Operational Amplifiers

Size: px
Start display at page:

Download "Operational Amplifiers"

Transcription

1 perational Amplifiers. perational Amplifiers perational amplifiers (commonly known as opamps) are integrated circuits designed to amplify small voltages (or currents) to usable levels. The physical packaging of a common type of opamp (the 74) is also shown in Figure A below. This package is referred to as an 8 pin DIP (dual inline package). Note carefully the small hole in the upper left hand corner (or notch in the upper center); this is used to indicate the location of pin on the package. Positive power supply (V) Inverting input () Noninverting input () utput (o) Negative power supply (V) Inverting input Noninverting input Negative power supply (V) 4 74 Figure A. 74 pamp schematic and pinout Positive power supply (V) utput pamps are composed of carefully matched sets of transistors and resistors. The opamp is shown on circuit diagram schematics as a triangle, given in Figure A above. Note that most bipolar opamps have at least five connections:. inverting input (),. noninverting input (),. output (o), 4. positive voltage supply (V), and 5. negative voltage supply (V). The output voltage o is determined by multiplying the difference between the voltages at the noninverting and inverting inputs ( and ) by an openloop gain, K: K *( ) o Characteristics of opamps are summarized here:. very high input impedance (0 6 ohms or more),. high openloop gain (K > 0 5 or more),. low output impedance (able to deliver o into small resistances), 4. fast response (slew rates of up to several volts per microsecond), and 5. able to reject common mode inputs (discussed below). The first two characteristics of opamps given above are commonly used to develop ideal circuit responses. Since the input impedance is very large, we often assume that the currents i and i are zero. If the openloop gain K is very large, and the output voltage o is

2 perational Amplifiers. relatively small, then the voltage difference * = assumed to be zero. must be very small, and is usually Single input, inverting amplifier circuit The most common opamp circuit is given below in Figure A. This arrangement is known as the single input, inverting amplifier and is similar to Figure. of your text. i V V o Figure A. Single input, inverting opamp circuit Based on the circuit drawn above, the following equation can be written by summing currents at the first node, i i i 0 Note that we have also applied our assumption that the current i = 0. From the circuit diagram, the voltage at the node is V * ; therefore, relationships for the currents can be written as i i * i * The voltage * is very small and is normally assumed to equal zero; therefore, we have i i i 0 This equation can be solved for the output voltage as a function of the input voltage i, the input resistance, and the feedback resistance as The gain of the opamp circuit is the ratio / and can be greater than, equal to, or less than. The equation given above is an ideal relationship and is subject to at least two restrictions:. the input resistance should be fairly large ( > 0 k minimum) to minimize the current i, and i

3 perational Amplifiers.. the output voltage remains in the range (V volt) (V volt), i.e. the output voltage cannot fall outside the opamp supply voltages. The restriction on the output voltage is termed saturation. The third resistor is selected to match the impedance seen at both the and terminals of the opamp. The nominal value for resistor is the parallel combination of and, Having the exact value for is not as critical to the operation of the circuit as the other resistance values. Therefore, a tolerance of ±0% is allowed for this resistance. In many simple opamp circuits the easiest way to create the correct resistance is to place an and an valued resistor in parallel between the negative positive terminal ( ) and the common bus. Multiple input, summing amplifier circuit pamp circuits are often used to add two or more signals. Figure A below shows a circuit which adds the two voltages and, and multiplies each by the same or different gains. 4 V V o Figure A. Multiple input, summing opamp circuit The theoretical relationship for the summing amp circuit above is given by Note that the input voltages and are connected to the terminal of the opamp and thus have a negative relationship with the output o. The input resistances and, are frequently equal in value, which leads to a slightly simpler equation,

4 perational Amplifiers.4 As with the singleinput inverting amp circuit, the resistance 4 is selected to match impedance at the positive and negative terminals of the opamp, 4 Single input, noninverting amplifier circuit In Figure A4 (and Figure. of your text) the single input, noninverting amplifier circuit is given. The ideal inputoutput relationship for this design is given by o i Note that the minimum gain for this configuration is, when is much greater than. Also note that the input voltage i is connected to the terminal of the opamp and thus has a positive relationship with the output o. V i V o Figure A4. Single input, noninverting opamp circuit As with the singleinput inverting amp, the resistance is selected to match impedance at the positive and negative terminals of the opamp,

