# 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

Save this PDF as:

Size: px
Start display at page:

Download "1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,"

## Transcription

1 CEE 3310 Thermodynamic Properties, Aug. 26, Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free surface in a gravitational field (and mix minimally with any atmosphere) while a gas will form an atmosphere (and eventually mix with an existing atmosphere). While buoyancy forces are important in each, gravity is generally an important forcing term in free surface liquid flows and not in atmospheric (gas) flows. We consider a fluid to be a continuum i.e., it is continuously differentiable. Dimensional consistency F = ma [MLT 2 ] = [M][LT 2 ]. A dimensionally consistent equation may be based on physics, an inconsistent equation is certainly not physically based. 1.5 Thermodynamic Properties Temperature Measure of internal energy level. Pressure Measure of compressive (normal) stress at a point. P = 1 3 (σ xx +σ yy +σ zz ) = F A It is created by the bombardment of the surface by molecules of fluid.

2 Density (kg/m 3 ) T emperature ( o C) Figure 1.1: Density of water Density ρ = Mass Volume There is less than a 1% change in the density of water over the standard range of temperatures seen in the environment yet this difference can be very important! Specific Weight γ 60 o F=62.4lbs/ft 3 γ = ρg = weight volume γ 20 o C = 9790N/m Specific Gravity The specific gravity is the density of a substance normalized by the density of water at a certain temperature, often 4 C, the temperature of maximum density at normal

3 CEE 3310 Thermodynamic Properties, Aug. 26, pressures. Hence we write S.G. = ρ ρ 4 C = ρ in S.I. units 1000 kg/m3 S.G. of sands and gravels is about Perfect Gas Law P = ρrθ where R is the specific gas constant which can be expressed as R = C P C V where C P is the specific heat at constant pressure and C V is the specific heat at constant volume. We also can write: R = Λ MW gas whereλis the universal gas constant (8314 kg m 2 s 2 K 1 kmol 1 ) andmw gas (kg kmol 1 ) is the molecular weight of the gas. Let s check the units P = [M] [L 3 ] [L 2 ] [M] Θ = [T 2 Θ] [LT 2 ] = [ML] [L 2 T 2 ] = Force Area Example Find ρ for CO 2 at 20 C and 1atm. ρ=1.44 kg/m 3 ( S.G.=14.1 N/m 3 )

4 Viscosity d 1 = u 1 dt d 2 = u 2 dt = (u 1 +du)dt Strain = d 2 d 1 = (u 1 +du u 1 )dt = du dt For solids we know that stress is proportional to strain. In fluids we find that stress is proportional to strain rate. Strain rate = Therefore since du dt dt = du the velocity gradient is the strain rate! Therefore µ = τ du stress strain rate (1.1) τ du (1.2) τ = µ du (1.3) = [MLT 2 L 2 ] [LT 1 ] [L] = [M] [LT] what is this? Momentum has the units of mass times velocity hence we can interpret µ as having the dimensions of momentum per area. Thus we can think of µ, known as the viscosity, as the amount of momentum transported by molecular activity across a given area. Thus highly viscous fluids (honey) transport lots of momentum and tend to be harder to move (be more sticky) as you have to move the whole fluid while low viscosity

5 CEE 3310 Thermodynamic Properties, Aug. 26, fluids (water) tend to be easier to move as only a small parcel of fluid is affected by trying to move a thin slab of fluid Kinematic Viscosity If we normalize the viscosity by the density we have the kinematic viscosity. ν = µ ρ = [L2 ] [T] At 20 C water has an absolute or dynamic viscosity of Nsm 2 (or Pas) and a kinematic viscosity of m 2 s 1. Now, if we have a thin gap filled with a fluid but the solid surfaces on either side of the gap have some relative velocity (e.g., one surface is fixed but the other is moving) then there will be stress on either solid surface transmitted by the fluid. The molecules on either solid boundary must be moving at the speed of the boundary, this is known as the no-slip boundary condition. If the fluid filled gap is long compared to its width then we can ignore what happens at the end of the gap and, if the system is at steady state (meaning the velocity profile of the fluid in the gap is no longer changing in time) then we would find that the velocity profile just varies linearly, going from the velocity of the one boundary to the velocity of the other boundary. We will actually solve for the exact solution from the equations of motion later in the semester! A linear velocity variation is a constant velocity gradient hence the fluid stress is constant, just equal to the fluid viscosity times the constant velocity gradient. This is perhaps best illustrated by an example Example - A block sliding down an inclined plane If the block has a mass of 1 kg: 1. Determine the viscosity, µ, of the lubricant fluid in the gap.

6 16 Figure 1.2: Sliding block 2. What speed will the block travel if the angle, θ, is adjusted to 10 and the gap, δ, is decreased to 0.5 mm 1) µ = kg m s 2) V = m s (= N s m 2 = Pa s);

7 CEE 3310 Thermodynamic Properties, Aug. 29, Review System of units B.G., S.I. Be careful and be comfortable in both! Thermodynamic properties Θ, P, ρ(θ,p) Perfect Gas Law Viscosity stress strain rate τ = µ du 1.9 Vapor Pressure If initially we start with a vacuum, over time a pressure will form as the result of molecular action. Particles leave the surface. Eventually an equilibrium pressure is achieved as the same number of particles leave the surface as return to it. This pressure is known as the vapor pressure of the fluid and is denoted p v. As we will see in a few weeks, fluid motions can lead to very low pressures. If p p v the fluid will boil. This process is known as cavitation Surface Tension The water molecule is polar. The O attracts the H +. Within the fluid this attraction is in balance, i.e., the net force due to all of the polar pairs is zero. However, at the surface half of this force is missing and the surface is pulled toward the fluid interior with

8 18 a certain energy. surface energy = J m 2 = Nm m 2 = N m = force length = tension hence we refer to this energy as the surface tension (Υ) Example the pressure in a bubble Tension force = 2πRΥ Pressure force = (P I P E )πr 2 P = P I P E = 2πRΥ πr 2 = 2Υ R The Contact Angle In the case of a bubble we only had to concern ourselves with a liquid gas interface but often we find we have three phases present (a liquid-gas-solid interface) for example, when you fill your glass with water and you get a contact line around the circumference of the glass at the air-water-glass interface. You ve all likely noticed that the contact line rises locally, appearing to adhere to and be lifted by the glass boundary forming what is known as a meniscus, the region local to the solid boundary where the gas-liquid

9 CEE 3310 Thermodynamic Properties, Aug. 29, interface is curved. The angle that is formed at this three-phase interface is known as the contact angle and is defined as the angle between the line originating from the three-phase contact point tangent to the liquid-gas interface and the tangent to the solid boundary as measured through the liquid, e.g., When the liquid seems to spread easily over the boundary, the contact angle is θ c < 90 and we refer to the liquid as wetting, as in the case of water on glass, which is totally wetting giving θ c 0. When the liquid resists spreading over the boundary, instead trying to form a droplet, the contact angle is θ c > 90 and we refer to the liquid as non-wetting, as in the case of water on teflon (θ c 110) nd Example A water barometer You are planning on constructing your own water barometer. This will be constructed by filling a long cylindrical glass tube sealed at one end with water and then carefully inverting it so that the mouth of the tube stays wet. The free surface of the water drops to a given elevation and you can measure the height of the water above the reservoir below to calculate the atmospheric pressure. There are at least two important fluid properties that affect the accuracy of your water barometer, what are they?

10 20 What minimum diameter must the tube be if you want the capillary induced rise in the tube to be less than 1mm (assume 20 o C water)? If the atmospheric pressure is 30in Hg, what is the correction you need to apply to the barometer reading to account for the effect of vapor pressure on your reading?

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

### Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

### Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

### ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE. Fluid Mechanics. Lecture 3 - Solved Examples (7 examples) - Home works

ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE Fluid Mechanics Lecture 3 - Solved Examples (7 examples) - Home works By Dr. Fahid Abbas Tofiq 1 Example 1: A plate 0.025 mm distant from

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 1 - PHYSICAL PROPERTIES AND CHARACTERISTIC BEHAVIOUR OF FLUIDS TUTORIAL 1 - SURFACE TENSION

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Why Study Fluids? Solids and How They Respond to Forces. Solids and How They Respond to Forces. Crystal lattice structure:

States of Matter Gas In a gas, the molecules are far apart and the forces between them are very small Solid In a solid, the molecules are very close together, and the form of the solid depends on the details

### Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### δy θ Pressure is used to indicate the normal force per unit area at a given point acting on a given plane.

2 FLUID PRESSURES By definition, a fluid must deform continuously when a shear stress of any magnitude is applied. Therefore when a fluid is either at rest or moving in such a manner that there is no relative

### Transport Phenomena I: Fluids

CHE 231 Transport Phenomena I: Fluids Jeff Heys Arizona State University about this class... Make sure you have a copy of the syllabus and schedule even though the schedule is tentative. Syllabus Highlights:

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

### TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

### These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Steven Burian Civil & Environmental Engineering March 27, 2015

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering March 27, 2015 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session C.

