Theory and measurement

Size: px
Start display at page:

Download "Theory and measurement"

Transcription

1 Gavity: Theoy and measuement Reading: Today: p11 - Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational acceleation at the suface of the eath: GM g = R E E Is the Eath s gavitational acceleation a constant?

2 Vaiations in g Lage scale vaiations: global o egions Smalle scale vaiations: local This is what we want to make use of The geoid Mean sea level is an equipotential suface it is the geoid

3 Gavity and potentials g is a vecto field: g GM E = whee 1 is the unit vecto pointing 1 towad the cente of the Eath RE Gavitational potential: Gm U = U is a scala field which makes it easie to wok with Definition: The gavitational potential, U, due to a point mass m, at a distance fom m, is the wok done by the gavitational foce in moving a unit mass fom infinity to to a position fom m. Relating g to U U is a scala field which makes it easie to wok with: Potentials ae additive Gavity is a consevative foce And gavitational acceleation can be easily detemined fom the potential Given: It follows that: Gm U = U g = = Gm Fo smalle scale poblems we usually deal with g, and sum the vetical component of g

4 Gavity anomalies Sum contibutions in the vetical diection g z dm ρdv = G cosφ = G M V cosφ O, in Catesian coodinates: g z ρzdxdydz = G 3 whee = ( x α ) + ( y β ) + z This is ideal fo implementation in a compute code. Units fo g SI unit fo g: m/s though you will aely see this! 1 cm/s = 1 Gal (fo Galileo) = 0.01 m/s milligal o mgal = 10-3 Gal typical unit fo field studies Ou text book uses the gavity unit (g.u.) 1 g.u. = 0.1 mgal Nomal value of g at the suface of the Eath: g E = 9.8 m/s = 980 cm/s = 980 Gal = 980,000 mgal = 9800 g.u.

5 Rock density Mass = Density x Volume Lateal vaiations in ock density esult in gavity anomalies that can be measued at the suface Factos influencing ock density Unconsolidated sediments composition, poosity, satuation Sedimentay ocks composition, age and depth of buial (compaction), cementation, poosity, poe fluid Igneous ocks composition (esp. silica content), cystal size, factuing (i.e. poosity) Metamophic ocks composition (esp. silica content), metamophic gade, factuing (i.e. poosity) Poosity and poe fluid content ae pobably the most impotant factos affecting density in the shallow sub-suface

6 Table of ock densities Sedimentay ovebuden Igneous/metamophic basement Similaity in ock densities can make it difficult to distinguish Measuing g: Absolute and elative g at the Eath s suface ~ 980,000 mgal vaiations in g on the ode 1 mgal need to measue g to bette than 1 pat in 1 million use instuments sensitive to elative changes in g

7 Measuing g: Absolute gavity Measuing g: Stable gavimete change in g change in sping length Hooke s Law F = -k L and g = -k L/m if g/g = 10-6 then L/L = 10-6 This equies high optical, mechanical o electonic magnification

8 Measuing g: Unstable gavimete Applies and additional negative estoing foce to amplify changes in g Uses a zeo length sping: the estoing foce is equal to the length of the sping Suitable choice of mass, sping constant and geomety makes the system unstable and vey sensitive to changes in g LaCoste-Rombeg gavimete Gavity suveying Suvey design s Suvey design consideations Unifom gid fo easie intepetation Station spacing: s < h h is the depth of the body of inteest Avoid steep tomogaphic gadients Absolute and elative station locations ae needed how accuate? Typical station spacing Regional geologic studies: km to 10s of km Local stuctue/engineeing/envionmental: 10s to 100s m Nea suface e.g. acheology: few metes

9 Gavity suveying Dift The eading of a gavimetes at a point changes with time! Causes Instument dift: due to envionmental changes (P,T) and sping ceep Eath tides: elative otations of the eath, moon and sun Gavity suveying Coecting fo dift 1. Retun to base station peiodically. Assume dift is linea 3. Coect measuements in loop How often? Depends on equies accuacy max tidal ate: 0.05 mgal/h instument dift usually less

Gravity and the figure of the Earth

Gravity and the figure of the Earth Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 47907-1397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the

More information

Lab 5: Circular Motion

Lab 5: Circular Motion Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics 3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gap-system.og/~histoy/mathematicians/ Newton.html http://www.fg-a.com http://www.clke.com/clipat

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

GRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players:

GRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players: CHAPT 11 TH GAVITATIONAL FILD (GAVITY) GAVITATIONAL FILD: The goundwok fo Newton s geat contibution to undestanding gavity was laid by thee majos playes: Newton s Law of Gavitation o gavitational and inetial

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

Chapter 23: Gauss s Law

Chapter 23: Gauss s Law Chapte 3: Gauss s Law Homewok: Read Chapte 3 Questions, 5, 1 Poblems 1, 5, 3 Gauss s Law Gauss s Law is the fist of the fou Maxwell Equations which summaize all of electomagnetic theoy. Gauss s Law gives

