# Theory of Computation

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Theory of Computation For Computer Science & Information Technology By

2 Syllabus Syllabus for Theory of Computation Regular Expressions and Finite Automata, Context-Free Grammar s and Push-Down Automata, Regular and Context-Free Languages, Pumping Lemma, Turing Machines and Undecidability. Analysis of GATE Papers Year Percentage of Marks Over All Percentage % : , Copyright reserved. Web:

3 Contents Contents Chapters Page No. #. Introduction/Preliminaries 3 Introduction Relations 2 3 #2. Finite Automata 4 22 Finite Automata 4 0 Construction of DFA from NFA (Sub Set Construction) 0 Epsilon( )-Closures 2 3 Eliminating -Transitions (Construction of DFA from -NFA) 4 5 Assignment 6 8 Assignment Answer keys & Explanations #3. Regular Expression Definitions Languages Associated with Regular Expressions Algebraic Laws for Regular Expressions Converting Regular Expression to Automata ( -NFA) Construction of Regular Expression from Finite Automata 28 3 Ordering the Elimination of States 3 33 Finite Automata with Output Regular Grammar Myhill-Nerode Theorem Pumping Lemma for Regular Languages Finding (in) Distinguishable States Assignment Answer keys & Explanations #4. Context Free Grammar Introduction Context Free Language Leftmost and Rightmost Derivations Ambiguity Simplification of Context Free Grammar 65 Elimination of Useless Symbols Normal Forms : , Copyright reserved. Web: i

4 Pushdown Automata Definition of PDA NPDA Properties of Context Free Language Decision Algorithms for CFL s Non-Context Free Language Pumping Lemma for CFL s 89 9 Membership Algorithm for Context-Free Grammar 9 92 Assignment Assignment Answer keys & Explanations Contents #5. Turing Machines 0 34 Introduction 0 03 Modification of Turing Machine Two-Pushdown Stack Machine Counter Machine 08 0 Multiple Tracks 0 6 Universal Turing Machine 6 7 Context Sensitive Grammar 7 8 Linear Bounded Automata 8 9 Hierarchy of Formal Languages (Chomsky Hierarchy) 9 20 Undecidability 20 2 Universal Language 2 27 The Classes P & NP Assignment 30 3 Assignment Answer Keys & Explanations Module Test Test Questions 35 4 Answer Keys & Explanations 4 45 Reference Books 46 : , Copyright reserved. Web: ii

5 CHAPTER "Yesterday I dared to struggle. Today I dare to win."..bernadette Devlin Introduction/Preliminaries Learning Objectives After reading this chapter, you will know:. Relations Introduction String: A string is a finite sequence of symbols put together. E.g. bbac the length of this string is '4'. Note: The length of empty string denoted by, is the string consisting of zero symbols. Thus = 0. Alphabet: An alphabet is a finite set of symbols. E.g.: {a, b, 0,, B} Formal language: A formal language is a set of strings made up of symbols taken from some alphabet. E.g.: The language consisting of all strings formed by the alphabet {0, } Note:. The empty set,, is a formal language. The cardinality (size) of this language is zero. 2. The set consisting of empty string, { } is a formal language. The cardinality (size) of this language is one. Set: A set is a collection of objects (members of the set) without repetition. i. Finite Set: A set which contains finite number of elements is said to be finite set. E.g.: {, 2, 3, 4} ii. Countably Infinite Set: Sets that can be placed in one-to-one correspondence with the integers are said to be countably infinite or countable or denumerable. E.g.: The set of the finite-length strings from an alphabet are countably infinite, (if : {0, } Then : {0, 0,, 0, 0...} i.e., all possible strings with 0 and'') iii. Uncountable Set: Sets that can't be placed in one-to-one correspondence with the integers are said to be uncountable sets. E.g.: The set of real numbers. : , Copyright reserved. Web:

6 Introduction/Preliminaries Relations A (binary) relation is a set of ordered tuples. The first component of each tuple is chosen from a set called the domain and the second component of each pair is chosen from a (possibly different) set called the range. E.g. Let A {, 2, 3, 4} be a set. A relation R, on 'A' can be defined as R: {(, 2), (, 3), (, ), (2, 3)} Properties of Relations We say a relation R on set S is. Reflexive: If ara for all a in S 2. Irreflexive: If ara is false for all a is S 3. Transitive: If arb and brc implies arc 4. Symmetric: If arb implies bra 5. Asymmetric: If arb implies that bra is false 6. Anti-symmetric: If arb and bra implies a = b Equivalence Relation: A relation is said to be equivalence relation if it satisfies the following properties.. Reflexive 2. Symmetric 3. Transitive An important property of equivalence relation 'R' on set 'S' is that R partitions 'S' into disjoint nonempty equivalence classes (may be infinite) i.e., S =..., where for each i and j, with i j. = 2. For each 'a' and 'b' in S jarb is true. 3. For each 'a' in i and 'b' in Sj, arb is false. The 's are called equivalence classes. E.g.: The relation 'R' on people defined by prq if and only if 'p' and 'q' were born at the same hour of the same day of some year: The number of equivalence classes are: 24 (no. of hours) 7 (no. of days in a week). Closure of Relations: Suppose P is a set of properties of relations. The P-closure of a relation R is the smallest relation R that includes all the pairs of R and possesses the properties in P. E.g.: Let R = {(, 2), (2, 3), (3, )} be a relation on set {, 2, 3} i. The reflexive-transitive closure of R is denoted by R* is Added by Reflexivity (, 2), (2, 3), (3, ), (, ), (2, 2), (3, 3), (, 3), (2, ), (3, 2) Added by Transitivity : , Copyright reserved. Web: 2

7 Introduction/Preliminaries ii. The symmetric closure of R is {(, 2), (2, 3), (3, ), (2, ), (3, 2), (, 3)} Term Definition prefix of s A string obtained by removing zero or more trailing symbols of string s; e.g., ban is a prefix of banana. suffix of s A string formed by deleting zero or more of the leading symbols of s; e.g., nana is a suffix of banana. substring of s A string obtained by deleting a prefix and a suffix from s; e.g., nan is a substring of banana. Every prefix and every suffix of s is a substring of s, but not every substring of s is a prefix or a suffix of s. For every string s, both s and are prefixes, suffixes, and substrings of s. proper prefix, suffix, or Any nonempty string x that is, respectively, a prefix, suffix, or substring of s substring of s such that s x. subsequence of s Any string formed by deleting zero or more not necessarily contiguous symbols from s; e.g., baaa is a subsequence of banana. : , Copyright reserved. Web: 3

8 CHAPTER 2 "Shoot for the moon. Even if you miss, you will land among the stars." Les Brown Finite Automata Learning Objectives After reading this chapter, you will know:. Finite Automata 2. Construction of DFA from NFA (Sub Set Construction) 3. Epsilon( )-Closures 4. Eliminating -Transitions (Construction of DFA from -NFA) Finite Automata A finite automaton involves states and transitions among states in response to inputs. They are useful for building several different kinds of software, including the lexical analysis component of a complier and systems for verifying the correctness of circuits or protocols. They also serve as the control unit in many physical systems including: vending machines, elevators, automatic traffic signals, computer microprocessors, and network protocol stacks. Deterministic Finite Automata A DFA captures the basic elements of an abstract machine: it reads in a string, and depending on the input and the way the machine was designed, it outputs either true or false. A DFA is always in one of N states, which we usually name 0 through N-. Each state is labeled true or false. The DFA begins in a designated state called the start state. As the input characters are read in one at a time, the DFA changes from one state to another in a pre-specified way. The new state is completely determined by the current state and the character just read in. When the input is exhausted, the DFA outputs true or false according to the label of the state it is currently in. A Deterministic finite automaton is represented by a Quintuple (5-tuple): (Q,, δ,, F) Where, Q: Finite set of states : Finite set of input symbols called the alphabet. δ: Q X Q (δ is a transition function from Q X to Q) : A start state, one of the states in Q F: A set of final states, such that F Q : , Copyright reserved. Web: 4

9 Induction Finite Automata Suppose is a string of the form a that is a is the last symbol of, and is the string consisting of all but the last symbol. For example is broken into and a. Then δ (, ) δ(δ (, ), a) Now, to compute δ (, ) first compute δ (, )the state that the automaton is in after processing all but the last symbol of. Suppose this state is p; that is, δ (, ). Then δ (, )is what we get by making a transition from state p on input a. That is, δ (, ) = δ (, a) E.g.: Let us design a DFA to accept the language L = { has both an even number of 0's and an even number of 's} It should not be surprising that the job of the states of this DFA is to count both the number of 0's and the number of 's, but count them modulo 2. That is, the state is used to remember whether the number of 0's seen so far is even or odd, and also to remember whether the number of 's seen so far is even or odd. There are thus four states, which can be given the following interpretations: : Both the number of 0's seen so far and the number of 's seen so far are even. : The number of 0's seen so far is even, but the number of 's seen so far is odd. : The number of 's seen so far is even, but the number of 0's seen so far is odd. : Both the number of 0's seen so far and the number of 's seen so far are odd. State is both the start state and the alone the accepting state. It is the start state, because before reading any inputs, the numbers of 0's and 's seen so far are both zero, and zero is even. It is the only accepting state, because it describes exactly the condition for a sequence of 0's and 's to be in language L. We now know almost how to specify the DFA for language L. It is, A ({,,, }, {, }, δ,, { }) Deterministic Finite Automata Start Transition Diagram for the DFA Where the transition function S is described by the transition diagram notice that, how each input 0 causes the state to cross the horizontal, dashed line. Thus, after seeing an even number of 0's we are always above the line, in state or while after seeing an odd number of 0's we are always below the line, in state or. Likewise, every causes the state to cross the vertical, dashed line. Thus, after seeing an even number of 's. We are always to the left, in state or. While after : , Copyright reserved. Web: 5

10 Finite Automata seeing an odd number of 's we are to the right, in state or. These observations are an informal proof that the four states have the interpretations attributed to them. However, one could prove the correctness of our claims about the states formally, by a mutual induction with respect to example. We can also represent this DFA by a transition table shown below. However, we are not just concerned with the design of this DFA; we want to use it to illustrate the construction of δ from its transition function δ. Suppose the input is 00. Since this string has even numbers of 0's and 's both, we expect it is in the language. Thus, we expect that δ (, 00) = since is the only accepting state. Let us now verify that claim. Transition Table for the DFA The check involves computing δ (, w) for each prefix w of 00, starting at and going in increasing size. The summary of this calculation is: δ (, ) δ (, ) δ(δ (, ), ) δ(, ) δ (, ) δ(δ (, ), ) δ(, ) δ (, ) δ(δ (, ), ) δ(, ) δ (, ) δ(δ (, ), ) δ(, ) δ (, ) δ(δ (, ), ) δ(, ) δ (, ) δ(δ (, ), ) δ(, ) Acceptance by an Automata A string is said to be acce ted by a finite automaton M (Q,, δ,, F) if δ (, x) = for some in F. The language accepted by M, designated L (M), is the set {x δ (, x) is in F}. A language is a regular set (or just regular) if it is the set accepted by some automaton. There are two preferred notations for describing Automata. Transition diagram 2. Transition table : , Copyright reserved. Web: 6

### Automata and Computability. Solutions to Exercises

Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

### Computing Functions with Turing Machines

CS 30 - Lecture 20 Combining Turing Machines and Turing s Thesis Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata

### Properties of Context-Free Languages. Decision Properties Closure Properties

Properties of Context-Free Languages Decision Properties Closure Properties 1 Summary of Decision Properties As usual, when we talk about a CFL we really mean a representation for the CFL, e.g., a CFG

### TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation Lecture 3 Gustav Nordh Department of Computer and Information Science gustav.nordh@liu.se 2012-09-05 Outline Context-free Grammars Ambiguity Pumping Lemma

### Automata and Languages

Automata and Languages Computational Models: An idealized mathematical model of a computer. A computational model may be accurate in some ways but not in others. We shall be defining increasingly powerful

### Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

### Solutions to In-Class Problems Week 4, Mon.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

### FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION REDUCIBILITY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 1 / 20 THE LANDSCAPE OF THE CHOMSKY HIERARCHY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 2 / 20 REDUCIBILITY

### Reading 13 : Finite State Automata and Regular Expressions

CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

### SETS, RELATIONS, AND FUNCTIONS

September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four

### Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

### Automata and Formal Languages

Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

### The Halting Problem is Undecidable

185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

### Motivation. Automata = abstract computing devices. Turing studied Turing Machines (= computers) before there were any real computers

Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler devices than Turing machines (Finite State

### Sets and Subsets. Countable and Uncountable

Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788-792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There

### Finite Automata and Formal Languages

Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Lecture 14 May 19th 2011 Overview of today s lecture: Turing Machines Push-down Automata Overview of the Course Undecidable and Intractable Problems

### INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING DUNDIGAL 500 043, HYDERABAD COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : FORMAL LANGUAGES AND AUTOMATA THEORY Code : A40509 Class : II B. Tech II

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN

Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June

### Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

### Compiler Construction

Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation

### Finite Automata. Reading: Chapter 2

Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or

### Day 11. Wednesday June 6, Today, we begin by investigating properties of relations. We use a few toy relations as examples.

Day 11 Wednesday June 6, 2012 1 Relations Today, we begin by investigating properties of relations. We use a few toy relations as examples. 1.1 Examples of Relations There are a few relations that particularly

### Relations Graphical View

Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). A binary

### Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course

### Model 2.4 Faculty member + student

Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email

### Automata Theory and Languages

Automata Theory and Languages SITE : http://www.info.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/1 Introduction to Automata Theory Automata theory :

### Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

### Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras

Theory of Computation Prof. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture No. # 31 Recursive Sets, Recursively Innumerable Sets, Encoding

### Turing Machines: An Introduction

CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

### the lemma. Keep in mind the following facts about regular languages:

CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often

### Chapter 4: Binary Operations and Relations

c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

### Regular Expressions and Automata using Haskell

Regular Expressions and Automata using Haskell Simon Thompson Computing Laboratory University of Kent at Canterbury January 2000 Contents 1 Introduction 2 2 Regular Expressions 2 3 Matching regular expressions

### Finite Automata. Reading: Chapter 2

Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### Homework Five Solution CSE 355

Homework Five Solution CSE 355 Due: 17 April 01 Please note that there is more than one way to answer most of these questions. The following only represents a sample solution. Problem 1: Linz 8.1.13 and

### Lecture 16 : Relations and Functions DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

### Lecture 17 : Equivalence and Order Relations DRAFT

CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

### Context Free and Non Context Free Languages

Context Free and Non Context Free Languages Part I: Pumping Theorem for Context Free Languages Context Free Languages and Push Down Automata Theorems For Every Context Free Grammar there Exists an Equivalent

### Introduction to Relations

CHAPTER 7 Introduction to Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition: A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is related

### 3515ICT Theory of Computation Turing Machines

Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

### CS 341 Homework 9 Languages That Are and Are Not Regular

CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w

### Chapter 2. Finite Automata. 2.1 The Basic Model

Chapter 2 Finite Automata 2.1 The Basic Model Finite automata model very simple computational devices or processes. These devices have a constant amount of memory and process their input in an online manner.

### Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

### 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

### Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### Regular Languages and Finite Automata

Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

### Logic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour

Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS

### (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

### Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

### Overview of E0222: Automata and Computability

Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study

### Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

### Section 3.3 Equivalence Relations

1 Section 3.3 Purpose of Section To introduce the concept of an equivalence relation and show how it subdivides or partitions a set into distinct categories. Introduction Classifying objects and placing

### 1 Digraphs. Definition 1

1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

Properties of Regular Languages g Reading: Chapter 4 Topics ) How to prove whether a given language is regular or not? 2) Closure properties of regular languages 3) Minimization of DFAs 2 Some languages

### 1 Definition of a Turing machine

Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

### Finite and Infinite Sets

Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

### Context-Free Grammars (CFG)

Context-Free Grammars (CFG) SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 An informal example Language of palindromes: L

### Lecture 2: Universality

CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

### Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

### T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

### C H A P T E R Regular Expressions regular expression

7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun

### Examination paper for MA0301 Elementær diskret matematikk

Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

### Deterministic Finite Automata

1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function

### Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

### The Language of Mathematics

CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

### Definition: String concatenation. Definition: String. Definition: Language (cont.) Definition: Language

CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata Introduction That s it for the basics of Ruby If you need other material for your project, come to office hours or

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### CHAPTER 1. Basic Ideas

CHPTER 1 asic Ideas In the end, all mathematics can be boiled down to logic and set theory. ecause of this, any careful presentation of fundamental mathematical ideas is inevitably couched in the language

### Lecture I FINITE AUTOMATA

1. Regular Sets and DFA Lecture I Page 1 Lecture I FINITE AUTOMATA Lecture 1: Honors Theory, Spring 02, Yap We introduce finite automata (deterministic and nondeterministic) and regular languages. Some

### Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

### Sets, Relations and Functions

Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete

### A Fixed-Point Approach towards Efficient Models Conversion

ISSN: 1940-8978 A Fixed-Point Approach towards Efficient Models Conversion Stefan Andrei, Hikyoo Koh No. 2, June 2008 Computer Science Department Technical Reports - Lamar University Computer Science Department,

### Computational Models Lecture 8, Spring 2009

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

### Increasing Interaction and Support in the Formal Languages and Automata Theory Course

Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational

### Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### MODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.

MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on

### Chapter 1. Sigma-Algebras. 1.1 Definition

Chapter 1 Sigma-Algebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is

### 2.3. Relations. Arrow diagrams. Venn diagrams and arrows can be used for representing

2.3. RELATIONS 32 2.3. Relations 2.3.1. Relations. Assume that we have a set of men M and a set of women W, some of whom are married. We want to express which men in M are married to which women in W.

### f(x) is a singleton set for all x A. If f is a function and f(x) = {y}, we normally write

Math 525 Chapter 1 Stuff If A and B are sets, then A B = {(x,y) x A, y B} denotes the product set. If S A B, then S is called a relation from A to B or a relation between A and B. If B = A, S A A is called

### We give a basic overview of the mathematical background required for this course.

1 Background We give a basic overview of the mathematical background required for this course. 1.1 Set Theory We introduce some concepts from naive set theory (as opposed to axiomatic set theory). The

### Homework Three Solution CSE 355

Homework Three Solution CSE 355 Due: 06 March 2012 Please note that there is more than one way to answer most of these questions. The following only represents a sample solution. Problem 1: Linz 4.1.13

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

### Composability of Infinite-State Activity Automata*

Composability of Infinite-State Activity Automata* Zhe Dang 1, Oscar H. Ibarra 2, Jianwen Su 2 1 Washington State University, Pullman 2 University of California, Santa Barbara Presented by Prof. Hsu-Chun

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 20

CS 70 Discrete Mathematics and Probability Theory Fall 009 Satish Rao, David Tse Note 0 Infinity and Countability Consider a function (or mapping) f that maps elements of a set A (called the domain of

### Math 3000 Running Glossary

Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

### Deterministic Push-Down Store Automata

Deterministic Push-Down tore Automata 1 Context-Free Languages A B C D... A w 0 w 1 D...E The languagea n b n : a b ab 2 Finite-tate Automata 3 Pushdown Automata Pushdown automata (pda s) is an fsa with

### Database Management System

Database Management System For Computer Science & Information Technology By www.thegateacademy.com Syllabus Syllabus for Data Base Management System E Model, elational Model, elational Algebra, Tuple Calculus,

### Free groups. Contents. 1 Free groups. 1.1 Definitions and notations

Free groups Contents 1 Free groups 1 1.1 Definitions and notations..................... 1 1.2 Construction of a free group with basis X........... 2 1.3 The universal property of free groups...............

### Theory of Computation Lecture Notes

Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### Turing Machines, Part I

Turing Machines, Part I Languages The \$64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context