5 perational Amplifiers.5 Dual input, difference amplifier circuit The circuit shown below in Figure A5 is known as a difference amplifier. The output voltage,, is related to the difference in the two input voltages. The ideal relationship for this circuit is o The signs on the two input terms are easily remembered if you note that and have a positive relationship while and have a negative one. This should be expected since is attached to the positive ( ) terminal of the opamp while is attached to the negative ( ) terminal. V V o Figure A5. Dual input, difference opamp circuit Instrumentation Amplifier Circuit The circuit shown in Figure A6 uses three opamps to create a single instrumentation amplifier. This circuit is ideal for amplifying the small signals found in many instrumentation applications, such as Wheatstone bridges. The two opamps used in the first stage provide a very large impedance (> M) to the input voltage i. A very large gain can be created by the proper selection of the single resistor G. G The instrumentation amplifier is often used with precision strain gage circuits to provide large, singlestage amplification. i i G Figure A6. Instrumentation Amp Circuit

6 perational Amplifiers.6 Voltage Follower Circuit The voltage follower circuit shown in Figure A7 can be used to isolate or buffer a highimpedance voltage source (that cannot supply much current) from the following circuit components. The theoretical relationship is very simple, i A typical situation is shown on the right where the voltage follower is used to buffer a potentiometer so that it acts like an ideal voltage divider. V V V i V Figure A7. Voltage Follower Circuit Integrator The circuit shown below in Figure A8 can be used to integrate electrical signals with respect to time. For example, integrating an acceleration signal (from an accelerometer for example) would ideally give an output signal proportional to velocity. Note that the feedback resistor has been replaced by a capacitor, which accumulates current to generate a voltage. The ideal relationship for the integrator circuit is t idt(0) C 0 Note the output voltage depends on the initial voltage stored on the capacitor, (0). Integrator circuits are also very sensitive to leakage or null currents. C i V V o Figure A8. Integrating pamp Circuit Note that a differentiating circuit can be easily formed by swapping and C in the circuit above. The input/output equation becomes d i o C dt The use of differentiators is generally discouraged, since they tend to amplify any noise present in the input signal. Nevertheless, they are found in some specialized applications.

Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 )

Material and Equipment NI ELVIS 741 Op Amp, 5k pot, Assorted Resistors (10k, 100k, 220k (2), 100 (2), 560 ) Lab 8 Operational Amplifier Characteristics Purpose The purpose of this lab is to study the non-ideal characteristics of the operational amplifier. The characteristics that will be investigated include

More information

Operational Amplifiers (Op-Amps)

Operational Amplifiers (Op-Amps) Chapter 18 Operational Amplifiers (Op-Amps) Introduction to Operational Amplifiers The standard Operational amplifier has two input terminals, the inverting (-) and noninverting (+) FIGURE 18-3 Practical

More information

DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

Operational Amplifiers

Operational Amplifiers 1. Introduction Operational Amplifiers The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP 1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

More information

Peggy Alavi Application Engineer September 3, 2003

Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

More information

Building the AMP Amplifier

Building the AMP Amplifier Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Lab 9: Op Amps Lab Assignment

Lab 9: Op Amps Lab Assignment 3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

More information

The output signal may be of the same form as the input signal, i.e. V in produces V out

The output signal may be of the same form as the input signal, i.e. V in produces V out What is an amplifier? Operational Amplifiers A device that takes an input (current, voltage, etc.) and produces a correlated output Input Signal Output Signal Usually the output is a multiple of the input

More information

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Introduction The operational amplifier (op-amp) is a voltage controlled voltage source with very high gain. It is a five terminal four port active element. The symbol of the op-amp

More information

The Electronic Scale

The Electronic Scale The Electronic Scale Learning Objectives By the end of this laboratory experiment, the experimenter should be able to: Explain what an operational amplifier is and how it can be used in amplifying signal

More information

Logic Inputs To The CAT Controllers

Logic Inputs To The CAT Controllers Page 1 All CAT controllers use a Darlington Transistor Array (ULN2003 or ULN2803) to handle signals like COR (Carrier Operated Relay) inputs, CTCSS (Continuous Tone Coded Squelch System) inputs, and general