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

A) 2 B) 2 C) 2 2 D) 4 E) 8

A) 2 B) 2 C) 2 2 D) 4 E) 8 Page 1 of 8 CTGavity-1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between

More information

Physics 202, Lecture 4. Gauss s Law: Review

Physics 202, Lecture 4. Gauss s Law: Review Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25-Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 1-5 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1) Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Geostrophic balance. John Marshall, Alan Plumb and Lodovica Illari. March 4, 2003

Geostrophic balance. John Marshall, Alan Plumb and Lodovica Illari. March 4, 2003 Geostophic balance John Mashall, Alan Plumb and Lodovica Illai Mach 4, 2003 Abstact We descibe the theoy of Geostophic Balance, deive key equations and discuss associated physical balances. 1 1 Geostophic

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Lesson 32: Measuring Circular Motion

Lesson 32: Measuring Circular Motion Lesson 32: Measuing Cicula Motion Velocity hee should be a way to come up with a basic fomula that elates velocity in icle to some of the basic popeties of icle. Let s ty stating off with a fomula that

More information

ESCAPE VELOCITY EXAMPLES

ESCAPE VELOCITY EXAMPLES ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs

More information

Solutions to Homework Set #5 Phys2414 Fall 2005

Solutions to Homework Set #5 Phys2414 Fall 2005 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated

More information

L19 Geomagnetic Field Part I

L19 Geomagnetic Field Part I Intoduction to Geophysics L19-1 L19 Geomagnetic Field Pat I 1. Intoduction We now stat the last majo topic o this class which is magnetic ields and measuing the magnetic popeties o mateials. As a way o

More information

2008 Quarter-Final Exam Solutions

2008 Quarter-Final Exam Solutions 2008 Quate-final Exam - Solutions 1 2008 Quate-Final Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of

More information

Review Module: Dot Product

Review Module: Dot Product MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics 801 Fall 2009 Review Module: Dot Poduct We shall intoduce a vecto opeation, called the dot poduct o scala poduct that takes any two vectos and

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a .1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q -q a +q a -q F = kq 1q F 1 = k(q)(q) a F 13

More information

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 14. NEWTON'S RINGS

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 14. NEWTON'S RINGS 4. NEWTON'S RINGS. Obective Detemining adius of cuvatue of a long focal length plano-convex lens (lage adius of cuvatue).. Equipment needed Measuing micoscope, plano-convex long focal length lens, monochomatic

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A 5 Moment of a Couple Ref: Hibbele 4.6, edfod & Fowle: Statics 4.4 couple is a pai of foces, equal in magnitude, oppositely diected, and displaced by pependicula distance, d. d (= - ) Since the foces ae

More information

PY1052 Problem Set 3 Autumn 2004 Solutions

PY1052 Problem Set 3 Autumn 2004 Solutions PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

CHAPTER 4 POSITION, VELOCITY AND ACCELERATION ANALYSES FOR PLANAR MECHANISMS USING COMPLEX NUMBER METHOD

CHAPTER 4 POSITION, VELOCITY AND ACCELERATION ANALYSES FOR PLANAR MECHANISMS USING COMPLEX NUMBER METHOD CHPTER POSITION, VELOCITY ND CCELERTION NLYSES FOR PLNR MECHNISMS USING COMPLEX NUMER METHOD Vecto nalysis: Fo the position vectos shown below, the positive angle is measued counte-clock wise (ccw) fom

More information

1.1 KINEMATIC RELATIONSHIPS

1.1 KINEMATIC RELATIONSHIPS 1.1 KINEMATIC RELATIONSHIPS Thoughout the Advanced Highe Physics couse calculus techniques will be used. These techniques ae vey poweful and knowledge of integation and diffeentiation will allow a deepe

More information

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions Name St.No. - Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100-minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell)

The Gravity Field of the Earth - Part 1 (Copyright 2002, David T. Sandwell) 1 The Gavity Field of the Eath - Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy - the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Chapter 4. Electric Potential

Chapter 4. Electric Potential Chapte 4 Electic Potential 4.1 Potential and Potential Enegy... 4-3 4.2 Electic Potential in a Unifom Field... 4-7 4.3 Electic Potential due to Point Chages... 4-8 4.3.1 Potential Enegy in a System of

More information

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum Final Exam Duing class (1-3:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Hamonic Motion Intoduction Simple hamonic motion occus when the net foce acting on an object is popotional to the object s displacement fom an equilibium position. When the object is at an equilibium

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Gravity - Geoscientific Measure: The variations in the Earth s gravitational field due to changes in density of materials within the Earth.

Gravity - Geoscientific Measure: The variations in the Earth s gravitational field due to changes in density of materials within the Earth. Gravity - Geoscientific Measure: The variations in the Earth s gravitational field due to changes in density of materials within the Earth. Objective Map variation in gravitational field associated with

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Gauss Law in dielectrics

Gauss Law in dielectrics Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics,

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

Effects of Projectile Motion in a Non-Uniform Gravitational Field, with Linearly Varying Air Density

Effects of Projectile Motion in a Non-Uniform Gravitational Field, with Linearly Varying Air Density Effects of Pojectile Motion in a Non-Unifom Gavitational Field, with Linealy Vaying Ai Density Todd Cutche Decembe 2, 2002 Abstact In ode to study Pojectile Motion one needs to have a good woking model

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

On the Relativistic Forms of Newton's Second Law and Gravitation

On the Relativistic Forms of Newton's Second Law and Gravitation On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic

More information

Magnetism. The Magnetic Force. B x x x x x x x x x x x x v x x x x x x. F = q

Magnetism. The Magnetic Force. B x x x x x x x x x x x x v x x x x x x. F = q Magnetism The Magnetic Foce F = qe + qv x x x x x x x x x x x x v x x x x x x F q v q F v F = q 0 IM intoduced the fist had disk in 1957, when data usually was stoed on tapes. It consisted of 50 plattes,

More information

Energy Conservation. Energy Conservation. Work Done by Gravitational Force. Work Done by Gravitational Force. Work Done by Gravitational Force.

Energy Conservation. Energy Conservation. Work Done by Gravitational Force. Work Done by Gravitational Force. Work Done by Gravitational Force. 1. Consevative/Nonconsevative Foces Wok alon a path (Path inteal) Wok aound an closed path (Path inteal). Potential Ene (P.E.) Mechanical 3. Findin P.E. function 4. Ene Diaam Wok Done b Gavitational Foce

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

PHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded.

PHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded. PHYSICS 18 Honos EXAM Retest Choose 5 of the following 6 pobles. Indicate which poble is not to be gaded. 1. A ope is affixed at one end to the i of a pulley, and wapped five tuns aound the pulley. The

More information

Unit Vectors. the unit vector rˆ. Thus, in the case at hand, 5.00 rˆ, means 5.00 m/s at 36.0.

Unit Vectors. the unit vector rˆ. Thus, in the case at hand, 5.00 rˆ, means 5.00 m/s at 36.0. Unit Vectos What is pobabl the most common mistake involving unit vectos is simpl leaving thei hats off. While leaving the hat off a unit vecto is a nast communication eo in its own ight, it also leads

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

* Pressure Variation in a Static Fluid

* Pressure Variation in a Static Fluid FLUID STATICS - THE BASIC EQUATION OF FLUID STATICS * Pessue Vaiation in a Static Fluid - ABSOLUTE AND GAGE PRESSURE -THE STANDARD ATMOSPHERE - HYDROSTATIC FORCE ON SUBMERGED SURFACES * Hydostatic Foce

More information

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Section 5-3 Angles and Their Measure

Section 5-3 Angles and Their Measure 5 5 TRIGONOMETRIC FUNCTIONS Section 5- Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,

More information

Chapter 3: Vectors and Coordinate Systems

Chapter 3: Vectors and Coordinate Systems Coodinate Systems Chapte 3: Vectos and Coodinate Systems Used to descibe the position of a point in space Coodinate system consists of a fied efeence point called the oigin specific aes with scales and

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Magnetism: a new force!

Magnetism: a new force! -1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of E-field kq E-fields ae ceated by chages: E = 2 E-field exets a foce on othe

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions 1 [M] A unifom line chage that has a linea chage density l equal to.5 nc/m is on the x axis between x and x 5. m. (a) What is its total chage?

More information

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968)

Problems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968) Poblems of the nd ntenational Physics Olympiads (Budapest Hungay 968) Péte Vankó nstitute of Physics Budapest Univesity of Technical Engineeing Budapest Hungay Abstact Afte a shot intoduction the poblems

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Supplementary Material for EpiDiff

Supplementary Material for EpiDiff Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

More information

Notes on Electric Fields of Continuous Charge Distributions

Notes on Electric Fields of Continuous Charge Distributions Notes on Electic Fields of Continuous Chage Distibutions Fo discete point-like electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution

More information

Cubic Spline Interpolation by Solving a Recurrence Equation Instead of a Tridiagonal Matrix

Cubic Spline Interpolation by Solving a Recurrence Equation Instead of a Tridiagonal Matrix Matematical Metods in Science and Engineeing Cubic Spline Intepolation by Solving a Recuence Equation Instead of a Tidiagonal Matix Pete Z Revesz Depatment of Compute Science and Engineeing Univesity of

More information

Orbital Motion & Gravity

Orbital Motion & Gravity Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion

More information

Physics: Electromagnetism Spring PROBLEM SET 6 Solutions

Physics: Electromagnetism Spring PROBLEM SET 6 Solutions Physics: Electomagnetism Sping 7 Physics: Electomagnetism Sping 7 PROBEM SET 6 Solutions Electostatic Enegy Basics: Wolfson and Pasachoff h 6 Poblem 7 p 679 Thee ae si diffeent pais of equal chages and

More information