# Date: Deflection of an Electron in a Magnetic Field

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name: Partners: Date: Deflection of an Electron in a Magnetic Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric and magnetic field on the motion of a charged particle, in this case the electron. Theory The Lorentz force law, Equation 1, tells us that a charged particle experiences a force in an area where there exists an electric or magnetic field. r F = q E r + v r " B r ( ) (1) where F is the force exerted on the charged particle, q is the charge of the particle, E is the electric field, v is the velocity of the charged particle and B is the magnetic field. When an electron (q = -e), is in a magnetic field, where E = 0, the electron experiences a force given by Equation 2. r F = "e v r # B r ( ) (2) To examine the motion of an electron in a magnetic field, we will use a cathode ray tube. To examine these effects, we use a CRT. Enclosed within the cathode ray tube is an electron gun, Figure 1, which will be used to produce electrons with given energy. Figure 1: A cross-section of the electron gun inside the cathode ray tube. The electron gun will emit electrons with a kinetic energy equal to the charge of an electron times the accelerating voltage, V acc. These electrons will be deflected by a

2 magnetic field that is generated by a current-carrying wire. In this setup, the electron is moving perpendicular to the magnetic field. Thus, the force on the electron is: F = evb (3) Additionally, we know from last semester that, when the force acting on a body is perpendicular to the motion, the resulting motion is circular. Using this and conservation of energy SHOW that the electrons will move in a circle of radius R, given in equation 4: R = m eb 2eV acc m (4) The radius of curvature is related to the spot that is made on the screen, as seen in Figure 2. The electron beam is traveling from the left (where it is emitted by the electron gun) to the anode, and then on towards the screen. In the absence of a magnetic field this trajectory would be a straight line path, a distance S long; however, when a magnetic field is added (into the page) the electron beam will curve away from its original course, as seen in Figure 1. 34

3 Figure 2 If the magnetic field is uniform, the force will be constant and the radius of curvature, R, is fixed. We can use geometry to determine how R is related to measurable quantities. 1. BAC is similar to DEB, since 2 sides are mutually perpendicular. 2. Using the Pythagorean theorem: ( BC ) 2 = S 2 + x 2 3. For similar triangles, the ratio of sides is equal. Also, DE bisects BC. Thus: ( ) x ( BC) = BE 1 R = BC 2 4. From this, you should be able to SHOW: 2Rx = ( BC) 2 ( ) R 5. Using our result from line 2 and some algebra, you should be able to SHOW: R = S 2 + x 2 2x " S 2 2x (5) where x is the deflection of the electron beam and S = 0.213m for the tubes used in this lab. 35

4 Using equations 4 and 5, we find a preliminary expression for the deflection, x, in terms of the magnetic field strength: S 2 2x " 1 B 2mV acc e (6) We cannot measure the strength of the magnetic field directly, but we can express it in terms of the current that produces it. To simplify the math, we will make another approximation. The extreme oblong rectangular geometry of the coils used to generate the magnetic field, B, means that the two far ends contribute relatively little. As such, the coil can be thought of as two sets of N long wires, where N is the number of turns in the coil. The magnetic field generated by a single long straight wire: B = µ o I 2"a (7) where a is the distance from the wire to the electron beam, I is the current which is generating B, and µ 0 = 4 π 10-7 Tesla m/amp. The magnetic field produced by the current in the top wire adds to the magnetic field produced by the current in the bottom wire. The wires on the top are about the same distance from the electron beam as the wires on the bottom. Since we are treating our coils as two sets of N wires, the magnetic field is: # B = B top + B bottom = N % \$ µ oi 2"a top & ( + N # µ o I % ' \$ 2"a bottom & ( = µ oni ' "a (8) Substituting this result into Equation 6 and simplifying, you should be able to SHOW: e m x = µ NS 2 o 2 2" a I V acc (9) Procedure The apparatus will be pre-wired, as described below. Examine the wiring, making sure that it agrees with what is described below. Once you think it is correct, call the instructor or TA over to look at it before turning any power supply on. The circuit diagram for the CRT control box (the aluminum box at your station) is seen below, in Figure 3. 36

