INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

Size: px
Start display at page:

Download "INTRODUCTORY CHEMISTRY Concepts and Critical Thinking"

Transcription

1 INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 13 Liquids and Solids by Christopher Hamaker 1 Chapter 13

2 Properties of Liquids Unlike gases, liquids do not respond dramatically to temperature and pressure changes. We can study the liquid state and make five general observations. 1. Liquids have a variable shape, but a fixed volume. Liquids take the shape of their container. 2. Liquids usually flow readily. However, not all liquids flow at the same rate. 3. Liquids do not compress or expand significantly. The volume of a liquid varies very little as the temperature and pressure change. Chapter 13 2

3 Properties of Liquids, Continued 4. Liquids have a high density compared to gases. Liquids are about 1000 times more dense than gases. 5. Liquids that are soluble mix homogeneously. Liquids diffuse more slowly than gases, but eventually form a homogeneous mixture. Chapter 13 3

4 Intermolecular Bond Concept An intermolecular bond is an attraction between molecules, whereas an intramolecular bond is between atoms in a molecule. Some properties of liquids, such as vapor pressure, viscosity, and surface tension, are determined by the strength of attraction between molecules. Intermolecular bonds are much weaker than intramolecular bonds. Chapter 13 4

5 Intermolecular Bonds Recall that a polar molecule has positive and negative charges concentrated in different regions due to unequal sharing of electrons in bonds. This uneven distribution of electrons in a molecule is called a dipole. Intermolecular attractions result from temporary or permanent dipoles in molecules. There are three intermolecular forces: 1. Dispersion forces 2. Dipole forces 3. Hydrogen bonds Chapter 13 5

6 Dispersion Forces Dispersion forces, or London forces, are the result of a temporary dipole. Electrons are constantly shifting, and a region may become temporarily electron poor and slightly positive, while another region becomes slightly negative. This creates a temporary dipole, and two molecules with temporary dipoles are attracted to each other. Chapter 13 6

7 Dispersion Forces, Continued Dispersion forces are the weakest intermolecular force. Dispersion forces are present in all molecules. The strength of the dispersion forces in a molecule is related to the number of electrons in the molecule: The more electrons in a molecule, the stronger the dispersion forces. Chapter 13 7

8 Dipole Forces Polar molecules have a permanent dipole. The oppositely charged ends of polar molecules are attracted to each other; this is the dipole force. The strength of a dipole force is typically 10% of a covalent bond s strength. Dipole forces are stronger than dispersion forces. Chapter 13 8

9 Hydrogen Bonds Hydrogen bonds are a special type of dipole attraction. Hydrogen bonds are present when a molecule has an N H, O H, or F H bond. Hydrogen bonds are especially important in water and living organisms. Chapter 13 9

10 Physical Properties of Liquids There are four physical properties of liquids that we can relate to the intermolecular attractions present in molecules: 1. Vapor pressure 2. Boiling point 3. Viscosity 4. Surface tension Chapter 13 10

11 Vapor Pressure At the surface of a liquid, some molecules gain enough energy to escape the intermolecular attractions of neighboring molecules and enter the vapor state. This is evaporation. The reverse process is called condensation. When the rates of evaporation and condensation are equal, the pressure exerted by the gas molecules above a liquid is called the vapor pressure. Chapter 13 11

12 Vapor Pressure, Continued The stronger the intermolecular forces between the molecules in the liquid, the less molecules that escape into the gas phase. As the attractive force between molecules increases, vapor pressure decreases. Chapter 13 12

13 Vapor Pressure Comparison Let s compare water and ether. Water has strong intermolecular attractions, and ether has weak intermolecular attractions. At 0 C, neither has a significant vapor pressure. At 35 C, ether has a significant vapor pressure and water does not. Chapter 13 13

14 Vapor Pressure Versus Temperature As the temperature increases, the vapor pressure of a liquid increases. Again, the stronger the intermolecular attractions, the lower the vapor pressure at a given temperature. Chapter 13 14

15 Boiling Point The normal boiling point of a substance is the temperature at which the vapor pressure is equal to the standard atmospheric pressure. As we saw in the previous graph, the stronger the intermolecular attractions, the higher the boiling point of the liquid. A liquid with a high boiling point has a low vapor pressure. Chapter 13 15

16 Viscosity The viscosity of a liquid is a liquid s resistance to flow. Viscosity is the result of an attraction between molecules. The stronger the intermolecular forces, the higher the viscosity. Chapter 13 16

17 Surface Tension The attraction between molecules at the surface of a liquid it called surface tension. For an object to sink in a liquid, it must first break through the surface. The stronger the intermolecular attractions, the stronger the surface tension of a liquid. Chapter 13 17

18 Properties of Solids Unlike gases, solids do not respond dramatically to temperature and pressure changes. We can study the solid state and make five general observations. 1. Solids have a fixed shape and volume. Unlike liquids, solids are rigid. 2. Solids are either crystalline or noncrystalline. Crystalline solids contain particles in a regular, repeating pattern. Chapter 13 18

19 Properties of Solids, Continued 3. Solids do not compress or expand to any degree. Assuming there is no change in physical state, temperature and pressure have a negligible effect on the volume of a solid. 4. Solids have a slightly higher density than their corresponding liquid. One important exception is water; ice is less dense than liquid water. 5. Solids do not mix by diffusion. The particles are not free to diffuse in a solid heterogeneous mixture. Chapter 13 19

20 Crystalline Solids There are three types of crystalline solids, examples of which are shown below: 1. Ionic solids, such as NaCl 2. Molecular solids, such as S 8 3. Metallic solids, such as Cu 4. Crystalline network solids, such as diamonds Chapter 13 20

21 Ionic Solids A crystalline ionic solid is composed of positive and negative ions arranged in a regular, repeating pattern. In table salt, NaCl, sodium ions and chloride ions are arranged in a regular threedimensional structure referred to as a crystal lattice. Other ionic compounds will have different crystal lattices. Chapter 13 21

22 A crystalline molecular solid has molecules arranged in a particular conformation. In sulfur, S 8, the molecules are arranged in a regular threedimensional structure. Molecular Solids Other examples of crystalline molecular solids are table sugar, C 12 H 22 O 11, and water, H 2 O. Chapter 13 22

23 Metallic Solids A crystalline metallic solid is composed of metal atoms arranged in a definite pattern. A metallic crystal is made up of positive metal ions surrounded by valance electrons. Metals are good conductors of electricity because electrons are free to move about the crystal. This is referred to as the electron sea model. Chapter 13 23

24 Diamond Diamond is a special type of crystalline solid that has covalent bonds between large numbers of atoms. This type of crystalline solid is referred to as a network solid. Diamond is very hard and has a very high melting point. Chapter 13 24

25 General Properties of Solids Chapter 13 25

26 Changes in Physical State Heat is necessary to raise the temperature and change the physical state of a substance. Specific heat is the amount of heat required to raise 1.00 g of a substance 1 C. Water is the reference and its specific heat is 1.00 cal/(g x C). The specific heats of ice and steam are about half that of liquid water. Chapter 13 26

27 Solid Liquid Phase Changes As a solid melts, the temperature is constant until all of the solid is changed to liquid. The amount of heat required to melt 1.00 g of substance is called the heat of fusion (H fusion ). For water, the heat of fusion is 80.0 cal/g. When a liquid changes to a solid, the heat change is the heat of solidification (H solid ). The value of H fusion is the same as the value of H solid. Chapter 13 27

28 Liquid Gas Phase Changes As a liquid vaporizes, the temperature is constant until all of the liquid is changed to gas. The amount of heat required to vaporize 1.00 g of substance is called the heat of vaporization (H vapor ). For water, the value is 540 cal/g. When a gas changes to a liquid, the heat change is the heat of condensation (H cond ). The value of H vapor is the same as the value of H cond. Chapter 13 28

29 Solid Gas Phase Changes Some substances convert directly between the solid and gas phases. The process of a solid changing directly to a gas is called sublimation. The process of a gas changing directly to a solid is called deposition. Carbon dioxide (CO 2 ) and iodine (I 2 ) are two common substances that undergo sublimation deposition phase changes. Chapter 13 29

30 Temperature Energy Graphs We can graph the amount of energy required to change the temperature and physical state of a substance. The heating curve for water is shown here. As energy is added, the temperature increases and changes the physical state. Chapter 13 30

31 Energy from Heating Curves We can use the heating curve and heat values for water to calculate how much energy is required to change the temperature of a sample of water. The amount of energy required to raise the temperature of a substance is calculated using the following formula: heat = (specific heat) x (change in temperature) x (mass of sample) The amount of energy required to change the state of a substance is calculated as follows: heat = (H xxx ) x (mass) Chapter 13 31

32 Energy Calculation How much energy is required to raise 25.5 g of ice at 5.0 C to steam at C? Looking at the heating curve for water, there are four regions: 1. Heating of solid ice from 5.0 C to 0.0 C. 2. Melting of ice at 0.0 C. 3. Heating of liquid water from 0.0 C to C. 4. Vaporization of water at C. Chapter 13 32

33 Energy Calculation, Continued The total energy is the sum of the energy in Steps 1 through 4. Calculate the energy for each step. 1. (25.5g) x [0.0 ( 5.0)] C x(0.50 cal/g x C) = 64 cal 2. (25.5 g) x(80.0 cal/g)=2040cal 3. (25.5g) x [ )] C x (1.00 cal/g x C) = 2550 cal 4. (25.5 g) x(540 cal/g)= 13,800 cal The total energy is: 64 cal cal cal cal = 18,500 cal. Chapter 13 33

34 Structure of Water Let s start with the electron dot formula for water. Water has a bent molecular shape and the bond angle is Water is a polar molecule that exhibits strong hydrogen bonding. Chapter 13 34

35 Properties of Ice Water is one of the few substances that is less dense as a solid than as a liquid. As water freezes, the hydrogen bonds organize the water molecules into a three-dimensional structure where the molecules are farther apart then in the liquid. Liquid water has a density of 1.00 g/ml, while ice has a density of g/ml. Chapter 13 35

36 Water Purification In many areas, water has lots of dissolved minerals leading to high concentrations of ions. This is referred to as hard water. It is often not suitable for use in agriculture or drinking. The water is purified in a water softener by exchanging the cations and anions for H + ions and OH ions. Chapter 13 36

37 Physical Properties of Water Water has unusual melting and boiling points, especially compared to the other hydrogen compounds of Group VIA/16. This is due to hydrogen bonding that is present in water, but not present in H 2 S, H 2 Se, or H 2 Te. Chapter 13 37

38 Chemical Properties of Water Water can undergo an electrolysis reaction to produce hydrogen and oxygen: 2 H 2 O(l) 2 H 2 (g) + O 2 (g) Water reacts with active metals to produce hydrogen and a metal hydroxide: 2 K(s) + 2 H 2 O(l) 2 KOH(aq) + H 2 (g) Water reacts with metal oxides to produce a base: CaO(s) + H 2 O(l) Ca(OH) 2 (aq) Water reacts with nonmetal oxides to produce an acid: CO 2 (g) + H 2 O(l) H 2 CO 3 (aq) Chapter 13 38

39 Reactions that Produce Water Water is obtained as a product in several types of chemical reactions. Combustion reactions: 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O (g) C 2 H 5 OH (g) + 3 O 2 (g) 2 CO 2 (g) + 3 H 2 O (g) Neutralization reactions: H 3 PO 4 (aq) + 3 LiOH (aq) Li 3 PO 4 (aq) + 3 H 2 O (l) Dehydration reactions: Water is driven off from a hydrate by heating. Chapter 13 39

40 Hydrates A hydrate is a crystalline ionic compound that contains water: CuSO 4 5 H 2 O The dot indicates that water molecules are bonded directly to each unit of hydrate. Heating a hydrate drives off the water and produces an anhydrous compound (without water). heat CuSO 4 5 H 2 O(s) CuSO 4 (s) + 5 H 2 O(l) Chapter 13 40

41 Critical Thinking: Bottled Water Bottled water is a very large industry. Water from our home faucet is tap water. Tap water that has been processed by distillation or deionization is purified water. Spring water is obtained from natural underground springs. In most cases, bottled water has lower purity standards than tap water. Chapter 13 41

42 Chapter Summary There are three types of intermolecular bonds: 1. Dispersion forces 2. Dipole forces 3. Hydrogen bonds Dispersion forces are the weakest, and hydrogen bonds are the strongest. These intermolecular attractions affect the physical properties of substances. Chapter 13 42

43 Chapter Summary, Continued There are five properties of liquids that are affected by intermolecular bonds: 1. Vapor pressure decreases as intermolecular force increases. 2. Boiling point increases as intermolecular force increases. 3. Viscosity increases as intermolecular force increases. 4. Surface tension increases as intermolecular force increases. Chapter 13 43

44 Chapter Summary, Continued There are three types of crystalline solids: 1. Ionic solids 2. Molecular solids 3. Metallic solids Energy is required to raise the temperature of a substance. Water displays many unique properties due to the presence of strong hydrogen bonds. Chapter 13 44

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

Properties of Ionic and Covalent Compounds. Intermolecular Forces

Properties of Ionic and Covalent Compounds. Intermolecular Forces Properties of Ionic and Covalent Compounds Intermolecular Forces Physical Properties & Bond Types Physical properties of substances are affected by the attractive forces between particles Greater attraction

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Covalent Bonding and Intermolecular Forces

Covalent Bonding and Intermolecular Forces Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

12.1 How do sub-atomic particles help us to understand the structure of substances?

12.1 How do sub-atomic particles help us to understand the structure of substances? 12.1 How do sub-atomic particles help us to understand the structure of substances? Simple particle theory is developed in this unit to include atomic structure and bonding. The arrangement of electrons

More information

Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds)

Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds) CfE Higher Chemistry Unit One Chemical Changes and Structure Chapter Four Bonding in Compounds Types Of Bonding In Compounds Bonding Metallic Ionic Covalent (Elements) (Compounds) (Elements and Compounds)

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Chemistry I Study Guideline - Unit 11: Liquids + Solutions

Chemistry I Study Guideline - Unit 11: Liquids + Solutions Chemistry I Study Guideline - Unit 11: Liquids + Solutions By the end of this chapter the skills you should be able to demonstrate are: 1. Explain the properties of the different phases of matter in terms

More information

Chapter 13 Properties of liquids

Chapter 13 Properties of liquids Chapter 13 Properties of liquids 1 over 75% of earth is covered with water water supports and enhance life in chemistry, water provides the medium of numerous reactions 13.1 What is a liquid? liquids lie

More information

Goals Pearson Education, Inc.

Goals Pearson Education, Inc. Goals 1. What is an ion, what is an ionic bond, and what are the general characteristics of ionic compounds? Be able to describe ions and ionic bonds, and give the general properties of compounds that

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13.

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13. HONORS CHEMISTRY - CHAPTER 13 STATES OF MATTER OBJECTIVES AND NOTES - V15 NAME: DATE: PAGE: THE BIG IDEA: KINETIC THEORY Essential Questions 1. What factors determine the physical state of a substance?

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

When it comes to Chemical Bonding, I can ANSWERS

When it comes to Chemical Bonding, I can ANSWERS When it comes to Chemical Bonding, I can ANSWERS 1. The 3 types of chemical bonds are IONIC, COVALENT, and METALLIC bonds. 2. When atoms have 8 valence electrons they are most stable. (exception 2 for

More information

Unit 5 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is an ion? An atom has a neutral charge because it has an equal number of electrons and protons. An ion is a particle with a positive or negative charge. An ion forms when an atom

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

Chapter 5 Notes: Ions and Ionic Compounds

Chapter 5 Notes: Ions and Ionic Compounds Chapter 5 Notes: Ions and Ionic Compounds Sec. 5.1 Simple Ions 1. Relate the electron configuration of an atom to its chemical reactivity. 2. Determine an atom s number of valence electrons, and use the

More information

Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

How are atoms joined together to make compounds with different structures?

How are atoms joined together to make compounds with different structures? Chapter 8 Covalent Bonding 8.1 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Introduction to Ionic Bonds

Introduction to Ionic Bonds Introduction to Ionic Bonds The forces that hold matter together are called chemical bonds. There are four major types of bonds. We need to learn in detail about these bonds and how they influence the

More information

Test 1: Introduction to Chemistry

Test 1: Introduction to Chemistry Name: Sunday, October 14, 2007 Test 1: Introduction to Chemistry 1. Two substances, A and Z, are to be identified. Substance A can not be broken down by a chemical change. Substance Z can be broken down

More information

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

Covalent Bonding. How Covalent Bonds Form

Covalent Bonding. How Covalent Bonds Form Covalent Bonding 1 Covalent Bonding How Covalent Bonds Form Just as you and your friend can work together by sharing your talents, atoms can become more stable by sharing electrons. The chemical bond formed

More information

Chapter 14 Lecture Outline

Chapter 14 Lecture Outline A. Properties of liquids Chapter 14 Lecture Outline The intermolecular forces in liquids are stronger than those in gases, so although the molecules of a liquid are free to move around, they remain connected

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Packet 4: Bonding. Play song:  (One of Mrs. Stampfel s favorite songs) Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Chemistry Sample Questions

Chemistry Sample Questions Chemistry Sample Questions Name: 1) Which phase change represents deposition? A) liquid gas B) gas solid C) solid liquid D) gas liquid 2) Which pair has identical electron configurations? A) K 0 and Na

More information

PS-4.2 Explain how the process of covalent bonding provides chemical stability through the sharing of electrons.

PS-4.2 Explain how the process of covalent bonding provides chemical stability through the sharing of electrons. PS-4.1 Explain the role of bonding in achieving chemical stability. All of the noble gases are chemically stable A noble gas electron configuration (an outside energy level with 2 or 8 electrons) is chemically

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

Properties and Classifications of Matter

Properties and Classifications of Matter PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,

More information

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell Assignment 9 Solutions Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. 8.32. Collect and Organize Of B 3+, I, Ca 2+, and Pb 2+ we are to identify which have a complete

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude 1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?

More information

Solid Type of solid Type of particle

Solid Type of solid Type of particle QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

More information

The particulate nature of matter

The particulate nature of matter The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and

More information

Electrolysis This is when an electric current passes through an electrolyte.

Electrolysis This is when an electric current passes through an electrolyte. Conductors Metals and graphite are the only solids which conduct electricity, but no chemical change is involved. Liquid (melted) metals also conduct, but again there is no chemical change. Electrolytes

More information

Liquids and Solids. 1. Are liquids closer in physical properties to solids or gases? Why?

Liquids and Solids. 1. Are liquids closer in physical properties to solids or gases? Why? Liquids and Solids 1. Are liquids closer in physical properties to solids or gases? Why? Liquids are more similar to solids. There are many intermolecular forces experienced by solids and liquids and very

More information

Chapter 2: The Nature of Molecules and the Properties of Water

Chapter 2: The Nature of Molecules and the Properties of Water Chapter 2: The Nature of Molecules and the Properties of Water Biology is the study of living things, and it is important to understand their chemical nature. The processes that allow life to exist follow

More information

1. Balance the following equation. What is the sum of the coefficients of the reactants and products?

1. Balance the following equation. What is the sum of the coefficients of the reactants and products? 1. Balance the following equation. What is the sum of the coefficients of the reactants and products? 1 Fe 2 O 3 (s) + _3 C(s) 2 Fe(s) + _3 CO(g) a) 5 b) 6 c) 7 d) 8 e) 9 2. Which of the following equations

More information

Name Matter Questions Date:

Name Matter Questions Date: Name Matter Questions Date: 1. Which substance has a definite shape and a definite volume at STP? 1) NaCl(aq) 2) Cl2(g) 3) CCl4( ) 4) AlCl3(s) 2. Which two particle diagrams represent mixtures of diatornic

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

More information

Unit 6 Water and Its Properties

Unit 6 Water and Its Properties Unit 6 Water and Its Properties 15.1 Water and Its Properties I. Liquid Water A. Surface Tension 1. Surface Tension a. A force that tends to pull adjacent parts of a liquid's surface together, thereby

More information

7. 2. KOH (you need an acid or a base, this is a base) 8. 1. 76. All gold atoms have 79 protons and electrons, this is a +3 cation.

7. 2. KOH (you need an acid or a base, this is a base) 8. 1. 76. All gold atoms have 79 protons and electrons, this is a +3 cation. IB/SL Chemistry Name ANSWERS Test; Past Chemistry Regents Exams Most Frequently Missed Questions 1. 1. A HIGH PROBABLITY OF FINDING AN ELECTRON 2. 3. +8 (every atom of oxygen in the universe) 3. 2. LOW

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM 1 Oct 14 10:07 PM Oct 14 10:07 PM 2 Oct 14 10:10 PM Oct 14 10:11 PM 3 comparing ionic and covalent bonding.notebook October 16, 2014 Hardness Ionic

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

More information

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples Chemistry: 7. Ionic and Covalent Bonding Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC41 Understand how atoms of elements combine

More information

CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY CHAPTER 4: MATTER & ENERGY Problems: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,41,43,45,47,49,51,53,55,57,59,63,65,67,69,77,79,81,83 4.1 Physical States of Matter Matter: Anything that has mass and occupies

More information

Physical/Chemical practice questions Name Regents Chemistry

Physical/Chemical practice questions Name Regents Chemistry Physical/Chemical practice questions Name Regents Chemistry 1. Which substance can not be decomposed by a chemical change? A) ammonia B) copper C) propanol D) water 6. Which substance can be decomposed

More information

Review of bond types. Sharing Electrons to Form Covalent Bonds. What is the covalent bond? Patterns in nonmetal - nonmetal chemical reactions:

Review of bond types. Sharing Electrons to Form Covalent Bonds. What is the covalent bond? Patterns in nonmetal - nonmetal chemical reactions: Review of bond types To find truth you have to try and you have to persist in trying. Sometimes it s fun. Sometimes it s hard or boring. But it s always worth it.... The Creator of the universe has implanted

More information

Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium. An Introduction to Chemistry by Mark Bishop

Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium. An Introduction to Chemistry by Mark Bishop Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium An Introduction to Chemistry by Mark Bishop Chapter Map Condensation (Gas to Liquid) Evaporation Particle Escape For a particle to

More information

EXAMPLE EXERCISE 4.1 Change of Physical State

EXAMPLE EXERCISE 4.1 Change of Physical State EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid

More information

Drawing Lewis Structures

Drawing Lewis Structures Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

General Physical Science. The Law of Conservation of Mass. Example. Chapter 12 Chemical Bonding

General Physical Science. The Law of Conservation of Mass. Example. Chapter 12 Chemical Bonding General Physical Science Chapter 12 Chemical Bonding The Law of Conservation of Mass No detectable change in the total mass occurs during a chemical reaction Example In a chemical reaction involving carbon

More information

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

National 4/5 Chemistry Learning Outcomes (what you need to know ) Ah! (280) The Element of Surprise! Unit 1 Chemical Changes and Structure

National 4/5 Chemistry Learning Outcomes (what you need to know ) Ah! (280) The Element of Surprise! Unit 1 Chemical Changes and Structure National 4/5 Chemistry Learning Outcomes (what you need to know ) 123 Ah! (280) The Element of Surprise! Unit 1 Chemical Changes and Structure Unit 1 Revision Planner Topic Mini-test result /10 Topic revised

More information

Chemistry Scope & Sequence Student Outcomes (Objectives Skills/Verbs)

Chemistry Scope & Sequence Student Outcomes (Objectives Skills/Verbs) s 1 Measurement and Problem Solving 2-3 Weeks Measurements are subject to errors which need to be accounted for. 1. How do you accurately measure, using significant figures, in the metric system? Understand

More information

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution:

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: 1. What are the different types of Intermolecular forces? Define the following terms:

More information

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams Chem 121 Problem set VIII LUTI - 1 Problem et VIII Liquids, olids, Intermolecular orces and Phase Diagrams 1a) this is a point on the vapour pressure curve 1b) gas 1c) gas to liquid Water C 2 2a) solid

More information

Test Bank - Chapter 5 Multiple Choice

Test Bank - Chapter 5 Multiple Choice Test Bank - Chapter 5 The questions in the test bank cover the concepts from the lessons in Chapter 5. Select questions from any of the categories that match the content you covered with students. The

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2012 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry AC112

More information

CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY CHAPTER 4: MATTER & ENERGY Problems to try at the end of the chapter. Answers in Appendix I: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,39, 41,43,45,47,49,51,53,55,57,59,63,65,67,87,89, 4.1 Physical States

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2011 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry [AC111]

More information

UW Department of Chemistry Lab Lectures Online

UW Department of Chemistry Lab Lectures Online Lab 5: Periodic Trends Part I: (Prelab) A Computer Study and Introduction to ChemDraw Part II: Acid-Base Properties of Period 3 and Group 5A Elemental Oxides Part III: Oxidizing Ability of the Elemental

More information

Ionic/covalent/metallic bonds

Ionic/covalent/metallic bonds .1..1 Ionic/covalent/metallic bonds 07 minutes 99 marks Page 1 of 7 Q1. (a) The diagram below represents a part of the structure of sodium chloride. The ionic charge is shown on the centre of only one

More information

Chapter 2: Atoms, Molecules & Life

Chapter 2: Atoms, Molecules & Life Chapter 2: Atoms, Molecules & Life What Are Atoms? An atom are the smallest unit of matter. Atoms are composed of Electrons = negatively charged particles. Neutrons = particles with no charge (neutral).

More information

THE PROPERTIES AND STRUCTURE OF MATTER

THE PROPERTIES AND STRUCTURE OF MATTER THE PROPERTIES AND STRUCTURE OF MATTER COURSE CONTENT 1. Define matter and state of matter 2. Properties of solids, liquids and gases 3. Changes in matter Physical and chemical changes Phase changes of

More information

Chemistry Unit: 4CH0 Science (Double Award) 4SC0 Paper: 1C

Chemistry Unit: 4CH0 Science (Double Award) 4SC0 Paper: 1C Write your name here Surname Other names Edexcel International GCSE Centre Number Chemistry Unit: 4C0 Science (Double Award) 4SC0 Paper: 1C Friday 13 January 2012 Morning Time: 2 hours You must have: Ruler

More information

Unit 4 review for finals

Unit 4 review for finals Unit 4 review for finals These are the topics you should know and be able to answer questions about: 1. Types of compounds a. What are the four types of bonding? Describe each type of bonding. i. Ionic

More information

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds Topic 3 National Chemistry Summary Notes Bonding, Structure and Properties of Substances LI 1 Covalent Bonds Most atoms do not exist as single atoms. They are mainly found combined with other atoms in

More information

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter.

Warm-Up 9/9. 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/9 1. Define the term matter. 2. Name something in this room that is not matter. Warm-Up 9/16 1. List the three most important rules of lab safety. 2. Would you classify jello as a solid or a

More information

Chemical Equations C5.6b Predict single replacement reactions.

Chemical Equations C5.6b Predict single replacement reactions. Chemistry 2SEM Chemical Equations C5.6b Predict single replacement reactions. Common Assessment Review Predict the following single replacement reactions: a. Zn + Pb(C2H3O2)2 ----> Pb + Zn(C2H3O2)2_ b.

More information

The breaking of bonds and the forming of bonds occur during chemical reactions.

The breaking of bonds and the forming of bonds occur during chemical reactions. Chemical Bonding The breaking of bonds and the forming of bonds occur during chemical reactions. Aspirin The formula for a molecule of aspirin is C 9 H 8 O 4 Is it an ionic or covalent (molecular) compound?

More information

Basic Concepts About Matter How do we learn chemistry? A Conceptual Approach Atoms: A Brief Overview Molecules Molecules Physical States of Matter

Basic Concepts About Matter How do we learn chemistry? A Conceptual Approach Atoms: A Brief Overview Molecules Molecules Physical States of Matter Basic Concepts About Matter Chemistry is the study of the properties and changes of matter What exactly is matter? Matter is anything which has mass and takes up space (volume) Examples of matter: Sand

More information

Question Bank Electrolysis

Question Bank Electrolysis Question Bank Electrolysis 1. (a) What do you understand by the terms (i) electrolytes (ii) non-electrolytes? (b) Arrange electrolytes and non-electrolytes from the following substances (i) sugar solution

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells Chapter 2 Introduction: Who Tends This Garden? Chemicals are the stuff that make up our bodies and those of other organisms They make up the physical environment as well The ordering

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

Chemistry Summer School Pre-Test 2015

Chemistry Summer School Pre-Test 2015 NAME: 1. A material consists of pure sodium. How many types of atomic structures are present in this substance? (C.1.1) A. No atomic structures are present as this is a pure substance. B. One type of atomic

More information

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen.

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen. Q1. (a) The diagram represents an atom of nitrogen. Label the diagram. (3) (b) Ammonia has the formula NH 3. It is made from nitrogen and hydrogen. How many atoms are in an ammonia molecule?... (c) The

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Chemistry Final Exam Review

Chemistry Final Exam Review Name: Date: Block: Chemistry Final Exam Review 2012-2013 Unit 1: Measurement, Numbers, Scientific Notation, Conversions, Dimensional Analysis 1. Write 0.000008732 in scientific notation 8.732x10-6 2. Write

More information

Chemical Bonding. Elements of the Lewis Theory. More Lewis Theory. Electron Dot Diagrams. Lewis Structures, Polarity and Bond Classification

Chemical Bonding. Elements of the Lewis Theory. More Lewis Theory. Electron Dot Diagrams. Lewis Structures, Polarity and Bond Classification Elements of the Lewis Theory Chemical Bonding Lewis Structures, Polarity and Bond Classification 1. Valence electrons play a fundamental role in chemical bonding 2. Sometimes bonding involves the TRANSFER

More information