# The output signal may be of the same form as the input signal, i.e. V in produces V out

Save this PDF as:

Size: px
Start display at page:

Download "The output signal may be of the same form as the input signal, i.e. V in produces V out"

## Transcription

1 What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input The output signal may be of the same form as the input signal, i.e. produces V out However, the input and output may be of different forms, i.e. I in produces V out For any form of amplifier, the amplifier gain is defined generically as gain = signal in/signal out There are many forms of amplifiers possible, and the design of specific forms for discrete component amplifiers is an involved process. We will not discuss the general design of transistor/tube/etc. amplifiers, but only the use and properties of the much simpler integrated circuit amplifier. Spending a few dollars on an integrated circuit device allows one to buy the results of hundreds of thousands of developer dollars and man-years of development time. The simplest form of such amplifiers to use is the Operational Amplifier! Operational Amplifiers What is an operational amplifier? A very high gain DC amplifier that uses external feedback networks to control its response Notice particularly that the external network connected to the IC device determine the characteristics of the amplifier constructed! An PerfectOperational Amplifier is a device with certain special characteristics 1. infinite open-loop gain A ol 2. infinite input resistance R in 3. zero output resistance R out 4. infinite bandwidth 5. zero offset (output is exactly 0 when the input is 0) Clearly no real operational amplifier can meet all these characteristics. However, under certain conditions, most of these conditions can be approximately met - though not all at once. A diagram representing a generalized operational amplifier is given below R R 0 in v i A ol v i A ol V+ R out V- V out Vout R in is the input resistance of the op amp, R out is the output resistance, and A olv in represents the active amplification effect of the amplifier in terms of the input voltage v in. The output voltage V out is determined by the combination of open loop gain ( A ol ) and output resistance (R out ). Typical values of these quantities for a standard 741 operational amplifier would be: R in = 2 MΩ R out = 75 Ω A ol = 200,000 In using an operational amplifier, one needs to be aware of certain information about the device that can usually be obtained from the DATA SHEET for the particular amplifier. Maximum Ratings (exceeding these can destroy the device) 1. Supply Voltage (± Vs ) : maximum bipolar (±) voltage that can be used to power the amp 2. Internal Power Dissipation (PD) : maximum power that can be dissipated internally by the op amp without exceeding a specified max temperature. e.g. 500 < 75 C 3. Differential Input Voltage (Vid ) : maximum voltage that can exist across + and - inputs 4. Operating Temperature (Ta) : maximum safe temperature of operation 5. Outout Short-Circuit Duration : maximum length of time that the output could be shorted to either ground or to ±Vs.. For many op amps this is infinite. There are many other specifications for op amps that are important for their use, but which do run the risk of destruction if exceeded. One other characteristic of perfect op amps is the fact of infinite bandwidth (amp operates from DC to frequencies). Real op amps have a finite bandwidth that rolls off with frequency, i.e. the gain at DC is usually > the gain at 40 khz. 1

2 G a i n A typical gain-bandwidth curve for a 741 op amp is shown below: 1.E+06 1.E+05 1.E+04 1.E+03 1.E+02 1.E+01 1.E+00 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 frequency Real op amps have a frequency response that is very large at DC (~200,000 for a 741) but begins to "roll off" at higher frequencies. The 741 begins to roll off beginning about 6 to 10 Hz at about -6 db per octave (-20 db per decade), reaching a value of unity gain at about 1.0 MHz. Different op amps will have different frequency response curves, but all will have the same general form. For any op amp the Gain-Bandwidth product is approximately constant. As the gain goes up, the bandwidth-- --goes down. There is always a trade-off between - --available gain and the maximum frequencies the amplifier can amplify without significant distortion. In practice operational amplifiers are always operated with some type of feedback, either positive in the case of some oscillators, or negative feedback which greatly stabilizes the amplifier output. In negative feedback, a portion of the output signal is fed back out of phase with the input effectively reducing the total gain but keeping the output stable. fv out V out With negative feedback the gain always decreases, so that the closed-loop gain A cl is always < A ol. The loop gain is defined as: loop gain A L = A ol / A cl As mentioned before, the gain bandwidth product is approximately constant GBW = ( A L )( BW) Thus reducing the gain usually increases the bandwidth of the amplifier. Since op amps have such a high open-loop gain, the reduction in gain still allows sufficient gain for most practical purposes Operational amplifiers are usually operated as inverting (meaning the output has the opposite phase as the input) or non-inverting (where input and output have the same polarity) amplifiers. Physically this is governed by whether the input signal is applied to the inverting (-), or the non inverting (+) input terminals. A diagram for an inverting amplifier The relationship between input voltage and output voltage involves only the external input and feedback resistors V out = A ol = [R f / R i ] Let us now consider some simplified ways of analyzing this operational amplifier configuration Simplifying assumptions for analyzing simple op amp circuits 1. V out is ALWAYS < supply voltage. If V+ = 15 V and V- = -15 V, then the maximum possible voltage output from the amplifier is < 15 volts As a consequence of this, consider an op amp with A ol = 200,000 (typical 741), then we see V out = A ol and the input voltage producing max output is = V out / 200,000 = 15 Volts / 200,000 = 75 x 10-6 V or 75 µ V 2

3 This means that unless one is trying to amplify µv signals, the input voltage is required to drive the amplifier to maximum output is ~ 0 When properly operating, the voltage difference between the(+) and (-) terminals is ~ 0 2. Since the input resistance of op amps is very high (typ. Megohms), a negligible amount of current flows into the op amp from the input voltage source. For a 741 op amp, the input current draw is typically na. Other op amps such as a CA3140 FET op amp may have input current draws of about 10 pa! (10 x amps) Analysis of an Inverting Amplifier i in S P i in = /R in since S is effectively a ground Based on these two simplifying assumptions, one can make a practical representation of an inverting op amp circuit as shown on next slide. Since no current flows into the op amp terminal at S, the current flow through the feedback resistor is also i in Since no current flows into the op amp terminal Using this, one can write the output voltage as ---at S, the current flow through the feedback resistor is also i in. V out = -R f [ /R in ] or equivalently as The input impedance of an inverting amplifier is given by R in Thus the voltage across the feedback resistor is given by V Rf = i in R f = R f [ /R in ] Since the voltage from terminal P to ground is the same as the voltage from P to S, the output voltage which is measured from P to ground is the same as the voltage across the feedback resistor V Rf. V out = - [R f /R in ] effectively set by the ratio of the feedback resistor to the input resistor. The minus sign is required since the P side of R f is negative compared to the S side. Notice that the external components connected to the op amp ( R f and R in ) determine its characteristics when used as an amplifier The output impedance is approximately [ A CL / A ol ] R out where R out is the output resistance of the operational amplifier chip. Since A ol is much larger than A CL, this makes the output impedance very low. Analysis of a Non-Inverting Amplifier Since the circuit analysis for a non-inverting amplifier is more complicated (see any IC textbook) only the results for this amplifier will be given Since the voltage between the (+) and (-) inputs to the op amp are essentially zero, the voltage applied to the (+) input and gnd. which is is also the voltage between the (-) terminal and gnd and consequently also the voltage across the input resistor R in There is a voltage divider circuit formed by the feedback resistor R f and the input resistor R in. This voltage divider sets the equation for the gain. = (V out R in )/( R in + R f ) or V out = ( R in + R f )/ R in The voltage gain for the non-inverting amplifier is V out = [1 + R f /R in ] The input impedance is determined by the input resistance of the op amp itself and by the gain ratios. R input = [ A ol / A CL ] R in For a common 741 amplifier, the open-loop gain is ~200,000 while the closed-loop is ~100 and the amplifier input resistance is 75 Ω. This would give R input = [200,000/100] 75 = 1.5 x 10 6 Ω or 1.5 M Ω 3

4 If we let R f go to zero, and drop R, if we desire, then in the non-inverting circuit, we get V out = (1) gain = 1 In this circuit the output voltage exactly follows the input. The input resistance of such a circuit is 150 MΩ Non-Inverting Buffer or Unit-Gain Amp Summing Amplifier Such an amplifier serves as a buffer (or isolation) amplifier. With ~ infinite input resistance and ~ 0 output resistance, it does not alter the input signal at all.. Any changes in the output circuit (short circuit, etc.) has no effect on the input circuit. However, such a circuit CAN multiply the POWER by increasing the current which can be drawn (from Op Amp). Op Amps can also be used to perform electronic equivalents of mathematical operations such as integration, differentiation, addition, etc. (see the attached sample circuits). A summing amplifier does a weighted summation of several input voltages The output voltage is given by the weighted sum of the input voltages V out = - [V 1 /R 1 ) + V 2 /R 2 ) + V 3 /R 3 )] The negative sign occurs since this is an inverting circuit. Difference Amplifier Recall that fundamentally, every operational amplifier is a difference amplifier, amplifying the difference between the signals at the inverting (-) and non-inverting (+) inputs. Small variations in the input transistors in the op amp are reflected in the fact that there are small differences in quiescent voltages from the two inputs. One can reduce these differences and increase the op amps CMRR (common-mode rejection ratio) by connecting a variable resistor to one input and adjusting the value of that resistor to null out the output when the same signal is applied to both inputs. The next shows shows the circuit with CMRR adjustment potebtiometer Instrumentation Amplifier A high-gain, low-drift, high input impedance, differential input operational amplifier is usually known as an instrumentation amplifier. These are high performance, higher cost amplifiers, are often used for critical amplification needs in research projects. These amplifiers are basically high quality op amps with voltage follower buffers on each input to produce the desired high input resistance. V out = ( )R f /R in R1 will usually be a value close to R2 4

5 Corrections for REAL Op Amps Input Offset Voltage voltage that must be applied to one of the input terminals to give zero output. offset = V out offset /A cl Input Bias Current current flowing into Op Amp input terminals. Ideally these currents are identical, but actually are not for real devices. However, they are quite small ~ 200 na Both of these can be partially corrected by using the offset terminals of the op amp, if available. Offset Adj. Voltage slew rate time it takes the output of the op amp to switch from max output to minimum output. For the 741 amp, this is about 0.5 V/µsec. This can only be changed by using a different op amp with a different slew rate. For example the LM318 op amp has a slew rate of 70 V/ µsec 5

### Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

### Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available

### EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

### DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

### EAC215 Homework 4. Page 1 of 6

EAC215 Homework 4 Name: 1. An integrated circuit (IC) op-amp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does

### Operational Amplifiers

Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

### Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

### Chapter No. 3 Differential Amplifiers

Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a direct-coupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall

### Operational Amplifiers

662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Common-mode and Differentialmode signals 25.7 Voltage Gains of DA 25.9

### Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

### Peggy Alavi Application Engineer September 3, 2003

Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

### Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

### Operational Amplifiers (Op-Amps)

Chapter 18 Operational Amplifiers (Op-Amps) Introduction to Operational Amplifiers The standard Operational amplifier has two input terminals, the inverting (-) and noninverting (+) FIGURE 18-3 Practical

### Analog Signal Conditioning

Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

### LM124/224/324/324A/ SA534/LM2902 Low power quad op amps INTEGRATED CIRCUITS

INTEGRATED CIRCUITS Supersedes data of 21 Aug 3 File under Integrated Circuits, IC11 Handbook 22 Jan 22 DESCRIPTION The LM12/ series consists of four independent, high-gain, internally frequency-compensated

### Dual general-purpose operational amplifier

NE/SA/SE DESCRIPTION The is a dual operational amplifier that is internally compensated. Excellent channel separation allows the use of a dual device in a single amp application, providing the highest

### OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

### Current vs. Voltage Feedback Amplifiers

Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

### Dual High Speed, Implanted BiFET Op Amp AD644

a FEATURES Matched Offset Voltage Matched Offset Voltage Over Temperature Matched Bias Currents Crosstalk 124 db at 1 khz Low Bias Current: 35 pa max Warmed Up Low Offset Voltage: 500 V max Low Input Voltage

### Operational Amplifiers

Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with

### Operational Amplifiers

perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging

### www.jameco.com 1-800-831-4242

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. LF411 Low Offset, Low Drift JFET Input Operational Amplifier General Description

### Precision ANALOG MULTIPLIER

Precision ANALOG MULTIPLIER FEATURES ±0.5% max 4-QUADRANT ACCURACY WIDE BANDWIDTH: 1MHz min, 3MHz typ ADJUSTABLE SCALE FACTOR STABLE AND RELIABLE MONOLITHIC CONSTRUCTION LOW COST APPLICATIONS PRECISION

### EE105 Fall 2014 Microelectronic Devices and Circuits. Ideal vs Non-ideal Op Amps

EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) vs Non-ideal Op Amps Op Amp A 0 Non-ideal Op Amp A < < > 0 Other non-ideal characteristics:

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### Lab 9: Op Amps Lab Assignment

3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

### LM148/LM248/LM348 Quad 741 Op Amps

Quad 741 Op Amps General Description The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to

### EE105 Fall 2014 Microelectronic Devices and Circuits. Operational Amplifier Error Sources: dc Current and Output Range Limitations

EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Operational Amplifier Error Sources: dc Current and Output Range Limitations dc error

### Operational amplifiers

Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal

### AN-581 APPLICATION NOTE

a AN-58 APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062-906 Tel: 78/329-4700 Fax: 78/326-8703 www.analog.com Biasing and Decoupling Op Amps in Single Supply Applications by Charles Kitchin

### Choosing Components Part 2: Audio Amplifier Basics

Choosing Components Part 2: Audio Amplifier Basics AUDIO AMPLIFIERS Once upon a time, if you were designing an electronic system and you needed an audio amplifier, you had to design it yourself. Today

### Part 2: Operational Amplifiers

Part 2: Operational Amplifiers An operational amplifier is a very high gain amplifier. Op amps can be used in many different ways. Two of the most common uses are a) as comparators b) as amplifiers (either

### Physics 160. Fun with Op Amps. R. Johnson May 13, 2015

Physics 160 Lecture 14 Fun with Op Amps. Johnson May 13, 015 Ideal Op-Amp Differential gain, of course. Common-mode gain is ideally zero. Such an ideal op-amp of course does not exist, but a first analysis

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

### LM741. Single Operational Amplifier. Features. Description. Internal Block Diagram. www.fairchildsemi.com

Single Operational Amplifier www.fairchildsemi.com Features Short circuit protection Excellent temperature stability Internal frequency compensation High Input voltage range Null of offset Description

### LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

LOW NOISE DUAL OPERATIONAL AMPLIFIER LOW VOLTAGE NOISE: 4.5nV/ Hz HIGH GAIN BANDWIDTH PRODUCT: 15MHz HIGH SLEW RATE: 7V/µs LOW DISTORTION:.2% EXCELLENT FREQUENCY STABILITY ESD PROTECTION 2kV DESCRIPTION

### TL074 TL074A - TL074B

A B LOW NOISE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT LOW NOISE e n = 15nV/ Hz (typ) OUTPUT SHORTCIRCUIT PROTECTION

### Description. 5k (10k) - + 5k (10k)

THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

### Op Amp Bandwidth and Bandwidth Flatness. OPEN LOOP GAIN db. Figure 1: Frequency Response of Voltage Feedback Op Amps

TUTORIAL Op Amp Bandwidth and Bandwidth Flatness BANDWIDTH OF VOLTAGE FEEDBACK OP AMPS The open-loop frequency response of a voltage feedback op amp is shown in Figure 1 below. There are two possibilities:

### 4. Experiment D1: Operational Amplifier

4. Experiment D1: Operational Amplifier 4.1. Aim The aim of this experiment is to investigate some properties of real op-amps which are not present in `ideal' op-amps, but which affect practical op-amp

### Precision Gain = 10 DIFFERENTIAL AMPLIFIER

Precision Gain = DIFFERENTIAL AMPLIFIER FEATURES ACCURATE GAIN: ±.% max HIGH COMMON-MODE REJECTION: 8dB min NONLINEARITY:.% max EASY TO USE PLASTIC 8-PIN DIP, SO-8 SOIC PACKAGES APPLICATIONS G = DIFFERENTIAL

### Electronics The application of bipolar transistors

Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using

### LF442 Dual Low Power JFET Input Operational Amplifier

LF442 Dual Low Power JFET Input Operational Amplifier General Description The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while

### LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

### TS321 Low Power Single Operational Amplifier

SOT-25 Pin Definition: 1. Input + 2. Ground 3. Input - 4. Output 5. Vcc General Description The TS321 brings performance and economy to low power systems. With high unity gain frequency and a guaranteed

### High Speed, Low Power Monolithic Op Amp AD847

a FEATURES Superior Performance High Unity Gain BW: MHz Low Supply Current:.3 ma High Slew Rate: 3 V/ s Excellent Video Specifications.% Differential Gain (NTSC and PAL).9 Differential Phase (NTSC and

### Features. Ordering Information. * Underbar marking may not be to scale. Part Identification

MIC86 Teeny Ultra Low Power Op Amp General Description The MIC86 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny SC7 packaging. The MIC86 provides 4kHz gain-bandwidth

### Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

### School of Engineering Department of Electrical and Computer Engineering

1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

### DESCRIPTIO FEATURES TYPICAL APPLICATIO. LT1364/LT1365 Dual and Quad 70MHz, 1000V/µs Op Amps APPLICATIO S

FEATRES 7MHz Gain Bandwidth V/µs Slew Rate 7.mA Maximum Supply Current per Amplifier nity-gain Stable C-Load TM Op Amp Drives All Capacitive Loads 9nV/ Hz Input Noise Voltage.mV Maximum Input Offset Voltage

### TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

### LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

### Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Ultralow Offset Voltage Operational Amplifier OP07

Data Sheet FEATURES Low VOS: 5 μv maximum Low VOS drift:. μv/ C maximum Ultrastable vs. time:.5 μv per month maximum Low noise:. μv p-p maximum Wide input voltage range: ± V typical Wide supply voltage

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### TL084 TL084A - TL084B

A B GENERAL PURPOSE JFET QUAD OPERATIONAL AMPLIFIERS WIDE COMMONMODE (UP TO V + CC ) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORTCIRCUIT PROTECTION HIGH INPUT IMPEDANCE

### Department of Electronics &Communication Engineering Third Semester Electronic Circuits-I PART A 1.Why do we choose q point at the center of the

Department of Electronics &Communication Engineering Third Semester Electronic Circuits-I PART A 1.Why do we choose q point at the center of the loadline? The operating point of a transistor is kept fixed

### FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

### AN-937 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 906 Norwood, MA 02062-906, U.S.A. Tel: 78.329.4700 Fax: 78.46.33 www.analog.com Designing Amplifier Circuits: How to Avoid Common Problems by Charles Kitchin

### Lecture 3: Transistors

Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

### Chapter 6: Transistors and Gain

I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

### Building the AMP Amplifier

Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

### MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

### Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

### ZXCT1081 HIGH VOLTAGE HIGH-SIDE CURRENT MONITOR. Description. Pin Assignments. Applications. Features. Typical Application Circuit ZXCT1081

HIGH VOLTAGE HIGH-SIDE CURRENT MONITOR Description Pin Assignments The is a high side current sense monitor with a gain of 10 and a voltage output. Using this device eliminates the need to disrupt the

### LM101A - LM201A LM301A

LM2A LM3A SINGLE OPERATIONAL AMPLIFIERS LM3A LM2A INPUT OFFSET VOLTAGE.7mV 2mV. INPUT BIAS CURRENT 25nA 7nA INPUT OFFSET CURRENT.5nA 2nA SLEW RATE AS INVERTING AMPLIFIER V/µs V/µs N DIP (Plastic Package)

### Low Noise, Precision, High Speed Operational Amplifier (A VCL > 5) OP37

a FEATURES Low Noise, 80 nv p-p (0.1 Hz to 10 Hz) 3 nv/ Hz @ 1 khz Low Drift, 0.2 V/ C High Speed, 17 V/ s Slew Rate 63 MHz Gain Bandwidth Low Input Offset Voltage, 10 V Excellent CMRR, 126 db (Common-Voltage

### Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

### TL082, TL082A, TL082B

General purpose JFET dual operation amplifiers Datasheet - production data Description The TL082, TL082A and TL082B are high speed JFET input dual operational amplifiers incorporating well-matched, high

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2013 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### OPERATIONAL AMPLIFIER

MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

### APPLICATION BULLETIN

APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132

### Operational Amplifiers

Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

### High Voltage Current Shunt Monitor AD8212

High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator

### Operational Amplifiers

1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

### Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.

### LH0091 True RMS to DC Converter

LH0091 True RMS to DC Converter General Description The LH0091 rms to dc converter generates a dc output equal to the rms value of any input per the transfer function E OUT(DC) e 0 1 T T 0 E IN 2 (t) dt

### ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp)

ECG-Amplifier MB Jass 2009 Daniel Paulus / Thomas Meier Operation amplifier (op-amp) Properties DC-coupled High gain electronic ec c voltage amplifier Inverting / non-inverting input and single output

### Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER

Wide Bandwidth, Fast Settling Difet OPERATIONAL AMPLIFIER FEATURES HIGH GAIN-BANDWIDTH: 35MHz LOW INPUT NOISE: 1nV/ Hz HIGH SLEW RATE: V/µs FAST SETTLING: 24ns to.1% FET INPUT: I B = 5pA max HIGH OUTPUT

### High Speed, Low Power Dual Op Amp AD827

a FEATURES High Speed 50 MHz Unity Gain Stable Operation 300 V/ms Slew Rate 120 ns Settling Time Drives Unlimited Capacitive Loads Excellent Video Performance 0.04% Differential Gain @ 4.4 MHz 0.198 Differential

### Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

### Technical Note #3. Error Amplifier Design and Applications. Introduction

Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital

### BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN )

Introduction BIASING MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer multi-stage performance

### EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

### Chapter 8. Current-Feedback Op Amp Analysis. Excerpted from Op Amps for Everyone. Literature Number SLOA080. Literature Number: SLOD006A

Chapter 8 Current-Feedback Op Amp Analysis Literature Number SLOA080 Excerpted from Op Amps for Everyone Literature Number: SLOD006A Chapter 8 Current-Feedback Op Amp Analysis Ron Mancini 8.1 Introduction

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

### CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers

CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a direct-coupled, differential-input, highgain voltage amplifier, usually packaged in the

### LM4562 Dual High Performance, High Fidelity Audio Operational Amplifier

October 2007 Dual High Performance, High Fidelity Audio Operational Amplifier General Description The is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized

### Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator

M.B. Patil, IIT Bombay 1 Op Amp ircuits Inverting and Non-inverting Amplifiers, Integrator, Differentiator Introduction An Operational Amplifier (Op Amp) is a versatile building block used in a variety

### This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

TDA2050 32W Hi-Fi AUDIO POWER AMPLIFIER HIGH OUTPUT POWER (50W MUSIC POWER IEC 268.3 RULES) HIGH OPERATING SUPPLY VOLTAGE (50V) SINGLE OR SPLIT SUPPLY OPERATIONS VERY LOW DISTORTION SHORT CIRCUIT PROTECTION

### ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive