Outline. Jet Streams I (without the math) Definitions. Polar Jet Stream. Polar Jet Stream

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Outline. Jet Streams I (without the math) Definitions. Polar Jet Stream. Polar Jet Stream"

Transcription

1 Jet Streams I (without the math) Outline A few definitions, types, etc Thermal wind and the polar jet Ageostrophic circulations, entrance and exit regions Coupled Jets Definitions Jet Stream An intense, narrow horizontal current of air associated with strong vertical wind shear Mesoscale in the cross-flow direction, synoptic scale in the along-flow direction Jet Streak An isotach maximum embedded within a jet stream Polar Jet Stream Polar Jet Stream Found about mb at the transition between tropical (or mid-latitude) and polar air Occurs in the vicinity of the surface polar front Location of jet there explained by the thermal wind relation High short term variability, thus does not show up well on zonal averages (mean wind maps) But the day to day position in highly variable! 1

2 Subtropical Jet Located near 200 mb, primarily in winter ear latitudes of Usually weaker than polar jet Sometimes indistinguishable (merged) Influenced/caused by temp gradients along with upper divergence and conservation of angular momentum from deep tropical convection eakens and or disappears in the summer ith GARP satellite imagery to help visualize. Review: Thermal ind Review: Thermal ind The (vector) difference between the wind at two levels (pressure levels). sider, first, the simple case of no wind near the surface (the 1000 mb surface is horizontal) and a temperature pattern with a uniform north-to-south gradient up to the 500 mb level. z V 2 V 1 =0 V T VT =V 2 -V 1 V 2 : geostrophic wind at upper level V 1 : geostrophic wind at lower level Since V 1 =0, V T =V mb west wind X Δn 500 mb Δz z cold warm no wind 1000 mb 1000 mb S Cold air V T arm air S The difference in wind between the two levels (the thermal wind) relates to the temperature pattern (low temperature on the left) the same way that the geostrophic wind relates to the pressure pattern (low pressure on the left). Thermal ind Jet Stream Basics From the thermal wind balance point of view: cold V 1-10 o C -5 o C V 2 0 o C V T =V 2 -V 1 V T 5 o C warm Veering or backing here z Cold air arm air quator S- temperature gradient results from the imbalance between the long-wave and short-wave radiation at different latitudes. esterly wind must increase with height in order to maintain the thermal wind balance. Maximum wind occurs below the level where temperature gradient changes the sign (tropopause). Low level temperature gradients tend to concentrate along the polar front and this gives rise to the polar jet. 2

3 *xample for a Straight Jet Important component of mid-latitude weather Responsible for much synoptic scale weather phenomena Let s look at the Four Quadrant Model P 1 < P 2 < P 3 P 1 P 2 P 3 As air parcels enter the stronger pressure gradient, they accelerate. However, they decelerate as they leave the jet maxima. *xample for a Straight Jet *xample for a Straight Jet P 1 V ag Sub-geostrophic (2) (1) (2) (3) (4) (5) sider the force balances: Locations 1, 3, and 5 are in geostrophic balance, 2 and 4 are not. P 2 P 3 To account for the increased PGF (the coriolis force is not in balance), an ageostrophic wind will yield a northward displacement of the parcels. V ag (4) To account for the decreased PGF (the coriolis force is not in balance), an ageostrophic wind will yield a southward displacement of the parcels. Super-geostrophic sider only the Ageostrophic Motions So, for a straight jet P 1 (A) (B) P 2 ntrance Region left rear entrance vergence xit Region Left front exit ergence (C) (D) Ageostrophic vergence at A and D, and Ageostrophic ergence at C and B. P 3 ergence right rear entrance These are the four quadrants vergence right front exit 3

4 Let s look at a Cross Section through the xit Region J Let s look at a Cross Section through the ntrance Region J Cold arm Cold arm Thermally Indirect Circulation: - Strengthens the lower-level thermal gradient. Thermally Direct Circulation: - eakens the lower-level thermal gradient. and Vorticity Generation of cyclonic shear vorticity on the cold side of the jet. ( cyclonic shear side of jet) Jet Streak Circulations and Troughs The principles of jet streaks still hold true, even though the flow is cyclonically curved. ind velocities decrease away from the jet streak. Generation of anticyclonic shear vorticity on the warm side of the jet.( anticyclonic shear side of jet) However, typically downstream of the trough axis, the advection of cyclonic vorticity (increasing w/height) yields increased ergence aloft and rising motion. Similarly, upstream of the trough axis, the advection of anticyclonic vorticity (increasing w/height) yields increased vergence aloft and subsidence motion. 4