More information

Chapter No. 3 Differential Amplifiers

Chapter No. 3 Differential Amplifiers Chapter No. 3 Differential Amplifiers Operational Amplifiers: The operational amplifier is a direct-coupled high gain amplifier usable from 0 to over 1MH Z to which feedback is added to control its overall

More information

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

More information

Analog Signal Conditioning

Analog Signal Conditioning Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084

More information

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS. o/p OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

More information

Comparator and Schmitt Trigger

Comparator and Schmitt Trigger Comparator and Schmitt Trigger Comparator circuits find frequent application in measurement and instrumentation systems. Learning Objectives Understand the Op-Amp Comparator with and without an offset

More information

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad

ELECTRONICS. EE 42/100 Lecture 8: Op-Amps. Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

More information

Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer

Chapter: Operational Amplifiers / Operationsverstärker. Michael E. Auer Electrical Engineering Chapter: Operational Amplifiers / Operationsverstärker Michael E. Auer Source of figures: Alexander/Sadiku: Fundamentals of Electric Circuits, McGraw-Hill Chapter Content Basics

More information

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency. FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

More information

Operational amplifiers

Operational amplifiers Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal

More information

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

More information

PHYS 210 Electronic Circuits and Feedback

PHYS 210 Electronic Circuits and Feedback PHYS 210 Electronic Circuits and Feedback These notes give a short introduction to analog circuits. If you like to learn more about electronics (a good idea if you are thinking of becoming an experimental

More information

EAC215 Homework 4. Page 1 of 6

EAC215 Homework 4. Page 1 of 6 EAC215 Homework 4 Name: 1. An integrated circuit (IC) op-amp has (a) two inputs and two outputs (b) one input and one output (c) two inputs and one output 2. Which of the following characteristics does

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Current vs. Voltage Feedback Amplifiers

Current vs. Voltage Feedback Amplifiers Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

More information

EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

A Constant-current Source

A Constant-current Source A Constant-current Source Frequently, such as when you want to measure temperature with a silicon diode, it is desirable to have a source of a reproducible, constant current. Many laboratory power supplies

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Murray Thompson Sept. 5, 1999 Contents 1 Introduction 1 2 A Reassurance 1 3 Summary of Bipolar Transistor theory so far 2 4 Transistor Model 5 5 Various Simple Amplifiers 6

More information

Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

More information

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors

Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Generating Common Waveforms Using the LM555, Operational Amplifiers, and Transistors Kenneth Young November 16, 2012 I. Abstract The generation of precise waveforms may be needed within any circuit design.

More information

Op-Amps Experiment Theory

Op-Amps Experiment Theory EE 4/00 Operational mplifiers Op-mps Experiment Theory. Objective The purpose of these experiments is to introduce the most important of all analog building blocks, the operational amplifier ( op-amp for

More information

AP-1 Application Note on Remote Control of UltraVolt HVPS

AP-1 Application Note on Remote Control of UltraVolt HVPS Basics Of UltraVolt HVPS Output Voltage Control Application Note on Remote Control of UltraVolt HVPS By varying the voltage at the Remote Adjust Input terminal (pin 6) between 0 and +5V, the UV highvoltage

More information

EE2CI5 LAB 3b. Square wave oscillator circuit

EE2CI5 LAB 3b. Square wave oscillator circuit EE2CI5 LAB 3b Square wave oscillator circuit Objective The objective of this lab is to use a 555 integrated circuit, a capacitor and some resistors to design a periodic square wave oscillator with period

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Aims: To know: Basic Op Amp properties eal & Ideal Basic ideas of feedback. inv input noninv input output gnd To be able to do basic circuit analysis of op amps: using KCL, KL with

More information

8-bit Digital to Analog converter (DAC)

8-bit Digital to Analog converter (DAC) 8-bit Digital to Analog converter (DAC) Posted on February 28, 2008, by Ibrahim KAMAL, in General electronics, tagged This article aims to introduce to beginners and intermediate readers a simple solution

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

OPERATIONAL AMPLIFIERS

OPERATIONAL AMPLIFIERS INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques

More information

Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Strain gauge lab Part 1

Strain gauge lab Part 1 Strain gauge lab Part 1 In this lab, you will make measurements of mechanical strain in small aluminum beams as you bend them. We will continue this lab next week, so you will want to be careful to maintain

More information

CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers

CIRCUITS LABORATORY EXPERIMENT 9. Operational Amplifiers CIRCUITS LABORATORY EXPERIMENT 9 Operational Amplifiers 9.1 INTRODUCTION An operational amplifier ("op amp") is a direct-coupled, differential-input, highgain voltage amplifier, usually packaged in the

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

The OP AMP -, Figure 1

The OP AMP -, Figure 1 The OP AMP Amplifiers, in general, taking as input, one or more electrical signals, and produce as output, one or more variations of these signals. The most common use of an amplifier is to accept a small

More information

Figure 2: Diode Markings

Figure 2: Diode Markings Cornerstone Electronics Technology and Robotics I Week 8 Transistors and Comparators Administration: o Prayer Semiconductor Diodes: o Semiconductor Diode Symbol: Figure 1: Diode Symbol o Diode Markings:

More information

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

More information

Part I: Operational Amplifiers & Their Applications

Part I: Operational Amplifiers & Their Applications Part I: Operational Amplifiers & Their Applications Contents Opamps fundamentals Opamp Circuits Inverting & Non-inverting Amplifiers Summing & Difference Amplifiers Integrators & Differentiators Opamp

More information

Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

More information

Scaling and Biasing Analog Signals

Scaling and Biasing Analog Signals Scaling and Biasing Analog Signals November 2007 Introduction Scaling and biasing the range and offset of analog signals is a useful skill for working with a variety of electronics. Not only can it interface

More information

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

AC negative feedback opamp circuits

AC negative feedback opamp circuits AC negative feedback opamp circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Multipurpose Analog PID Controller

Multipurpose Analog PID Controller Multipurpose Analog PID Controller Todd P. Meyrath Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin c 00 March 4, 00 revised December 0, 00 See disclaimer This analog

More information

Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator

Op Amp Circuits. Inverting and Non-inverting Amplifiers, Integrator, Differentiator M.B. Patil, IIT Bombay 1 Op Amp ircuits Inverting and Non-inverting Amplifiers, Integrator, Differentiator Introduction An Operational Amplifier (Op Amp) is a versatile building block used in a variety

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

CHAPTER 16 OSCILLATORS

CHAPTER 16 OSCILLATORS CHAPTER 16 OSCILLATORS 16-1 THE OSCILLATOR - are electronic circuits that generate an output signal without the necessity of an input signal. - It produces a periodic waveform on its output with only the

More information

FM RADIO KIT ESSENTIAL INFORMATION. Version 2.1 GET IN TUNE WITH THIS

FM RADIO KIT ESSENTIAL INFORMATION. Version 2.1 GET IN TUNE WITH THIS ESSENTIAL INFORMATION BUILD INSTRUCTIONS CHECKING YOUR PCB & FAULT-FINDING MECHANICAL DETAILS HOW THE KIT WORKS GET IN TUNE WITH THIS FM RADIO KIT Version 2.1 Build Instructions Before you start, take

More information

Lab 3. Transistor and Logic Gates

Lab 3. Transistor and Logic Gates Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction

More information

ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp)

ECG-Amplifier. MB Jass 2009 Daniel Paulus / Thomas Meier. Operation amplifier (op-amp) ECG-Amplifier MB Jass 2009 Daniel Paulus / Thomas Meier Operation amplifier (op-amp) Properties DC-coupled High gain electronic ec c voltage amplifier Inverting / non-inverting input and single output

More information

Minimizing Power Supply Transient Voltage at a Digital Wireless Telecommunications Products' Test Fixture

Minimizing Power Supply Transient Voltage at a Digital Wireless Telecommunications Products' Test Fixture Minimizing Power Supply Transient Voltage at a Digital Wireless Telecommunications Products' Test Fixture By Jim Gallo and Ed Brorein Agilent Technologies, Inc. Abstract This paper addresses the problem

More information

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS

SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS SINGLE-SUPPLY OPERATION OF OPERATIONAL AMPLIFIERS One of the most common applications questions on operational amplifiers concerns operation from a single supply voltage. Can the model OPAxyz be operated

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Electronic Circuits. Series resistance adds so that the overall resistance is the sum of the two individual resistances: R total = R 1 + R 2 = 1 R 1

Electronic Circuits. Series resistance adds so that the overall resistance is the sum of the two individual resistances: R total = R 1 + R 2 = 1 R 1 Electronic Circuits We have already looked at one simple circuit, the voltage divider. In order to understand the operation of audio equipment, we need to look a little deeper in to electronic circuits.

More information

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

More information

Operational Amplifiers

Operational Amplifiers IRWI04_133164v3 8/30/04 3:29 PM Page 133 Operational Amplifiers 4 4LEARNING GOALS In this chapter we discuss a very important commercially available circuit known as the operational amplifier, or opamp.

More information

The Operational Amplfier Lab Guide

The Operational Amplfier Lab Guide EECS 100 Lab Guide Bharathwaj Muthuswamy The Operational Amplfier Lab Guide 1. Introduction COMPONENTS REQUIRED FOR THIS LAB : 1. LM741 op-amp integrated circuit (IC) 2. 1k resistors 3. 10k resistor 4.

More information

Simple Op-Amp Circuits

Simple Op-Amp Circuits ECE A Lab #4 Lab 4 Simple OpAmp Circuits Overview In this lab we introduce the operationalamplifier (opamp), an active circuit that is designed for certain characteristics (high input resistance, low output

More information

EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter)

EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter) EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter) Objective The purpose of this experiment is to design a set of second-order Sallen-Key active filters and to investigate

More information

A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved

A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved A Short Discussion on Summing Busses and Summing Amplifiers By Fred Forssell Copyright 2001, by Forssell Technologies All Rights Reserved The summing network in mixing consoles is an easily misunderstood

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

CHAPTER 2 OPERATIONAL AMPLIFIERS

CHAPTER 2 OPERATIONAL AMPLIFIERS CHPTE PETNL MPLFES Chapter utline. The deal p mp. The nerting Configuration. The Noninerting Configuration. Difference mplifiers.5 ntegrators and Differentiators.6 DC mperfections.7 Effect of Finite pen

More information

Operational Amplifiers

Operational Amplifiers 662 25 Principles of Electronics Operational Amplifiers 25.1 Operational Amplifier 25.3 Basic Circuit of Differential Amplifier 25.5 Common-mode and Differentialmode signals 25.7 Voltage Gains of DA 25.9

More information

Electronics The application of bipolar transistors

Electronics The application of bipolar transistors Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using

More information

Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Description. 5k (10k) - + 5k (10k)

Description. 5k (10k) - + 5k (10k) THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

More information

AN4586 Application note

AN4586 Application note Application note Signal conditioning, differential to single-ended amplification Introduction Sylvain Colliard Piraud There is a wide range of applications for which we need to amplify a differential signal

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

555 Timers Astable Operation Cornerstone Electronics Technology and Robotics II

555 Timers Astable Operation Cornerstone Electronics Technology and Robotics II 555 Timers Astable Operation Cornerstone Electronics Technology and Robotics II For 555 Timers Introduction, see: http://cornerstonerobotics.org/curriculum/lessons_year2/erii5_555_timer.pdf For 555 Timers

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 6 Precision Resistance Measurements Introduction: It is sometimes necessary to make resistance

More information

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

More information

Operational Amplifiers

Operational Amplifiers Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

More information

FM radio kit. Build Instructions. Issue 1.2

FM radio kit. Build Instructions. Issue 1.2 FM radio kit Build Instructions Issue 1.2 Build Instructions Before you put any components in the board or pick up the soldering iron, just take a look at the Printed Circuit Board (PCB). The components

More information

Negative Feedback with Capacitors

Negative Feedback with Capacitors Negative Feedback with Capacitors http://gaussmarkov.net January 8, 008 The web page Op-Amps 4: Negative Feedback, describes several characteristics of the gain of a circuit like this one. This document

More information

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I FALL 2014/2015 LAB 2: RESISTORS ASSOCIATION AND THE WHEATSTONE

More information