5 Figure 3 As before, all of the voltages needed by the oscilloscope box in this lab are produced by the HeathKit Regulated power Supply, Model IP-32. A separate power supply provides current to the electromagnet (Figure 4). 1. The binding post to the far left on the power supply should be connected to binding post 5 (yellow) on the aluminum box. This controls the intensity of the electron beam and can be adjusted using the knob on the left hand side of the power supply. 2. The binding post labeled common and ground on the power supply should all be connected to binding post 4 (black) on the CRT control box. Additionally, this post should be connected to the instrument ground at your station. 3. The binding post labeled 6.3 Vac on the power supply should be connected to the binding posts 6 and 7 (green) on the CRT control box. 4. The red post to the far right of the power supply should be connected to binding post 1 on the CRT control box. This controls the accelerating voltage for the electron gun. This is controlled using the knob on the right of the power supply. 5. Binding post 12 and 13 and binding post 14 and 15 on the CRT control box should be initially connected. 6. The accelerating voltage (V acc ) is the potential difference between binding post 2 and 5 on the CRT control box. 37

6 Figure 4 MAKE SURE that the ammeter is connected in series, as shown in Figure 3, and that the CRT is centered horizontally in the electromagnetic coil. Once you have recorded values for a (remember, it's the perpendicular distance from the wires to the center of the tube), and the number of wires, N, have the instructor or TA make sure that everything is properly connected. Preparing to take the data: 1. Turn the 400 V power supply to "standby." 2. Turn on the coil power supply. The current knob should be set to zero initially, but both voltage knobs should be set to their largest possible value. 3. Set your meters to their appropriate settings and then turn them on. 4. Turn the 400 V power supply to on (be sure that it was on standby for 30 seconds). If you do not see a green spot on the screen, increase the accelerating voltage by turning the knob on the right of the HeathKit power supply clockwise. Once you see a green spot, adjust the focus using knob labeled Focus on the CRT control box until you observe a clear point. 5. Adjust the accelerating voltage to the point immediately before the spot vanishes. You'll be able to use accelerating voltages between this minimum value and 400 V. 6. Adjust the currents in the coil by adjusting the current knob on the coil power supply and watch what happens. Do not adjust the voltage knobs. When you are done, return the current in the coil to zero. You are now ready to take the data. You will measure the deflection for at least five different currents (some positive and some negative) and three accelerating voltages. Negative currents are obtained by simply interchanging the leads to the coil. Because the 38

7 brightness, focus and the location of the spot will vary with accelerating voltage, you should vary the current for fixed values for the accelerating voltage. Do try to get data with similar values, but you don't need to spend excessive time reproducing the exact current or voltage each time. As you may have noticed, the values given the lab manual may not be identical to what your system can produce; the values listed are suggestive, not exact. As such, you may need to modify the values given to what your system can provide. With this in mind, record your data on the next page. 39

8 S = m a = m N = e = C V (V) I (A) x spot ( ) I V acc

9 Obviously, we would like to compare our data to what the theory predicts, i.e. Equation 9. e m x = µ NS 2 o 2 2" a I V acc What should you plot? What type of relationship (linear, power, exponential, etc.) do you expect if you plot your data this way? Plot your data and perform the fit you proposed above. Does your data have the expected functional relationship? Discuss any unexpected results. Attach a copy of your graph to the lab manual. There is an additional check that you can perform. In Equation 9, there is the ratio of the electron charge to the electron mass, e m. You should be able to extract this ratio from one of the curve fit parameters. From you fit, how can you find this ratio? How does this result compare with the accepted value? Is this result reasonable? Experimental Value: e/m = C/kg Accepted Value: e/m = C/kg % error =. 41

10 Questions 1. How do your values for the magnetic field compare with the Earth s magnetic field? 2. Why does the spot vanish when the accelerating voltage is too low? Hint: Look back at the equations (5) and (9) -- this should suggest two possibilities. Discuss both possibilities. 3. Why was it important to take measurements foe the current flowing in the positive and negative direction? 4. It was assumed that the ends of the coil made negligible contributions to the magnetic field. Is this true? Justify your argument. 42

11 Initiative Possible ideas: 1. Examine the structure of the magnetic field created by a wire, or a coil of wire. Does the magnetic field resemble what you have seen in your text and in class? 2. Carefully observe the deflections, which occur when you rotate the tube in the horizontal plane (with the coil off and the tube and its holder out of the coil frame, v free to rotate on the table). Remembering that F = q( v " B v ), what qualitative statements can you make about the magnetic field in the room? 43

12 Conclusions 44

### Deflection of Electrons in an Electric Field

Name: Partners: Date: Deflection of Electrons in an Electric Field Purpose In this lab, we use a Cathode Ray Tube (CRT) to measure the effects of an electric field on the motion of a charged particle,

### CHARGE TO MASS RATIO OF THE ELECTRON

CHARGE TO MASS RATIO OF THE ELECTRON In solving many physics problems, it is necessary to use the value of one or more physical constants. Examples are the velocity of light, c, and mass of the electron,

### Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

### Physics 19. Charge to Mass Ratio of the Electron

Physics 19 Charge to Mass Ratio of the Electron Revised 9/2012, ABG Theory Elementary particle physics has as its goal to know the properties of the many atomic and subatomic particles (mesons, quarks,

### qv x B FORCE: ELECTRONS IN A MAGNETIC FIELD

qv x B Force 9-1 qv x B FORCE: ELECTRONS IN A MAGNETIC FIELD Objectives: To see the effect of a magnetic field on a moving charge directly. To also measure the specific charge of electrons i.e. the ratio

### Lab 5 - Electron Charge-to-Mass Ratio

Lab 5 Electron Charge-to-Mass Ratio L5-1 Name Date Partners Lab 5 - Electron Charge-to-Mass Ratio OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

### LAB 8: Electron Charge-to-Mass Ratio

Name Date Partner(s) OBJECTIVES LAB 8: Electron Charge-to-Mass Ratio To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass ratio.

### 6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

### Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

### PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

### Charged Particles Moving in an Magnetic Field

rev 12/2016 Charged Particles Moving in an Magnetic Field Equipment for Part 1 Qty Item Parts Number 1 Magnetic Field Sensor CI-6520A 1 Zero Gauss Chamber EM-8652 1 Dip Needle SF-8619 1 Angle Indicator

### Charge to mass ratio of the electron

1. Introduction Charge to mass ratio of the electron Julia Velkovska September 2006 In this lab you will repeat a classic experiment which was first performed by J.J. Thomson at the end of the 19 th century.

### Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.

### Study the effects of electric and magnetic fields on a charged particle and measure the charge-to-mass ratio (e/m) of the electron.

Experiment 2 The Ratio e/m for Electrons 2.1 Objective Study the effects of electric and magnetic fields on a charged particle and measure the charge-to-mass ratio (e/m) of the electron. 2.2 Theory In

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### PROBLEM #8: DEFLECTION OF AN ELECTRON BEAM BY AN ELECTRIC FORCE

PROBLEM #8: DEFLECTION OF AN ELECTRON BEAM BY AN ELECTRIC FORCE You are investigating different methods of treating malignant skin tumors without surgery. One suggestion is to use high energy electrons

### MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron

Physics 9 Charge-to-mass: e/m p. 1 NAME: SECTION NUMBER: TA: LAB PARTNERS: MAGNETISM LAB: The Charge-to-Mass Ratio of the Electron Introduction In this lab you will explore the motion of a charged particle

### EXPERIMENT IV. FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND. FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD (µ o )

1 PRINCETON UNIVERSITY PHYSICS 104 LAB Physics Department Week #4 EXPERIMENT IV FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD

### The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab.

The Charge to Mass Ratio (e/m) Ratio of the Electron NOTE: You will make several sketches of magnetic fields during the lab. Remember to include these sketches in your lab notebook as they will be part

### 4.1.Motion Of Charged Particles In Electric And Magnetic Field Motion Of Charged Particles In An Electric Field

4.1.Motion Of Charged Particles In Electric And Magnetic Field 4.1.1. Motion Of Charged Particles In An Electric Field A charged particle in an electric field will experience an electric force due to the

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

### Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Electron Charge to Mass Ratio e/m

Electron Charge to Mass Ratio e/m J. Lukens, B. Reid, A. Tuggle PH 35-001, Group 4 18 January 010 Abstract We have repeated with some modifications an 1897 experiment by J. J. Thompson investigating the

### Three-dimensional figure showing the operation of the CRT. The dotted line shows the path traversed by an example electron.

Physics 241 Lab: Cathode Ray Tube http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html NAME: Section 1: 1.1. A cathode ray tube works by boiling electrons off a cathode heating element

### 2015 Pearson Education, Inc. Section 24.5 Magnetic Fields Exert Forces on Moving Charges

Section 24.5 Magnetic Fields Exert Forces on Moving Charges Magnetic Fields Sources of Magnetic Fields You already know that a moving charge is the creator of a magnetic field. Effects of Magnetic Fields

### Magnetism Conceptual Questions. Name: Class: Date:

Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must

### J. J. Thomson's Measurement of e/m for the electron

Physics 165 Laboratory J. J. Thomson's Measurement of e/m for the electron In 1897, the cathode ray tube or CRT, which is now a part of most TV sets, was the last word in advanced laboratory instrumentation

### PHYS 345 Laboratory: Charge to Mass Ratio of the Electron

PHYS 345 Laboratory: Charge to Mass Ratio of the Electron Purpose: Apparatus: To determine the charge to mass ratio of the electron and compare it with the accepted value. CENCO e/m apparatus (electron

### EXPERIMENT #4 Charge to Mass ratio of the Electron

EXPERIMENT #4 Charge to Mass ratio of the Electron GOALS Physics Measure the charge-to-mass ratio e/m for electrons of a given kinetic energy moving in a magnetic field. Technique A low pressure Hg gas

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio

### Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

### Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### FORCE ON A CURRENT IN A MAGNETIC FIELD

7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Physics 12 Study Guide: Electromagnetism Magnetic Forces & Induction. Text References. 5 th Ed. Giancolli Pg

Objectives: Text References 5 th Ed. Giancolli Pg. 588-96 ELECTROMAGNETISM MAGNETIC FORCE AND FIELDS state the rules of magnetic interaction determine the direction of magnetic field lines use the right

### Handout 7: Magnetic force. Magnetic force on moving charge

1 Handout 7: Magnetic force Magnetic force on moving charge A particle of charge q moving at velocity v in magnetic field B experiences a magnetic force F = qv B. The direction of the magnetic force is

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### 1 of 7 4/13/2010 8:05 PM

Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field

### Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

### Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 To study

### HSC Physics SAMPLE LECTURE SLIDES

HSC SAMPLE LECTURE SLIDES HSC Exam Preparation Programs 4October2015 c 2015 Sci School TM.Allrightsreserved. Overview By the 1850 s vacuum pumps had become efficient enough to reduce the pressure inside

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

### Chapter 5. Magnetic Fields and Forces. 5.1 Introduction

Chapter 5 Magnetic Fields and Forces Helmholtz coils and a gaussmeter, two of the pieces of equipment that you will use in this experiment. 5.1 Introduction Just as stationary electric charges produce

### Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

### Chapter 29. Magnetic Fields

Chapter 29 Magnetic Fields A Partial History of Magnetism 13 th century BC Chinese used a compass 800 BC Uses a magnetic needle Probably an invention of Arabic or Indian origin Greeks Discovered magnetite

### 21 MAGNETIC FORCES AND MAGNETIC FIELDS

CHAPTER 21 MAGETIC ORCE AD MAGETIC IELD COCEPTUAL QUETIO 1. REAOIG AD OLUTIO Magnetic field lines, like electric field lines, never intersect. When a moving test charge is placed in a magnetic field so

### My Website:

PH203 Recitation Week 09 Problem Set Spring 2015 Ryan Scheirer Email: scheirer@onid.orst.edu My Website: http://people.oregonstate.edu/~scheirer/ph203_rec.html Problem 01 For the following questions, use

### Phys 102 Spg Exam No. 2 Solutions

Phys 102 Spg. 2008 Exam No. 2 Solutions I. (20 pts) A 10-turn wire loop measuring 8.0 cm by 16.0 cm carrying a current of 2.0 A lies in the horizontal plane and is free to rotate about a horizontal axis

### Lab 11: Magnetic Fields Name:

Lab 11: Magnetic Fields Name: Group Members: Date: TA s Name: Objectives: To measure and understand the magnetic field of a bar magnet. To measure and understand the magnetic field of an electromagnet,

### J.J. Thomson, Cathode Rays and the Electron

Introduction Voltage source Experimenters had noticed that sparks travel through rarefied (i.e. low pressure) air since the time of Franklin. The basic setup was to have two metal plates inside a glass

### (b) Draw the direction of for the (b) Draw the the direction of for the

2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

### mv = ev ebr Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer KE=PE magnitude of electron charge

1.4 The Mass Spectrometer Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer mv r qb mv eb magnitude of electron charge 1 mv ev KEPE v 1 mv ebr m v e r m B m

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Lesson 12: Magnetic Forces and Circular Motion!