5 Jet Streak Circulations and Troughs Jet Streak Circulations and Ridges CO DIV Thus, ergence aloft occurs in the left exit region of the jet and vergence occurs in the left entrance region of the jet. Due to the conflicting physical processes opposing the divergence and convergence patterns aloft, it is difficult to determine rising or sinking motion on the warm side of the jet without explicitly computing the values. Again, the principles of jet streaks still hold true, even though the flow is anticyclonically curved. However, typically downstream of the ridge axis, the advection of anticyclonic vorticity (increasing w/height) yields increased vergence aloft and subsidence. Similarly, upstream of the ridge axis, the advection of cyclonic vorticity (increasing w/height) yields increased ergence aloft and rising motion. Jet Streak Circulations and Ridges Thus, vergence aloft occurs in the right exit region of the jet and ergence occurs in the right entrance region of the jet. DIV CO Due to the conflicting physical processes opposing the divergence and convergence patterns aloft, it is difficult to determine rising or sinking motion on the cold side of the jet without explicitly computing the values. Overlapping regions of ergence aloft! ntrance Region vergence xit Region ergence ergence J 2 vergence vergence ergence J 1 ergence vergence ntrance Region xit Region Due to the nature of low-level advection, coupled jet streaks can occur and have a significant impact on the development of synoptic systems. 5

6 Let s look at a Cross Section through the coupled jets ergence xample.. J 2 J 1 Known as the Q II Storm ntrance Region vergence xit Region *Isotachs are in m/s here on this slide do you see jet streak coupling 6

ATMS 310 Jet Streams

ATMS 310 Jet Streams ATMS 310 Jet Streams Jet Streams A jet stream is an intense (30+ m/s in upper troposphere, 15+ m/s lower troposphere), narrow (width at least ½ order magnitude less than the length) horizontal current

More information

Lecture 6 Winds: Atmosphere and Ocean Circulation

Lecture 6 Winds: Atmosphere and Ocean Circulation Lecture 6 Winds: Atmosphere and Ocean Circulation The global atmospheric circulation and its seasonal variability is driven by the uneven solar heating of the Earth s atmosphere and surface. Solar radiation

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Mesoscale Meteorology

Mesoscale Meteorology Mesoscale Meteorology METR 4433 Spring 2015 3.5 Nocturnal Low-Level Jet The broadest definition of a low-level jet (LLJ) is simply any lower-tropospheric maximum in the vertical profile of the horizontal

More information

Lecture 4: Pressure and Wind

Lecture 4: Pressure and Wind Lecture 4: Pressure and Wind Pressure, Measurement, Distribution Forces Affect Wind Geostrophic Balance Winds in Upper Atmosphere Near-Surface Winds Hydrostatic Balance (why the sky isn t falling!) Thermal

More information

Global winds: Earth s General Circulation. Please read Ahrens Chapter 11, up to page 299

Global winds: Earth s General Circulation. Please read Ahrens Chapter 11, up to page 299 Global winds: Earth s General Circulation Please read Ahrens Chapter 11, up to page 299 The circulations of the atmosphere and oceans are ultimately driven by. solar heating. Recall: Incoming radiation

More information

Weather Systems, Hurricanes, Nili Harnik DEES, Lamont-Doherty Earth Observatory

Weather Systems, Hurricanes, Nili Harnik DEES, Lamont-Doherty Earth Observatory Weather Systems, Hurricanes, etc Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Coriolis Force Coriolis force The Coriolis Force On Earth Cloud types, as a function of height

More information

Geog 531 Exercise #2 UNDERSTANDING SYNOPTIC CHARTS

Geog 531 Exercise #2 UNDERSTANDING SYNOPTIC CHARTS Geog 531 Exercise #2 UNDERSTANDING SYNOPTIC CHARTS (Please answer right on this handout where sketches are requested in Question # 1, # 4, and # 6b. For the other questions, type out your answers and staple

More information

Example of Inversion Layer

Example of Inversion Layer The Vertical Structure of the Atmosphere stratified by temperature (and density) Space Shuttle sunset Note: Scattering of visible light (density + wavelength) Troposphere = progressive cooling, 75% mass,

More information

Pressure, Forces and Motion

Pressure, Forces and Motion Pressure, Forces and Motion Readings A&B: Ch. 4 (p. 93-114) CD Tutorials: Pressure Gradients, Coriolis, Forces & Winds Topics 1. Review: What is Pressure? 2. Horizontal Pressure Gradients 3. Depicting

More information

Chapter 4 Atmospheric Pressure and Wind

Chapter 4 Atmospheric Pressure and Wind Chapter 4 Atmospheric Pressure and Wind Understanding Weather and Climate Aguado and Burt Pressure Pressure amount of force exerted per unit of surface area. Pressure always decreases vertically with height