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### Min-218 Fundamentals of Fluid Flow

Excerpt from "Chap 3: Principles of Airflow," Practical Mine Ventilation Engineerg to be Pubished by Intertec Micromedia Publishing Company, Chicago, IL in March 1999. 1. Definition of A Fluid A fluid

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### Fluid Mechanics. Fluid Statics [3-1] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [3-1] Fluid Statics

1 Fluid Mechanics Fluid Statics [3-1] Dr. Mohammad N. Almasri Fluid Pressure Fluid pressure is the normal force exerted by the fluid per unit area at some location within the fluid Fluid pressure has the

### AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### CH-205: Fluid Dynamics

CH-05: Fluid Dynamics nd Year, B.Tech. & Integrated Dual Degree (Chemical Engineering) Solutions of Mid Semester Examination Data Given: Density of water, ρ = 1000 kg/m 3, gravitational acceleration, g

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

CHAPTER 2.0 ANSWER 1. A tank is filled with seawater to a depth of 12 ft. If the specific gravity of seawater is 1.03 and the atmospheric pressure at this location is 14.8 psi, the absolute pressure (psi)

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU Introduction A fluid cannot resist a shear stress

### Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure...

2 Fluids Basics and Concepts TOPIC PAGE 2.1 Introduction... 22 2.2 Force, Weight, and Mass... 22 2.3 Density... 23 2.4 Specific Gravity... 23 2.5 Pressure... 23 2.6 Temperature... 25 2.7 Viscosity... 26

### Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

### I SOIL WATER POTENTIAL

I SOIL WATER POTENTIAL 1.1. Introduction Soil water content is not sufficient to specify the entire status of water in soil. For example, if soils with a same water content but with different particle

### Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### EGN 3353C Fluid Mechanics

Static equilibrium of above element leads to Δ P= P P1 = ρg Δ z (*) γ s specific weight ΔP ρ (and is usually negligible in gases for small changes in depth) If point 1 is taken at the free surface open

### HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS

HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS GEOMETRY & MATH GEOMETRI & MATEMATIK Cylindrical (Tube) Volume V = p / 4 d 2 L [m 3 ] Cylindrical (Tube) Surface A = p d L [m 2 ] Rectangular Triangle

### Physics 123 Fluid Mechanics Review

Physics 123 Fluid Mechanics Review I. Definitions & Facts Density Specific gravity (= D material / D water ) Pressure Atmosphere, bar, Pascal Streamline, laminar flow Gauge pressure Turbulence Density

### Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

### Fluids: Liquids vs. Gases

FLUID MECHANICS Fluids: Liquids vs. Gases Chemical bonds can break when heated Leaving individual molecules free to roam randomly Liquids: Volume held constant due to surface tension So density (mass /

### Characteristics of a fluid

Characteristics of a fluid Fluids are divided into liquids and gases. A liquid is hard to compress and as in the ancient saying Water takes the shape of the vessel containing it, it changes its shape according

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems

NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems Instructor: Dr. Marcio H. Giacomoni 1 Introduction The FE examination is an 8-hour suppliedreference

### Chapter 4 Rotating Coordinate Systems and the Equations of Motion

Chapter 4 Rotating Coordinate Systems and the Equations of Motion 1. Rates of change of vectors We have derived the Navier Stokes equations in an inertial (non accelerating frame of reference) for which

### Definition of interface Liquid-gas and liquid-liquid interfaces (surface tension, spreading, adsorption and orientation at interfaces)

Definition of interface Liquid-gas and liquid-liquid interfaces (surface tension, spreading, adsorption and orientation at interfaces) Definition of interface How can we define the interface? How we can

### SURFACE TENSION. Definition

SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

### p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh

IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: P..Sleigh@leeds.ac.uk r J Noakes:.J.Noakes@leeds.ac.uk January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Fundamentals of Transport Processes Prof. Kumaran Department of Chemical Engineering Indian Institute of Science, Bangalore

Fundamentals of Transport Processes Prof. Kumaran Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. # 02 Lecture No. # 06 Mechanisms of diffusion-1 Welcome to the sixth

### Systems and Units. The three systems of units are:

The three systems of units are: 1. The English or the ft-lb-s System 2. The International or the m-kg-s System 3. The Laboratory or the cm-gm-s System Quantities fall into two main categories: 1. Principal

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### Chapter 8 Fluid Flow

Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

### Chapter 5. Microfluidic Dynamics

Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics Navier-Stokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics

### Laboratory exercise No. 4 Water vapor and liquid moisture transport

Laboratory exercise No. 4 Water vapor and liquid moisture transport Water vapor transport in porous materials Due to the thermal conductivity of water and other unfavourable properties and effects in porous

### UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2004-05 MODULE TITLE: Fluid mechanics DURATION OF EXAMINATION:

### Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

### Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

### Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

### The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data

The Use Of CFD To Simulate Capillary Rise And Comparison To Experimental Data Hong Xu, Chokri Guetari ANSYS INC. Abstract In a micro-gravity environment liquid can be pumped and positioned by cohesion

### Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

### Chapter 9. Pressure. Pressure. Pressure and Velocity Measurements

Chapter 9 Pressure and Velocity Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Pressure Pressure is force per unit area. It acts inward or outward, normal

### Wave Motion (Chapter 15)

Wave Motion (Chapter 15) Waves are moving oscillations. They transport energy and momentum through space without transporting matter. In mechanical waves this happens via a disturbance in a medium. Transverse

### Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

### Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

### V. Water Vapour in Air

V. Water Vapour in Air V. Water Vapour in Air So far we have indicated the presence of water vapour in the air through the vapour pressure e that it exerts. V. Water Vapour in Air So far we have indicated

### Fluids: Liquids & Gases

Chapter 7: Fluids Fluids: Liquids & Gases Fluids are substances that are free to flow. Atoms and molecules are free to move. They take the shape of their containers. Cannot withstand or exert shearing

### Exam II. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Exam II Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the distinguishing characteristic of crystals? a. They are solids. b. They

### Chapter 2 Dimensions, Quantities and Units

Chapter 2 Dimensions, Quantities and Units Nomenclature a A d F g h m P t u u x W x Acceleration Area Diameter Fce Acceleration due to gravity Height Mass Pressure Time Speed velocity Velocity in the x-direction

### Strain and deformation

Outline Strain and deformation a global overview Mark van Kraaij Seminar on Continuum Mechanics Outline Continuum mechanics Continuum mechanics Continuum mechanics is a branch of mechanics concerned with

### Fundamental Concepts in Fluid Mechanics

A significant portion of these notes summarizes various sections of Massey, but additional material from other sources is also included. Note that the notes are incomplete; they will be completed during

### Tutorial 2 Fluid pressure

Tutorial 2 Fluid pressure 1. cylinder contains a fluid at a gauge pressure of 360 KN/m 2. Express this pressure in terms of a head of (a) water, and (b) mercury of sp gr = 13.6 What would be the absolute

### SAT Subject Physics Formula Reference

This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are not given on the test.) Each formula row contains

### 01 The Nature of Fluids

01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Density and porosity. Asst. Prof. Dr. Sirirat T. Rattanachan. 30/07/52 Density and porosity/s.t.rattanachan

Density and porosity Asst. Prof. Dr. Sirirat T. Rattanachan 1 Density and porosity Density: terms Bulk density True density Theoretical density Apparent density Porosity: terms Total porosity Open porosity

### Total water potential is sum of gravitational and soil water pressure potential, or. Column of water

SSC107 Fall 000 Chapter 3 Page 3-1 Chapter 3. Saturated Water Flow All pores are filled with water, i.e., volumetric water content is equal to porosity ( θ = θ s with θ s = φ ) Nonequilibrium. Water flows

### SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CHAPTER 2 SUBSECTION PROB NO. Concept-Study Guide Problems 87-91 Properties and

### Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey

Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey 1) In class, we have been discussing how gases behave and how we observe this behavior in our daily lives. In this homework assignment,

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### CONTROL VALVE PRESSURE DROP AND SIZING

CONTENT Chapter Description Page I Purpose of Control Valve II Type and Main Components of Control Valve 3 III Power 5 IV. Pressure Drop Across Control Valve 7 V. Symbols and Units 10 VI. Unit Conversion

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### School of Biotechnology

Physics reference slides Donatello Dolce Università di Camerino a.y. 2014/2015 mail: donatello.dolce@unicam.it School of Biotechnology Program and Aim Introduction to Physics Kinematics and Dynamics; Position

### Transient Mass Transfer

Lecture T1 Transient Mass Transfer Up to now, we have considered either processes applied to closed systems or processes involving steady-state flows. In this lecture we turn our attention to transient

### Mercury is used because it is the heaviest common liquid. A water barometer would be 34 ft high.

3-4 Pressure and Measuring Devices 1- Barometer Barometer: The simplest practical application of the hydrostatic formula is the barometer figure (3-6), which measures atmospheric pressure. A tube is filled

### Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

### Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

### Physics Principles of Physics

Physics 1408-002 Principles of Physics Lecture 21 Chapter 13 April 2, 2009 Sung-Won Lee Sungwon.Lee@ttu.edu Announcement I Lecture note is on the web Handout (6 slides/page) http://highenergy.phys.ttu.edu/~slee/1408/

### PRESSURE Gas Pressure

PRESSURE Gas Pressure 1 Gas molecules inside a volume (e.g. a balloon) are constantly moving around freely. They frequently collide with each other and with the surface of any enclosure. Figure 1: The

### Physics Final Exam Chapter 13 Review

Physics 1401 - Final Exam Chapter 13 Review 11. The coefficient of linear expansion of steel is 12 10 6 /C. A railroad track is made of individual rails of steel 1.0 km in length. By what length would

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION