Chapter 13 Newton s Theory of Gravity


 Sophie Stewart
 7 months ago
 Views:
Transcription
1 Chapter 13 Newton s Theory of Gravity Chapter Goal: To use Newton s theory of gravity to understand the motion of satellites and planets. Slide 132
2 Chapter 13 Preview Slide 133
3 Chapter 13 Preview Slide 134
4 Chapter 13 Preview Slide 135
5 Chapter 13 Preview Slide 136
6 Chapter 13 Preview Slide 137
7 Chapter 13 Preview Slide 138
8 A Little History: Kepler s Laws From 1570 to 1600, Tycho Brahe compiled observations of stars and planets, and noted how the planets Mercury, Venus, Mars, Jupiter, and Saturn move through the sky. His mathematical assistant, Johannes Kepler, analyzed Brahe s data and discovered three laws that the planets obey as they orbit the sun. Slide 1319
9 Kepler s First Law of Planetary Motion 1. Planets move in elliptical orbits, with the sun at one focus of the ellipse. Slide 1320
10 Kepler s Second Law of Planetary Motion 2. A line drawn between the sun and a planet sweeps out equal areas during equal intervals of time. Slide 1321
11 Kepler s Third Law of Planetary Motion 3. The square of a planet s orbital period is proportional to the cube of the semimajoraxis length. Slide 1322
12 A Kepler s circular orbit Laws is a of special Planetary case of Motion an elliptical orbit. Slide 1323
13 Isaac Newton Isaac Newton, Legend has it that Newton saw an apple fall from a tree, and it occurred to him that the apple was attracted to the center of the earth. If the apple was so attracted, why not the moon? Newton posited that gravity is a universal attractive force between all objects in the universe. Slide 1324
14 Newton s Law of Gravity The moon is in free fall around the earth. Slide 1325
15 Newton s Law of Gravity The gravitational constant is a universal constant with the value G = N m 2 /kg 2. Slide 1326
16 Newton s Law of Gravity The gravitational force is an inversesquare force. Slide 1327
17 Newton s Law of Gravity Since G is so small, it means that the attractive force between two 1.0 kg masses, whose centers are 1.0 m apart, is N. This is 100 billion times weaker than the force of gravity from the earth on either of the masses! Although weak, gravity is a longrange force. Gravity keeps the earth orbiting the sun and the solar system orbiting the center of the Milky Way galaxy. A galaxy of stars spanning a distance greater than 100,000 light years. Slide 1328
18 The Principle of Equivalence The inertial mass of an object relates the net force acting on it to its acceleration: The gravitational mass of an object appears in Newton s law of gravity and determines the strength of the gravitational attraction: The assertion that m grav = m inert is called the principle of equivalence. Slide 1335
19 Little g and Big G An object of mass m sits on the surface of Planet X. According to an observer on the planet, the gravitational force on m should be F G = mg surface. According to Newton s law of gravity, the gravitational force on m should be. These are the same if: Slide 1336
20 Decrease of g with Distance A satellite orbits the earth at height h above the earth s surface. The value of g at height h above sea level is: where g earth = 9.83 m/s 2 and R e = m. Slide 1339
21 Decrease of g with Distance Slide 1340
22 Gravitational Potential Energy When two isolated masses m 1 and m 2 interact over large distances, they have a gravitational potential energy of: where we have chosen the zero point of potential energy at r =, where the masses will have no tendency, or potential, to move together. Note that this equation gives the potential energy of masses m 1 and m 2 when their centers are separated by a distance r. Slide 1343
23 Gravitational Potential Energy Slide 1344
24 Gravitational Potential Energy Suppose two masses a distance r 1 apart are released from rest. How will the small mass move as r decreases from r 1 to r 2? At r 1 U is negative. At r 2 U is larger and U is still negative, meaning that U has decreased. As the system loses potential energy, it gains kinetic energy while conserving E mech. The smaller mass speeds up as it falls. Slide 1345
25 Example 13.2 Escape Speed Slide 1348
26 Example 13.2 Escape Speed VISUALIZE Slide 1349
27 Example 13.2 Escape Speed Slide 1350
28 Example 13.2 Escape Speed Slide 1351
29 Gravitational Potential Energy Consider a mass a distance y above the surface of the earth. If y is very small compared to the radius of the earth, we can use the binomial approximation to show: Set U 0 = 0 and this is our familiar formula for U g. Slide 1352
30 Example 13.3 The Speed of a Satellite Slide 1353
31 Example 13.3 The Speed of a Satellite VISUALIZE Slide 1354
32 Example 13.3 The Speed of a Satellite Slide 1355
33 Example 13.3 The Speed of a Satellite Slide 1356
34 Satellite Orbits A circle is a special case of an ellipse. If a small mass m orbits a much larger mass M, the small mass is called a satellite. The speed of a satellite in a circular orbit is: Slide 1357
35 Example 13.4 The Speed of the Space Shuttle Slide 1362
36 Recall: Kepler s Third Law of Planetary Motion 3. The square of a planet s orbital period is proportional to the cube of the semimajoraxis length. The speed of a satellite in a circular orbit is: Squaring both sides and solving for T 2 gives: Planets are satellites of the sun, in orbits that are almost circular. The orbital radius = the semimajoraxis length for a circle. Slide 1363
37 Useful Astronomical Data Slide 1364
38 Example 13.5 Extrasolar Planets Slide 1365
39 Recall: Kepler s Second Law of Planetary Motion 2. A line drawn between the sun and a planet sweeps out equal areas during equal intervals of time. The gravitational force exerts no torque, so the satellite s angular momentum, L, is conserved as it orbits. It can be shown that the area swept out per unit time is L/2m, which is constant for any satellite. Slide 1366
40 Orbital Energetics We know that for a satellite in a circular orbit, its speed is related to the size of its orbit by v 2 = GM/r. The satellite s kinetic energy is thus: But GMm/r is the potential energy, U g, so: If K and U do not have this relationship, then the trajectory will be elliptical rather than circular. So, the mechanical energy of a satellite in a circular orbit is always: Slide 1369
41 Orbital Energetics The figure shows the kinetic, potential, and total energy of a satellite in a circular orbit. Notice how, for a circular orbit, E mech = U g /2. It requires positive energy in order to lift a satellite into a higher orbit. Slide 1370
42 Example 13.6 Raising a Satellite Slide 1371
43 Orbital Energetics The figure shows the steps involved to lift a satellite to a higher circular orbit. The first kick increases K without increasing U g, so K is not U g /2, and the orbit is elliptical. The satellite then slows down as r increases. The second kick increases K again so that K = U g /2, and the orbit is circular. Slide 1372
44 Chapter 13 Summary Slides Slide 1373
45 General Principles Slide 1374
46 Important Concepts Slide 1375
47 Important Concepts Slide 1376
48 Important Concepts Slide 1377
A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
More informationNewton s Law of Universal Gravitation
Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationGRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
More informationHalliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 131 Newton's Law
More informationNotes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
More informationGravitation and Newton s Synthesis
Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass
More informationUnit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
More informationFrom Aristotle to Newton
From Aristotle to Newton The history of the Solar System (and the universe to some extent) from ancient Greek times through to the beginnings of modern physics. The Geocentric Model Ancient Greek astronomers
More informationName: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
More informationExercise: Estimating the Mass of Jupiter Difficulty: Medium
Exercise: Estimating the Mass of Jupiter Difficulty: Medium OBJECTIVE The July / August observing notes for 010 state that Jupiter rises at dusk. The great planet is now starting its grand showing for
More informationLecture 5: Newton s Laws. Astronomy 111
Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (16431727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,
More information2. Orbits. FERZagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
More informationUSING MS EXCEL FOR DATA ANALYSIS AND SIMULATION
USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers
More informationNewton s Law of Gravity
Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has
More information1 Newton s Laws of Motion
Exam 1 Ast 4  Chapter 2  Newton s Laws Exam 1 is scheduled for the week of Feb 19th Bring Pencil Scantron 882E (available in the Bookstore) A scientific calculator (you will not be allowed to use you
More informationOrbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
More informationName Class Period. F = G m 1 m 2 d 2. G =6.67 x 1011 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
More informationNewton s Law of Gravity and Kepler s Laws
Newton s Law of Gravity and Kepler s Laws Michael Fowler Phys 142E Lec 9 2/6/09. These notes are partly adapted from my Physics 152 lectures, where more mathematical details can be found. The Universal
More informationUse the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
More informationAstronomy 1140 Quiz 1 Review
Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality
More informationLecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationAstro 11001 Lecture 10 Newton s laws
Astro 11001 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro11001 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe
More informationName Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
More informationChapter 5: Circular Motion, the Planets, and Gravity
Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but
More informationPhysics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope
Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More informationDIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding
More informationExam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti
Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking
More informationEDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1
Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time
More informationNiraj Sir GRAVITATION CONCEPTS. Kepler's law of planetry motion
GRAVITATION CONCEPTS Kepler's law of planetry motion (a) Kepler's first law (law of orbit): Every planet revolves around the sun in an elliptical orbit with the sun is situated at one focus of the ellipse.
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationPenn State University Physics 211 ORBITAL MECHANICS 1
ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationAE554 Applied Orbital Mechanics. Hafta 1 Egemen Đmre
AE554 Applied Orbital Mechanics Hafta 1 Egemen Đmre A bit of history the beginning Astronomy: Science of heavens. (Ancient Greeks). Astronomy existed several thousand years BC Perfect universe (like circles
More informationastronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.
1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,
More informationThe Gravitational Field
The Gravitational Field The use of multimedia in teaching physics Texts to multimedia presentation Jan Hrnčíř jan.hrncir@gfxs.cz Martin Klejch martin.klejch@gfxs.cz F. X. Šalda Grammar School, Liberec
More informationLab 6: Kepler's Laws. Introduction. Section 1: First Law
Lab 6: Kepler's Laws Purpose: to learn that orbit shapes are ellipses, gravity and orbital velocity are related, and force of gravity and orbital period are related. Materials: 2 thumbtacks, 1 pencil,
More informationGravity. in the Solar System. Beyond the Book. FOCUS Book
FOCUS Book Design a test to find out whether Earth s gravity always pulls straight down. A pendulum is a weight that hangs from a string or rod that can swing back and forth. Use string and metal washers
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More information1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
More informationThe University of Texas at Austin. Gravity and Orbits
UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 6075 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the
More informationAstronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:
Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiplechoice questions based on the material covered by the lectures this past week. Choose
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationBackground Information
Background Information The Second Law of Motion and The Law of Gravitation Student Activities 1. Round and Round They Go! 2. onic Sections  Movement in Newton s Gravitational orce Notes to Teachers Teacher
More informationRETURN TO THE MOON. Lesson Plan
RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 912 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 24 students Preparation time: 1 hour
More informationChapter 25.1: Models of our Solar System
Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets
More informationWhat Do You Think? For You To Do GOALS
Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship
More informationIntroduction to the Solar System
Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction
More informationSolar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?
Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earthcentered
More informationPlanetary Orbit Simulator Student Guide
Name: Planetary Orbit Simulator Student Guide Background Material Answer the following questions after reviewing the Kepler's Laws and Planetary Motion and Newton and Planetary Motion background pages.
More informationSolar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System
Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!
More informationName: Date: Period: Gravity Study Guide
Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More informationSTAAR Science Tutorial 25 TEK 8.6C: Newton s Laws
Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of actionreaction
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationThe Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC
The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 lightminutes Size of Solar System = 5.5 lighthours What is
More informationVersion A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.
Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by
More informationAnswer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This printout should have 4 questions. Multiplechoice questions ay continue on the next colun or page find all choices before aking your selection.
More informationNewton s Law of Universal Gravitation
12.1 Newton s Law of Universal Gravitation SECTION Explain Kepler s laws. Describe Newton s law of universal gravitation. Apply Newton s law of universal gravitation quantitatively. KEY TERMS OUTCOMES
More informationGRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter
IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when
More informationChapter 3 The Science of Astronomy
Chapter 3 The Science of Astronomy Days of the week were named for Sun, Moon, and visible planets. What did ancient civilizations achieve in astronomy? Daily timekeeping Tracking the seasons and calendar
More informationQ3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.
Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force
More informationThe orbit of Halley s Comet
The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What
More informationSection 1 Gravity: A Force of Attraction
Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationNewton s derivation of Kepler s laws (outline)
Newton s derivation of Kepler s laws (outline) 1. Brief history. The first known proposal for a heliocentric solar system is due to Aristarchus of Samos (ancient Greece, c. 270 BC). Following a long period
More informationOrbital Dynamics with Maple (sll  v1.0, February 2012)
Orbital Dynamics with Maple (sll  v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published
More informationAngular Velocity vs. Linear Velocity
MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can
More informationSection 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
More informationSOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The OddRoot Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
More informationVocabulary  Understanding Revolution in. our Solar System
Vocabulary  Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar
More informationAn Introduction to Astronomy and Cosmology. 1) Astronomy  an Observational Science
An Introduction to Astronomy and Cosmology 1) Astronomy  an Observational Science Why study Astronomy 1 A fascinating subject in its own right. The origin and Evolution of the universe The Big Bang formation
More informationThe Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:
Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section
More informationThe speed of the ball relative to O, which we call u, is found. u u' O'
Einstein s Theory of relativity The theory of relativity has two parts. The Special Theory of Relativity relates the measurements of the same events made by two different observers moving relative to each
More informationStudy Guide: Solar System
Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.
More informationLaws of Motion and Conservation Laws
Laws of Motion and Conservation Laws The first astrophysics we ll consider will be gravity, which we ll address in the next class. First, though, we need to set the stage by talking about some of the basic
More informationChapter 13 Other Planetary Systems: The New Science of Distant Worlds
Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect
More informationLecture 17 Newton on Gravity
Lecture 17 Newton on Gravity Patrick Maher Philosophy 270 Spring 2010 Introduction Outline of Newton s Principia Definitions Axioms, or the Laws of Motion Book 1: The Motion of Bodies Book 2: The Motion
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationQUESTIONS : CHAPTER5: LAWS OF MOTION
QUESTIONS : CHAPTER5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean
More informationAstronomy 114 Summary of Important Concepts #1 1
Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semimajor axis of the ellipse) is simply related to sidereal period of the
More informationNewton s Law of Gravitation
Newton s Law of Gravitation Duration: 12 class periods Essential Questions: How do the acceleration and force due to gravity depend on the radius and mass of a planet? How does the mass of a falling body
More informationKepler s Laws of Planetary Motion
Kepler s Laws of Planetary Motion Charles Byrne (Charles Byrne@uml.edu) Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA 01854, USA (The most recent version is available
More informationThe TwoBody Problem
The TwoBody Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
More informationforce (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.
4 Forces 41 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional
More informationEarth in the Solar System
Copyright 2011 Study Island  All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationGRADE 8 SCIENCE INSTRUCTIONAL TASKS. Gravity
GRADE 8 SCIENCE INSTRUCTIONAL TASKS Gravity GradeLevel Expectations The exercises in these instructional tasks address content related to the following science gradelevel expectation(s): ESSMC3 Relate
More informationSatellites and Space Stations
Satellites and Space Stations A satellite is an object or a body that revolves around another object, which is usually much larger in mass. Natural satellites include the planets, which revolve around
More informationOrbital Mechanics and Space Geometry
Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Coordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit
More informationLesson 29: Newton's Law of Universal Gravitation
Lesson 29: Newton's Law of Universal Gravitation Let's say we start with the classic apple on the head version of Newton's work. Newton started with the idea that since the Earth is pulling on the apple,
More informationMath 1302, Week 3 Polar coordinates and orbital motion
Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationG U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
More informationwhere G is the universal gravitational constant (approximately 6.67 10 11 Nm 2 /kg 2 ) and M is the sun s mass (approximately 2 10 24 kg).
Kepler s Third Law ID: 8515 By Michele Impedovo Time required 2 hours Activity Overview Johannes Kepler (15711630) is remembered for laying firm mathematical foundations for modern astronomy through his
More informationIntroduction to Netlogo: A Newton s Law of Gravity Simulation
Introduction to Netlogo: A Newton s Law of Gravity Simulation Purpose Netlogo is an agentbased programming language that provides an allinclusive platform for writing code, having graphics, and leaving
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More information