More information

Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity. ESS227 Prof. Jin-Yi Yu

Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity. ESS227 Prof. Jin-Yi Yu Lecture 4: Circulation and Vorticity Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Measurement of Rotation Circulation and vorticity are the

More information

ATM 316: Dynamic Meteorology I Final Review, December 2014

ATM 316: Dynamic Meteorology I Final Review, December 2014 ATM 316: Dynamic Meteorology I Final Review, December 2014 Scalars and Vectors Scalar: magnitude, without reference to coordinate system Vector: magnitude + direction, with reference to coordinate system

More information

Dynamics IV: Geostrophy SIO 210 Fall, 2014

Dynamics IV: Geostrophy SIO 210 Fall, 2014 Dynamics IV: Geostrophy SIO 210 Fall, 2014 Geostrophic balance Thermal wind Dynamic height READING: DPO: Chapter (S)7.6.1 to (S)7.6.3 Stewart chapter 10.3, 10.5, 10.6 (other sections are useful for those

More information

MET 200 Lecture 19 Midlatitude Cyclones. Hallow s Eve Mask. Midlatitude Cyclones or Winter Storms

MET 200 Lecture 19 Midlatitude Cyclones. Hallow s Eve Mask. Midlatitude Cyclones or Winter Storms MET 200 Lecture 19 Midlatitude Cyclones Hallow s Eve Mask 1 2 Lecture 19 Midlatitude Cyclones Midlatitude Cyclones or Winter Storms Cyclogenesis Energy Source Life Cycle Air Streams Vertical Structure

More information

ESS55: EARTH S ATMOSPHERE / Homework #4 / (due 5/1/2014)

ESS55: EARTH S ATMOSPHERE / Homework #4 / (due 5/1/2014) ESS55: EARTH S ATMOSPHERE / Homework #4 / (due 5/1/2014) Name Student ID: version: (1) (21) (41) (2) (22) (42) (3) (23) (43) (4) (24) (44) (5) (25) (45) (6) (26) (46) (7) (27) (47) (8) (28) (48) (9) (29)

More information

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011 Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many

More information

Gary M. Lackmann Department of Marine, Earth, and Atmospheric Sciences North Carolina State University

Gary M. Lackmann Department of Marine, Earth, and Atmospheric Sciences North Carolina State University TROPICAL SYNOPTIC METEOROLOGY Gary M. Lackmann Department of Marine, Earth, and Atmospheric Sciences North Carolina State University Keywords: Hadley cell, trade winds, easterly waves, intertropical convergence

More information

WIND. Chapter 4 CONVECTION

WIND. Chapter 4 CONVECTION Chapter 4 WIND Differences in temperature create differences in pressure. These pressure differences drive a complex system of winds in a never ending attempt to reach equilibrium. Wind also transports

More information

Synoptic Meteorology I: Thermal Wind Balance. 9, 14 October 2014

Synoptic Meteorology I: Thermal Wind Balance. 9, 14 October 2014 Deriving the Thermal Wind Relationship Synoptic Meteorology I: Thermal Wind Balance 9, 14 October 214 Recall from our most recent lecture that the geostrophic relationship applicable on isobaric surfaces

More information

Hurricane Naming, Track, Structure Tropical Cyclone Development

Hurricane Naming, Track, Structure Tropical Cyclone Development Chapter 24: Tropical Cyclones Hurricane Naming, Track, Structure Tropical Cyclone Development Hurricane Characteristics Definition: Hurricanes have sustained winds of 120 km/hr (74 mph) or greater. Size:

More information

Atmospheric Analysis Models

Atmospheric Analysis Models Chapter 6 Atmospheric Analysis Models There is an abundance of weather data available to meteorologists. These include surface and upper air observations as well as a tremendous amount of computer forecast

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere LESSON 2: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts as a response to the

More information

One Atmospheric Pressure. Measurement of Atmos. Pressure. Units of Atmospheric Pressure. Chapter 4: Pressure and Wind

One Atmospheric Pressure. Measurement of Atmos. Pressure. Units of Atmospheric Pressure. Chapter 4: Pressure and Wind Chapter 4: Pressure and Wind Pressure, Measurement, Distribution Hydrostatic Balance Pressure Gradient and Coriolis Force Geostrophic Balance Upper and Near-Surface Winds One Atmospheric Pressure (from

More information

Acceleration. For an aircraft to experience a 1 g acceleration a wind velocity change of 9.8 m/s (18 kts) would be required.

Acceleration. For an aircraft to experience a 1 g acceleration a wind velocity change of 9.8 m/s (18 kts) would be required. Turbulence is irregular motion of the atmosphere The principal sources of turbulence are thermal, orographic and dynamical, acting separately or in combination. Turbulence of significance to the operation

More information

Chapter 3 Weather Maps

Chapter 3 Weather Maps Chapter 3 Weather Maps Surface Station Model Used to plot surface weather observations on weather maps It shows: Temperature (deg F) Dewpoint Temperature (deg F) Coded Sea Level Pressure Wind speed and

More information

ESCI 344 Tropical Meteorology Lesson 1 Introduction to the Tropics

ESCI 344 Tropical Meteorology Lesson 1 Introduction to the Tropics ESCI 344 Tropical Meteorology Lesson 1 Introduction to the Tropics References: Forecaster s Guide to Tropical Meteorology (updated), Ramage Tropical Climatology (2 nd ed), McGregor and Nieuwolt Tropical

More information

Mid latitude Cyclonic Storm System. 08 _15 ab. jpg

Mid latitude Cyclonic Storm System. 08 _15 ab. jpg Mid latitude Cyclonic Storm System 08 _15 ab. jpg Mid Latitude Cyclone Storm System (MLCSS) It has several names. Cyclone, Cyclonic Storm, Cyclonic System, Depression. Cyclonic Storms are the weather maker

More information

Chapter 8 Circulation of the Atmosphere

Chapter 8 Circulation of the Atmosphere Chapter 8 Circulation of the Atmosphere The Atmosphere Is Composed Mainly of Nitrogen, Oxygen, and Water Vapor What are some properties of the atmosphere? Solar Radiation - initial source of energy to

More information

Wind Systems. Concepts. Scale. Sea breeze: air coming from the sea Northwest wind: wind blowing from the northwest

Wind Systems. Concepts. Scale. Sea breeze: air coming from the sea Northwest wind: wind blowing from the northwest G109: Weather and Climate Wind Systems Readings A&B: Ch.8 (p. 213-247) CD Tutorial: El Niño Southern Oscillation Topics 1. Concepts 1. Scale 2. Wind Direction 3. Differential Heating 2. Microscale Winds

More information

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections

Chapter 3: Weather Map. Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Chapter 3: Weather Map Station Model and Weather Maps Pressure as a Vertical Coordinate Constant Pressure Maps Cross Sections Weather Maps Many variables are needed to described dweather conditions. Local

More information

Lesson I: Which way does the wind blow? Overview:

Lesson I: Which way does the wind blow? Overview: Lesson I: Which way does the wind blow? Overview: What makes the wind blow? What makes the wind blow in certain directions? Why does the wind shift after the passage of a weather front? Many people do

More information

Convective Clouds. Convective clouds 1

Convective Clouds. Convective clouds 1 Convective clouds 1 Convective Clouds Introduction Convective clouds are formed in vertical motions that result from the instability of the atmosphere. This instability can be caused by: a. heating at

More information

Supercell Thunderstorm Structure and Evolution

Supercell Thunderstorm Structure and Evolution Supercell Thunderstorm Structure and Evolution Supercellular Convection Most uncommon, but most dangerous storm type Produces almost all instances of very large hail and violent (EF4-EF5) tornadoes Highly

More information

Meteorology: Weather and Climate

Meteorology: Weather and Climate Meteorology: Weather and Climate Large Scale Weather Systems Lecture 1 Tropical Cyclones: Location and Structure Prof. Roy Thompson Crew building Large-scale Weather Systems Tropical cyclones (1-2) Location,

More information

08 _15 ab. jpg. Mid latitude Cyclonic Storm System The Cloud Shield is Usually Comma Shaped with the Head around the

08 _15 ab. jpg. Mid latitude Cyclonic Storm System The Cloud Shield is Usually Comma Shaped with the Head around the 08 _15 ab. jpg Mid latitude Cyclonic Storm System The Cloud Shield is Usually Comma Shaped with the Head around the Low Pressure Center and the Tail Just ahead of the Cold Front Mid Latitude Cyclone Storm

More information

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE. Deck: Marine Environmental Studies

OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE. Deck: Marine Environmental Studies Page 1 of 12 Compiled by Approved by Chief Examiner Syllabus Committee: 26 February 2013 OPERATIONS SEAFARER CERTIFICATION GUIDANCE NOTE SA MARITIME QUALIFICATIONS CODE Deck: Page 2 of 12 KNOWLEDGE, UNDERSTANDING

More information

Ocean Processes I Oceanography Department University of Cape Town South Africa

Ocean Processes I Oceanography Department University of Cape Town South Africa Ocean Processes I Isabelle.Ansorge@uct.ac.za Oceanography Department University of Cape Town South Africa 1 9/17/2009 Lecturer in Oceanography at UCT About me! BSc in England University of Plymouth MSc

More information

Homework Assignment #11: The Coriolis Effect, Global Air Circulation and Clouds

Homework Assignment #11: The Coriolis Effect, Global Air Circulation and Clouds Name Homework Assignment #11: The Coriolis Effect, Global Air Circulation and Clouds 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter

More information

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis

Goal: Understand the conditions and causes of tropical cyclogenesis and cyclolysis Necessary conditions for tropical cyclone formation Leading theories of tropical cyclogenesis Sources of incipient disturbances Extratropical transition Goal: Understand the conditions and causes of tropical

More information

EARTH SCIENCE Tarbuck Lutgens

EARTH SCIENCE Tarbuck Lutgens Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 19 Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure

More information

Atmospheric and Oceanic Circulation

Atmospheric and Oceanic Circulation Atmospheric and Oceanic Circulation Atmospheric circulation transfers energy and mass over the Earth Redistributes surplus energy along the tropics to deficit areas Generates weather patterns Produces

More information

Homework 6: Ocean Currents

Homework 6: Ocean Currents 14 August 20087 MAR 110 HW6 Ocean Currents 1 Homework 6: Ocean Currents 6-1. OCEAN CURRENTS Ocean currents are water motions induced by winds, tidal forces, and/or density differences with adjacent water

More information

Overview of today s s lecture

Overview of today s s lecture Overview of today s s lecture What is a mid-latitude cyclone? What are the main components? A (brief) history of where this idea came from How do MLCs form (i.e. what are the favorable ingredients?) What

More information

GEF 1100 Klimasystemet. Chapter 8: The general circulation of the atmosphere

GEF 1100 Klimasystemet. Chapter 8: The general circulation of the atmosphere GEF1100 Autumn 2015 29.09.2015 GEF 1100 Klimasystemet Chapter 8: The general circulation of the atmosphere Prof. Dr. Kirstin Krüger (MetOs, UiO) 1 Lecture Outline Ch. 8 Ch. 8 The general circulation of

More information

MODULE 6.3H. MESOSCALE PROCESSES I Tropical Storms and Hurricanes

MODULE 6.3H. MESOSCALE PROCESSES I Tropical Storms and Hurricanes MODULE 6.3H MESOSCALE PROCESSES I Tropical Storms and Hurricanes Table of Contents Table of Contents...1 Introduction...2 Stages of Hurricane Development...2 1. Tropical depression...2 2. Tropical storm...2

More information

Lab Activity on Global Wind Patterns

Lab Activity on Global Wind Patterns Lab Activity on Global Wind Patterns 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you should

More information

Weather Notes with Poole Sailing It is a requirement of the SOLAS rules that we have a passage plan whenever we take a boat to sea, and an essential

Weather Notes with Poole Sailing It is a requirement of the SOLAS rules that we have a passage plan whenever we take a boat to sea, and an essential Weather Notes with Poole Sailing It is a requirement of the SOLAS rules that we have a passage plan whenever we take a boat to sea, and an essential part of that plan is an understanding of the weather

More information

Air masses, fronts and cyclones

Air masses, fronts and cyclones Air masses, fronts and cyclones G Aims Air masses, fronts and cyclones To explain the seasonal changes in weather patterns in the midlatitudes To outline the sequence of stages in the life cycle of a migrating

More information

-ma, we see that the acceleration of a falling object (g) is g=g*m

-ma, we see that the acceleration of a falling object (g) is g=g*m Forces of Motion And Sir Isaac Newton Sir Isaac Newton, the father of mechanics, is one of the most important scientists who ever lived, changing the standards by which scientists think. His genius in

More information

Ekman Transport Ekman Pumping

Ekman Transport Ekman Pumping Lecture 10: : Ocean Circulation Ekman Transport Ekman Pumping Wind-Driven Circulation Basic Ocean Structures Upper Ocean (~100 m) Warm up by sunlight! Shallow, warm upper layer where light is abundant

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Improved understanding of the global tropopause from GPS observations. Bill Randel Atmospheric Chemistry Division, NCAR

Improved understanding of the global tropopause from GPS observations. Bill Randel Atmospheric Chemistry Division, NCAR Improved understanding of the global tropopause from GPS observations Bill Randel Atmospheric Chemistry Division, NCAR Climate-relevant processes linked to the global tropopause two-way mixing by baroclinic

More information

Paul Wolyn * NOAA/NWS Pueblo, Colorado

Paul Wolyn * NOAA/NWS Pueblo, Colorado 17.1 THE MARCH 2003 SNOWSTORM OVER SOUTHERN COLORADO Paul Wolyn * NOAA/NWS Pueblo, Colorado 1. INTRODUCTION From 16-19 March 2003 a heavy precipitation event struck most of eastern Colorado. In the southern

More information

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10

In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. aero quarterly qtr_01 10 In a majority of ice-crystal icing engine events, convective weather occurs in a very warm, moist, tropical-like environment. 22 avoiding convective Weather linked to Ice-crystal Icing engine events understanding

More information

WV IMAGES. Christo Georgiev. NIMH, Bulgaria. Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011

WV IMAGES. Christo Georgiev. NIMH, Bulgaria. Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011 WV IMAGES Satellite Image Interpretation and Applications EUMeTrain Online Course, 10 30 June 2011 Christo Georgiev NIMH, Bulgaria INTRODICTION The radiometer SEVIRI of Meteosat Second Generation (MSG)

More information

Hurricanes. Characteristics of a Hurricane

Hurricanes. Characteristics of a Hurricane Hurricanes Readings: A&B Ch. 12 Topics 1. Characteristics 2. Location 3. Structure 4. Development a. Tropical Disturbance b. Tropical Depression c. Tropical Storm d. Hurricane e. Influences f. Path g.

More information

SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014

SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014 SUBTROPICAL ANTICYCLONES & ASSOCIATED WEATHER CONDITIONS 20 FEBRUARY 2014 In this lesson we: Lesson Description Discuss the THREE high pressure cells that affect South Africa: Location, identification,

More information

Weather: is the short term, day-to-day condition of the atmosphere

Weather: is the short term, day-to-day condition of the atmosphere Weather Weather: is the short term, day-to-day condition of the atmosphere Meteorology the scientific study of the atmosphere They focus on physical characteristics and motion and how it relates to chemical,

More information

Air Pressure and Winds-I. GEOL 1350: Introduction To Meteorology

Air Pressure and Winds-I. GEOL 1350: Introduction To Meteorology Air Pressure and Winds-I GEOL 1350: Introduction To Meteorology 1 2 Pressure gradient force is in balance with gravity Hydrostatic relations Means no vertical motion initially 3 How does atmospheric pressure

More information

Chapter 8 Global Weather Systems

Chapter 8 Global Weather Systems Chapter 8 Global Weather Systems Global Weather Systems Low-latitudes Hadley Cell Circulation Wet near the equator Dry near 20-30 N and 20-30 S Periods of wet and dry in between Easterly Winds (NE & SE

More information

List the Oceans that hurricanes can form in. (There should be 4) Describe the shape of the winds and the direction that they spin.

List the Oceans that hurricanes can form in. (There should be 4) Describe the shape of the winds and the direction that they spin. Heat Transfer Tab: (Use the textbook or the ScienceSaurus book) Box 1: Radiation: (on the colored tab) Draw a picture (on the white tab directly below it) Box 2: Convection: (on the colored tab) Draw a

More information

Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France

Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France Page 18 Heavy Precipitation and Thunderstorms: an Example of a Successful Forecast for the South-East of France François Saïx, Bernard Roulet, Meteo France Abstract In spite of huge improvements in numerical

More information

Meteorology Pre Test for Final Exam

Meteorology Pre Test for Final Exam MULTIPLE CHOICE Meteorology Pre Test for Final Exam 1. The most common way for air to be cooled in order that a cloud may form is by a) emitting radiation b) rising and expanding c) sinking and contracting

More information

3 Vorticity, Circulation and Potential Vorticity.

3 Vorticity, Circulation and Potential Vorticity. 3 Vorticity, Circulation and Potential Vorticity. 3.1 Definitions Vorticity is a measure of the local spin of a fluid element given by ω = v (1) So, if the flow is two dimensional the vorticity will be

More information

Chapter 9: Air Masses and Fronts. Air Masses. Source Regions. Air masses Contain uniform temperature and humidity characteristics.

Chapter 9: Air Masses and Fronts. Air Masses. Source Regions. Air masses Contain uniform temperature and humidity characteristics. Chapter 9: Air Masses and Fronts Air masses Contain uniform temperature and humidity characteristics. What Characterize Air Masses? What Define Fronts? Fronts Boundaries between unlike air masses. Air

More information

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago?

Stability and Cloud Development. Stability in the atmosphere AT350. Why did this cloud form, whereas the sky was clear 4 hours ago? Stability and Cloud Development AT350 Why did this cloud form, whereas the sky was clear 4 hours ago? Stability in the atmosphere An Initial Perturbation Stable Unstable Neutral If an air parcel is displaced

More information

Ocean Circulation and Climate. The Thermohaline Circulation

Ocean Circulation and Climate. The Thermohaline Circulation Ocean Circulation and Climate In addition to the atmospheric circulation heat is also transported to the poles by the ocean circulation. The ocean circulation is therefore an important part of the climate

More information

Chapter 15: Hurricanes

Chapter 15: Hurricanes Chapter 15: Hurricanes Tropical weather & easterly waves Structure of a hurricane Hurricane formation theories Organized convection Heat engine driven by warm ocean Stages of development Hurricane formation

More information

Ocean Circulation: review

Ocean Circulation: review Joe LaCasce Section for Meteorology and Oceanography December 2, 2014 Outline Physical characteristics Observed circulation Geostrophic, hydrostatic and thermal wind balances Wind-driven circulation Buoyancy-driven

More information

Atmospheric Anomalies in 1997: Links to ENSO?

Atmospheric Anomalies in 1997: Links to ENSO? Atmospheric Anomalies in 1997: Links to ENSO? James E. Overland, 1 Nicholas A. Bond 2 and Jennifer Miletta Adams 2 1 NOAA, Pacific Marine Environmental Laboratory Seattle, WA 98115-0070, U.S.A. e-mail:

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Module 2 Elements of Basic Meteorology and Oceanography

Module 2 Elements of Basic Meteorology and Oceanography Module 2 Elements of Basic Meteorology and Oceanography 2.1 Understanding weather The atmospheric general circulation and its variance produced by the embedded movements of moisture laden air masses, constant

More information

Storm Type. Mteor 417 Iowa State University Week 8 Bill Gallus

Storm Type. Mteor 417 Iowa State University Week 8 Bill Gallus Storm Type Mteor 417 Iowa State University Week 8 Bill Gallus Three Major Types of Storms Single Cell Multicell Supercell Single Cell (Ordinary Cell) A) Forecasting Hints 1. Generally occur with instability

More information

The Mean Vertical Structure of the Jet Stream

The Mean Vertical Structure of the Jet Stream The Mean Vertical Structure of the Jet Stream By R. M. ENDLICH, S. B. SOLOT and H. A. THUR, Air Force Cambridge Research Center (Manuscript received October 23, 1954) Abstract Mean vertical wind profiles

More information

Chapter 6: Cloud Development and Forms

Chapter 6: Cloud Development and Forms Chapter 6: Cloud Development and Forms (from The Blue Planet ) Why Clouds Form Static Stability Cloud Types Why Clouds Form? Clouds form when air rises and becomes saturated in response to adiabatic cooling.

More information

Conservation of Mass The Continuity Equation

Conservation of Mass The Continuity Equation Conservation of Mass The Continuity Equation The equations of motion describe the conservation of momentum in the atmosphere. We now turn our attention to another conservation principle, the conservation

More information

WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA

WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA Romanian Reports in Physics, Vol. 65, No. 4, P. 1454 1468, 2013 ATMOSPHERE PHYSICS WEATHER RADAR VELOCITY FIELD CONFIGURATIONS ASSOCIATED WITH SEVERE WEATHER SITUATIONS THAT OCCUR IN SOUTH-EASTERN ROMANIA

More information

How to analyze synoptic-scale weather patterns Table of Contents

How to analyze synoptic-scale weather patterns Table of Contents How to analyze synoptic-scale weather patterns Table of Contents Before You Begin... 2 1. Identify H and L pressure systems... 3 2. Locate fronts and determine frontal activity... 5 3. Determine surface

More information

Goal: Describe the Walker circulation and formulate the weak temperature gradient (WTG) approximation

Goal: Describe the Walker circulation and formulate the weak temperature gradient (WTG) approximation Description of the Walker circulation Weak temperature gradient (WTG) approximation Goal: Describe the Walker circulation and formulate the weak temperature gradient (WTG) approximation Overview of the

More information

Atmospheric Stability & Cloud Development

Atmospheric Stability & Cloud Development Atmospheric Stability & Cloud Development Stable situations a small change is resisted and the system returns to its previous state Neutral situations a small change is neither resisted nor enlarged Unstable

More information

Unit 2: Synoptic Scale (Regional) Weather & Climate

Unit 2: Synoptic Scale (Regional) Weather & Climate Unit 2: Synoptic Scale (Regional) Weather & Climate Synoptic scale: Length: ~1000km (~600miles) to ~6000km (~3500miles) ~Length of Alabama to the length of the U.S. Time: Hours to Days (up to 1 week) So

More information

Chapter 7 Stability and Cloud Development. Atmospheric Stability

Chapter 7 Stability and Cloud Development. Atmospheric Stability Chapter 7 Stability and Cloud Development Atmospheric Stability 1 Cloud Development - stable environment Stable air (parcel) - vertical motion is inhibited if clouds form, they will be shallow, layered

More information

Meteorology Study Guide

Meteorology Study Guide Name: Class: Date: Meteorology Study Guide Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement

More information

DO NOT WRITE ON THIS PAPER WEATHER NOTES WARM/COLD FRONTS

DO NOT WRITE ON THIS PAPER WEATHER NOTES WARM/COLD FRONTS WEATHER NOTES WARM/COLD FRONTS What is a Front? Definition: A narrow transition zone, or boundary, between disparate synoptic scale air masses whose primary discontinuity is density. It is synoptic scale

More information

On the proper use of the satellite imagery for the manual synoptic analysis and diagnosis - still a topic of debate

On the proper use of the satellite imagery for the manual synoptic analysis and diagnosis - still a topic of debate On the proper use of the satellite imagery for the manual synoptic analysis and diagnosis - still a topic of debate Manfred Kurz ABSTRACT Although satellite images were extensively used for the manual

More information

SIGNIFICANT WEATHER PROGNOSTIC CHARTS

SIGNIFICANT WEATHER PROGNOSTIC CHARTS SIGNIFICANT WEATHER PROGNOSTIC CHARTS Significant weather prognostic charts (progs) (Figure 11-1) portray forecasts of selected weather conditions at specified valid times. Each valid time is the time

More information

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston

Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Turbulence and Icing Nomek Helsinki Mar-Apr 2006 Sheldon Johnston Contributing Organizations Nowcasting and Forecasting Significant weather charts Created using a number of sources to anticipate when and

More information

Weather. Weather is the set of environmental conditions encountered from day to day in a particular location.

Weather. Weather is the set of environmental conditions encountered from day to day in a particular location. WEATHER 1 Weather Weather is the set of environmental conditions encountered from day to day in a particular location. Climate is the set of environmental conditions averaged over many years for a geographic

More information

Name Class Date. What I Know What I Would Like to Learn What I Have Learned a. b. c. d. e. f.

Name Class Date. What I Know What I Would Like to Learn What I Have Learned a. b. c. d. e. f. Chapter 18 Moisture, Clouds, and Precipitation Section 18.1 Water in the Atmosphere This section describes how water changes from one state to another. It also explains humidity and relative humidity.

More information

Great Lakes snow belts Large-scale weather pattern. How precipitation organizes within the storms

Great Lakes snow belts Large-scale weather pattern. How precipitation organizes within the storms Chapter 13: Lake-Effect Snowstorms Great Lakes snow belts Large-scale weather pattern How lake-effecteffect snowstorms develop How precipitation organizes within the storms The Great Lakes Snow Belts 80km

More information

Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery

Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery INT. J. REMOTE SENSING, 2004, preview article Categorization of cold period weather types in Greece on the basis of the photointerpretation of NOAA/AVHRR imagery C. CARTALIS University of Athens, Department

More information

Characteristics of Northeast Winter Snow Storms

Characteristics of Northeast Winter Snow Storms Satellites, Weather, and Climate Module 19: Characteristics of Northeast Winter Snow Storms Dr. Jay Shafer Dec 8, 2011 Lyndon State College Jason.Shafer@lyndonstate.edu Outline Large scale structure of

More information

J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina

J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK. Matthew Parker* North Carolina State University, Raleigh, North Carolina J4.1 CENTRAL NORTH CAROLINA TORNADOES FROM THE 16 APRIL 2011 OUTBREAK Matthew Parker* North Carolina State University, Raleigh, North Carolina Jonathan Blaes NOAA/National Weather Service, Raleigh, North

More information

Thought Questions on the Geostrophic Wind and Real Winds Aloft at Midlatitudes

Thought Questions on the Geostrophic Wind and Real Winds Aloft at Midlatitudes Thought Questions on the Geostrophic Wind and Real Winds Aloft at Midlatitudes (1) The geostrophic wind is an idealized, imaginary wind that we define at each point in the atmosphere as the wind that blows

More information

Wind and Weather Notes. 8 th Grade Science Mrs. Melka

Wind and Weather Notes. 8 th Grade Science Mrs. Melka Wind and Weather Notes 8 th Grade Science Mrs. Melka 2015-16 Why is Wind Important? Part 1 Because wind systems determine major weather patterns on Earth. Wind also helps determine where planes and ships

More information

Air mass & Frontal depression

Air mass & Frontal depression Air mass & Frontal depression An air mass is a large body of air, with a reasonably uniform temperature, humidity and pressure. It can have a horizontal extension of thousands square miles and adopts the

More information

In Figure 3-1, it extends from the Yellow Sea to northern Tohoku district (marked by wedges).

In Figure 3-1, it extends from the Yellow Sea to northern Tohoku district (marked by wedges). Chapter 3 Cloud patterns Cloud patterns are represented visually and are closely related to the air flow, temperature and water vapor distributions and vertical stability. Therefore, it is important for

More information

ESCI 344 Tropical Meteorology Lesson 5 Tropical Cyclones: Climatology

ESCI 344 Tropical Meteorology Lesson 5 Tropical Cyclones: Climatology ESCI 344 Tropical Meteorology Lesson 5 Tropical Cyclones: Climatology References: A Global View of Tropical Cyclones, Elsberry (ed.) The Hurricane, Pielke Tropical Cyclones: Their evolution, structure,

More information