator, Differentiator
M.B. Patil, IIT Bombay 1 Op Amp ircuits Inverting and Noninverting Amplifiers, Integrator, Differentiator Introduction An Operational Amplifier (Op Amp) is a versatile building block used in a variety
More informationLab 9: Op Amps Lab Assignment
3 class days 1. Differential Amplifier Source: HandsOn chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The
More informationCurrent vs. Voltage Feedback Amplifiers
Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most
More informationHomework Assignment 06
Question 1 (2 points each unless noted otherwise) Homework Assignment 06 1. Typically, the CE saturation voltage for a BJT, namely V CE(sat), is in the range of (circle one) Answer: (a) (a) 0.2 1.0 V
More informationAnalog Input Buffer Architectures
Analog Input Buffer Architectures by Kevin L Tretter 1. Introduction There are many considerations that must be taken into account when designing and implementing an analog input buffer. These include
More informationVerification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson
Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 22405 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to
More informationBuilding the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
More informationElectronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers
Electronics most instruments work on either analog or digital signals we will discuss circuit basics parallel and series circuits voltage dividers filters highpass, lowpass, bandpass filters the main
More informationPart 2: Operational Amplifiers
Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error
More informationDesigning a Poor Man s Square Wave Signal Generator. EE100 Lab: Designing a Poor Man s Square Wave Signal Generator  Theory
EE100 Lab:  Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During
More informationChapter 08. Methods of Analysis
Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning CC Tsai Outline Source Conversion Mesh Analysis Nodal Analysis DeltaWye ( Y) Conversion Bridge Networks
More informationFirst and Second Order Filters
First and Second Order Filters These functions are useful for the design of simple filters or they can be cascaded to form highorder filter functions First Order Filters General first order bilinear transfer
More information[a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below:
P 3.3 [a] The 5 kω and 7 kω resistors are in series. The simplified circuit is shown below: [b] The 800Ω and 1200Ω resistors are in series, as are the 300Ω and 200Ω resistors. The simplified circuit is
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationFully Differential Op Amps Made Easy
Application Report SLOA099  May 2002 Fully Differential Op Amps Made Easy Bruce Carter High Performance Linear ABSTRACT Fully differential op amps may be unfamiliar to some designers. This application
More informationDIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION
DIGITALTOANALOGUE AND ANALOGUETODIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
More informationmultivibrators using IC 555 (2turns)
Advanced Electronics Lab Experiments (P243) 1. Study of basic configuration of OPAMP (IC741), Simple mathematical operations and its use as comparator and Schmitt trigger(2 turns) 2. Differentiator, Integrator
More informationSeriesParallel Circuits
Chapter 6 SeriesParallel Circuits Topics Covered in Chapter 6 61: Finding R T for SeriesParallel Resistances 62: Resistance Strings in Parallel 63: Resistance Banks in Series 64: Resistance Banks
More informationLM118/LM218/LM318 Operational Amplifiers
LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They
More information5Band Graphic Equalizer
EE 410 Final Linear Electronic Design Spring 2008 5Band Graphic Equalizer Dylan Gaffney Owen Gaffney Justin Spagnuolo Joe Tearpock Kevin Brown 2 INTRODUCTION The design project being discussed in this
More informationExperiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance
Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multimeter to measure voltage, current and resistance. Equipment: Bread
More informationZener Diodes. Zener Diode Symbols
Zener Diodes A Zener diode is a special purpose diode that is designed to operate in the reverse breakdown region of the diode s characteristic curve. Regular diodes will be destroyed if they are used
More informationKirchhoff s Voltage Law
BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel
More informationOpAmps Experiment Theory
EE 4/00 Operational mplifiers Opmps Experiment Theory. Objective The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier ( opamp for
More informationThe Electronic Scale
The Electronic Scale Learning Objectives By the end of this laboratory experiment, the experimenter should be able to: Explain what an operational amplifier is and how it can be used in amplifying signal
More informationEXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING
Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...
More informationProblem set #5 EE 221, 09/26/ /03/2002 1
Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making
More informationANALOG ELECTRONICS EE202F IMPORTANT QUESTIONS
ANALOG ELECTRONICS EE202F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive
More informationFEEDBACK INTRODUCTION
FEEDBACK INTRODUCTION Most physical systems incorporate some form of feedback. Feedback can be either negative (degenerative) or positive (regenerative). In amplifier design, negative feedback is applied
More informationCHAPTER 7 FILTERS, LOADING AND OPAMPS
CHAPTE 7 FILTES, LOADING AND OPAMPS INTODUCTION Sometimes we make measurements and what is measured is a combination of what we wished to measure and noise. This noise could be caused by the electronic
More informationHomework #6 Solution
1. The noninverting opamp configuration shown to the right provides a direct implementationn of a feedback loop. (a) Assume that the op amp has infinite input resistance and zero output resistance. Find
More informationElectronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
More informationChapter 12. RL Circuits. Objectives
Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine
More informationAN581 APPLICATION NOTE
a AN58 APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062906 Tel: 78/3294700 Fax: 78/3268703 www.analog.com Biasing and Decoupling Op Amps in Single Supply Applications by Charles Kitchin
More informationBasic DACs for Electronic Engineers
No. AN9741 July 1997 Intersil Linear Basic DACs for Electronic Engineers Author: Ronald Mancini Why and Where are DACs Used? The name is digitaltoanalog converter, and the function of a DAC, as the name
More informationTutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers)
Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Part A. CommonEmitter Amplifier 1. For the circuit shown in Figure 1, the transistor parameters are β = 100 and V A =. Design the
More informationLab 5 Operational Amplifiers
Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties
More information2. Introduction and Chapter Objectives
Real Analog  Circuits Chapter 2: Circuit Reduction 2. Introduction and Chapter Objectives In Chapter, we presented Kirchoff s laws (which govern the interactions between circuit elements) and Ohm s law
More informationComparator and Schmitt Trigger
Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the OpAmp Comparator with and without an offset
More information4. Experiment D1: Operational Amplifier
4. Experiment D1: Operational Amplifier 4.1. Aim The aim of this experiment is to investigate some properties of real opamps which are not present in `ideal' opamps, but which affect practical opamp
More informationAPPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 00 Tucson, AZ 87 Street Address: 70 S. Tucson Blvd. Tucson, AZ 870 Tel: (0) 7 Twx: 909 Telex: 09 FAX (0) 8890 Immediate Product Info: (800) 8 EXTENDING
More informationOp amp DC error characteristics and the effect on highprecision applications
Op amp DC error characteristics and the effect on highprecision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated  January 01, 2014 This article discusses the DC limitations of
More informationSmart Lighting Controller!!
Smart Lighting Controller!! 1! Smart lighting! No need to spend energy lighting the room if!» It s already bright enough from natural light!» There s nobody in the room! Idea is to detect these things,
More informationOp Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps
TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The openloop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:
More informationA Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved
A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved The summing network in mixing consoles is an easily misunderstood
More informationAN937 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062906, U.S.A. Tel: 78.329.4700 Fax: 78.46.33 www.analog.com Designing Amplifier Circuits: How to Avoid Common Problems by Charles Kitchin
More informationSINGLESUPPLY OPERATION OF OPERATIONAL AMPLIFIERS
SINGLESUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated
More informationOpAmp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
OpAmp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
More informationThe Operational Amplfier Lab Guide
EECS 100 Lab Guide Bharathwaj Muthuswamy The Operational Amplfier Lab Guide 1. Introduction COMPONENTS REQUIRED FOR THIS LAB : 1. LM741 opamp integrated circuit (IC) 2. 1k resistors 3. 10k resistor 4.
More informationES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
More informationLaboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 2024) and Week 10 (Oct. 2731) Due Week 11 (Nov. 37) 1 PreLab This PreLab should be completed before attending your regular
More informationDual High Speed, Implanted BiFET Op Amp AD644
a FEATURES Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk 124 db at 1 khz Low Bias Current: 35 pa max Warmed Up Low Offset Voltage: 500 V max Low Input Voltage
More informationDATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS
INTEGRATED CIRCUITS DATA SHEET File under Integrated Circuits, IC01 July 1994 GENERAL DESCRIPTION The is an integrated classb output amplifier in a 13lead singleinline (SIL) plastic power package.
More informationUNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering
UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5  GainBandwidth Product and Slew Rate Overview: In this laboratory the student will explore
More informationElectronics The application of bipolar transistors
Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using
More informationGenerating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors
Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.
More information