Lesson 12: Magnetic Forces and Circular Motion If a magnet is placed in a magnetic field, it will experience a force. Types of magnets: Direction of the force on a permanent magnet: Direction of the force

### SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS GRAVITATIONAL, ELECTRIC, &... FIELDS L Magnetic Force on Moving Charges (P.386-391) Particle Accelerators As was stated earlier, the ability to accelerate charged particles with

### Magnetic Fields; Sources of Magnetic Field

This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

### Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements)

Test - A2 Physics Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010

### Magnetic Forces and Magnetic Fields

1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

### Magnets. We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect.

Magnets We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect. What you are seeing is another invisible force field known as

### MOVING CHARGES AND MAGNETISM

MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the

### Exam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008

Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and

### Question Details C14: Magnetic Field Direction Abbott [ ]

Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

### LABORATORY V MAGNETIC FIELDS AND FORCES

LABORATORY V MAGNETIC FIELDS AND FORCES Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### PHY 212 LAB Magnetic Field As a Function of Current

PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator

### Charge and Mass of the Electron

PHY 19 Charge and Mass of the Electron 1 Charge and Mass of the Electron Motivation for the Experiment The aim of this experiment is to measure the charge and mass of the electron. The charge will be measured

### PSS 27.2 The Electric Field of a Continuous Distribution of Charge

Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight Problem-Solving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.

### Chapter 27 Magnetic Field an Magnetic Forces Study magnetic forces. Consider magnetic field and flux

Chapter 27 Magnetic Field an Magnetic Forces Study magnetic forces Consider magnetic field and flux Explore motion in a magnetic field Consider magnetic torque Apply magnetic principles and study the electric

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

### Physics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance

Physics 182 - Spring 2012 - Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify

### Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored.

Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

### Centripetal Force. 1. Introduction

1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude

### The Solar Wind. Earth s Magnetic Field p.1/15

The Solar Wind 1. The solar wind is a stream of charged particles - a plasma - from the upper atmosphere of the sun consisting of electrons and protons with energies of 1 kev. 2. The particles escape the

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### Module 3 : Electromagnetism Lecture 13 : Magnetic Field

Module 3 : Electromagnetism Lecture 13 : Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an

### Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

### Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

### THE MAGNETIC FIELD. 9. Magnetism 1

THE MAGNETIC FIELD Magnets always have two poles: north and south Opposite poles attract, like poles repel If a bar magnet is suspended from a string so that it is free to rotate in the horizontal plane,

### Chapter 20. Magnetic Forces and Magnetic Fields

Chapter 20 Magnetic Forces and Magnetic Fields The Motion of a Charged Particle in a Magnetic Field The circular trajectory. Since the magnetic force always remains perpendicular to the velocity, if a

### Faraday s and Lenz s Law: Induction

Lab #18 Induction page 1 Faraday s and Lenz s Law: Induction Reading: Giambatista, Richardson, and Richardson Chapter 20 (20.1-20.9). Summary: In order for power stations to provide electrical current

### ** Can skip to Problems: 6, 7, 9, 15, 19, 28, 29, 35, 36, 39, 42 **

Walker, Physics, 3 rd Edition Chapter 22 ** Can skip to Problems: 6, 7, 9, 15, 19, 28, 29, 35, 36, 39, 42 ** Conceptual Questions (Answers to odd-numbered Conceptual Questions can be found in the back

### CET Moving Charges & Magnetism

CET 2014 Moving Charges & Magnetism 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### PHYS 155: Final Tutorial

Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section

### Lab 6: The Earth s Magnetic Field

ab 6: The Earth s Magnetic Field 1 Introduction Direction of the magnetic dipole moment m The earth just like other planetary bodies has a magnetic field. The purpose of this experiment is to measure the

### ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### Chapter 27: Magnetic Field and Magnetic Forces

Chapter 27: Magnetic Field and Magnetic Forces Magnetic field and magnets Magnetic flux and Gauss s law for magnetic field Magnetic force on moving charged objects Magnetic force on current-carrying wires