1. Introduction, fluid properties (1.1, and handouts)

Size: px
Start display at page:

Download "1. Introduction, fluid properties (1.1, and handouts)"

Transcription

1 1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1

2 Applications of fluid mechanics Societal supply of safe energy and water by gas and fluids in pipes and channels Energy production (oil, hydropower, nuclear energy, natural gas) Environmental engineering and water treatment (channels, basins, filtering) Industrial process technology (relationship temperature, pressure, and energy) Protection against climate extremes/catastrophes (flooding, harbours, wind forces) Biomedical engineering Ecological evolution of species (predator-prey)

3 Major Fluid mechanics employers SWECO Thyréns WSPgroup Skanska Eon, VA SYD Community offices Governmental, Naturvårdsverket

4 Fluid mechanics Fluid properties (2) Hydrostatics (3) Basic equations (6) Pipe flow (5) Flow around submerged bodies (1) Channel flow (3) Repetition (2)

5 FLUID AS A CONTINUUM A fluid is considered to be a continuum in which there are no holes or voids velocity, pressure, and temperature fields are continuous. Validity criteria: Smallest length scale in a flow >> average spacing between molecules composing the fluid.

6

7 DENSITY ( ) Mass/ unit volume (kg/m 3 ) Density decreases normally with increasing temperature water = (T,S,p) i.e., dependent on - Temperature - Salt content ( S, S in per mille; S = 3.5% in ocean = 1026 kg/m 3 ) - Pressure (but only a small variability)

8 OTHER DEFINITIONS Weight = mass gravity acceleration (W = mg, [N = kg m/s 2 ]) (Eqn. 1.4) Weight density (or specific weight)= density gravity acceleration (w = g, [N/m 3 = kg /(m 2 s 2 )]) (Eqn. 1.6) (Note w = γ in exercises) Specific volume = reciprocal of density ( = 1/, [m 3 /kg]) Relative density (or specific gravity), s, is the density normalized with the density of water at a specific temperature and pressure (normally 4 C and atmospheric pressure): s = R.d. = / water (often = /1000) (Eqn. 1.7) Power P [W = J/s = kg m 2 /s 3 = Nm/s]; P = T ω (T = torque, ω = angular velocity [rad/s, 360 o = 2 rad]; V = ω r (V = velocity, r = radius)

9 Example density. The specific weight of water at ordinary temperature and pressure is 9.81 kn/m 3. The specific gravity of mercury is Compute the density of water and the specific weight and density of mercury.

10 COMPRESSIBILITY All fluids can be compressed by application of pressure elastic energy being stored Modulus of elasticity describes the compressibility properties of the fluid and is defined on the basis of volume

11 Modulus of elasticity: E=-dp/(dV/V 1 ) [Pa] For liquids, region of engineering interest is when V/V 1 1 V p V E E water ~ Pa (function of temperature)

12 A1 What pressure must be applied to water to reduce its volume 1 %?

13 Example compressibility. At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of sea water at the surface is kn/m 3 and that the average volume modulus of elasticity is 2.34*10 9 N/m 2 for the pressure range. A) What will be the change in specific volume between that at the surface and at that depth? B) What will be the specific volume at that depth? C) What will be the specific weight at that depth

14 IDEAL FLUID A fluid in which there is no friction REAL FLUID A fluid in which shearing forces always exist whenever motion takes place due to the fluid s inner friction viscosity.

15 VISCOSITY Viscosity is a measure of a fluid s inner friction or resistance to shear stress. It arises from the interaction and cohesion of fluid molecules. All fluids posses viscosity, but to a varying degree. For instance, syrup has a considerably higher viscosity than water.

16 DEFINITION OF DYNAMIC VISCOSITY - y Shearing of thin fluid film between two plates. The upper plate has an area A. Experiments have shown that for a large number of fluids: F ~ AV/h (if V and h not too large) Linear velocity profile V/h = dv/dy

17 Introduction of the proportionality constant, named dynamic viscosity, gives Newton s viscosity law shear force: F A V h dv dy [Pa s or kg/ms] (Eqn ) N/m 2 = / [m 2 /s] - Kinematic viscosity No-slip condition water particles adjacent to solid boundary has zero velocity (observational fact)

18 μ (Pa s) VVR 120 Fluid Mechanics

19 Implication of viscosity: a fluid cannot sustain a shear stress without deformation

20 Implications of Newton s law:, independent of pressure (in contrast to solids) no velocity gradient no shear stress Restriction of Newton s law: law only valid if the fluid flow is laminar in which viscous action is strong

21 Laminar flow: smooth, orderly motion in which fluid elements appears to slide over each other in layers (little exchange between layers). Turbulent flow: random or chaotic motion of individual fluid particles, and rapid mixing and exchange of these particles through the flow Turbulent flow is most common in nature.

22 Newtonian non-newtonian fluids Examples non-newtonian fluids: Plastics, blood, suspensions, paints, foods VVR 120 Fluid Mechanics Shear vs. rate of strain relations for non-newtonian fluids: Bingham plastic du, i dy i n>1: Shear-thickening fluid, n<1: Shear-thinning fluid du n ( ) dy

23 Example density. The specific weight of water at ordinary temperature and pressure is 9.81 kn/m 3. The specific gravity of mercury is Compute the density of water and the specific weight and density of mercury.

24 A1 What pressure must be applied to water to reduce its volume 1 %? VVR 120 Fluid Mechanics

25 Example compressibility. At a depth of 8 km in the ocean the pressure is 81.8 MPa. Assume that the specific weight of sea water at the surface is kn/m 3 and that the average volume modulus of elasticity is 2.34*10 9 N/m 2 for the pressure range. A) What will be the change in specific volume between that at the surface and at that depth? B) What will be the specific volume at that depth? C) What will be the specific weight at that depth

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium

More information

Chapter (1) Fluids and their Properties

Chapter (1) Fluids and their Properties Chapter (1) Fluids and their Properties Fluids (Liquids or gases) which a substance deforms continuously, or flows, when subjected to shearing forces. If a fluid is at rest, there are no shearing forces

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow

TYPES OF FLUID FLOW. Laminar or streamline flow. Turbulent flow FLUID DYNAMICS We will deal with Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

Steven Burian Civil & Environmental Engineering March 27, 2015

Steven Burian Civil & Environmental Engineering March 27, 2015 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering March 27, 2015 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session C.

More information

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0

Practice Problems on Viscosity. free surface. water. y x. Answer(s): base: free surface: 0 viscosity_01 Determine the magnitude and direction of the shear stress that the water applies: a. to the base b. to the free surface free surface U y x h u water u U y y 2 h h 2 2U base: yx y 0 h free

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

More information

Rheology. Definition of viscosity. Non-newtonian behaviour.

Rheology. Definition of viscosity. Non-newtonian behaviour. Rheology. Definition of viscosity. Non-newtonian behaviour. Rheology Rheology is the science of the flow and deformation of matter (liquid or soft solid) under the effect of an applied force Deformation

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Basic Fluid Mechanics. Prof. Young I Cho

Basic Fluid Mechanics. Prof. Young I Cho Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics

More information

Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure...

Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure... 2 Fluids Basics and Concepts TOPIC PAGE 2.1 Introduction... 22 2.2 Force, Weight, and Mass... 22 2.3 Density... 23 2.4 Specific Gravity... 23 2.5 Pressure... 23 2.6 Temperature... 25 2.7 Viscosity... 26

More information

Fluid Mechanics Definitions

Fluid Mechanics Definitions Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V $0& #V ) Specific Gravity

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Rheological Properties of Topical Formulations

Rheological Properties of Topical Formulations Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency

More information

Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

More information

1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26, CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

Characteristics of a fluid

Characteristics of a fluid Characteristics of a fluid Fluids are divided into liquids and gases. A liquid is hard to compress and as in the ancient saying Water takes the shape of the vessel containing it, it changes its shape according

More information

ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE. Fluid Mechanics. Lecture 3 - Solved Examples (7 examples) - Home works

ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE. Fluid Mechanics. Lecture 3 - Solved Examples (7 examples) - Home works ERBIL PLOYTECHNIC UNIVERSITY ERBIL TECHNICAL ENGINEERING COLLEGE Fluid Mechanics Lecture 3 - Solved Examples (7 examples) - Home works By Dr. Fahid Abbas Tofiq 1 Example 1: A plate 0.025 mm distant from

More information

Physics-biophysics 1

Physics-biophysics 1 Physics-biophysics 1 Flow of fluids Péter Makra University of Szeged 2011-2012. autumn semester Version: 1.1 Latest update: 29th September 2011 Péter Makra (University of Szeged) Physics-biophysics 1 2011-2012.

More information

Lecture 2 PROPERTIES OF FLUID

Lecture 2 PROPERTIES OF FLUID Lecture 2 PROPERTIES OF FLUID Learning Objectives Upon completion of this chapter, the student should be able to: Define three states of matter: Solid, liquid and gas. Define mass density, specific weight

More information

VISCOSITY. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics

VISCOSITY. Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics VISCOSITY Aslı AYKAÇ, PhD. NEU Faculty of Medicine Department of Biophysics DEFINITION A fluid s ability to flow is called viscosity. Viscosity arises from the mutual COHESIVE FORCES between molecules

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 1 - PHYSICAL PROPERTIES AND CHARACTERISTIC BEHAVIOUR OF FLUIDS TUTORIAL 1 - SURFACE TENSION

More information

3 rd Year Dental Materials Science

3 rd Year Dental Materials Science 3 rd Year Dental Materials Science Dr. Graham Cross School of Physics and CRANN SFI Nanoscience Building, Rm 1.5 http://www.tcd.ie/physics/people/graham.cross/ Graham.Cross@tcd.ie 16.11.2007 Dental Materials

More information

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

More information

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

More information

2 rad c. π rad d. 1 rad e. 2π rad

2 rad c. π rad d. 1 rad e. 2π rad Name: Class: Date: Exam 4--PHYS 101--F14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel, initially at rest, rotates with a constant acceleration

More information

Physics for the Life Sciences: Fall 2008 Lecture #25

Physics for the Life Sciences: Fall 2008 Lecture #25 Physics for the Life Sciences: Fall 2008 Lecture #25 Real fluids: As we have mentioned several times, real fluids are more complex than the ideal fluids described by the continuity equation and Bernoulli

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

F mg (10.1 kg)(9.80 m/s ) m

F mg (10.1 kg)(9.80 m/s ) m Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide. Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

More information

Min-218 Fundamentals of Fluid Flow

Min-218 Fundamentals of Fluid Flow Excerpt from "Chap 3: Principles of Airflow," Practical Mine Ventilation Engineerg to be Pubished by Intertec Micromedia Publishing Company, Chicago, IL in March 1999. 1. Definition of A Fluid A fluid

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher

Higher Technological Institute Civil Engineering Department. Lectures of. Fluid Mechanics. Dr. Amir M. Mobasher Higher Technological Institute Civil Engineering Department Lectures of Fluid Mechanics Dr. Amir M. Mobasher 1/14/2013 Fluid Mechanics Dr. Amir Mobasher Department of Civil Engineering Faculty of Engineering

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems

NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems NCEES Fundamentals of Engineering (FE) Examination Review Fluid Mechanics, Hydraulics and Hydrologic Systems Instructor: Dr. Marcio H. Giacomoni 1 Introduction The FE examination is an 8-hour suppliedreference

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

More information

01 The Nature of Fluids

01 The Nature of Fluids 01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of

More information

VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries? VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as

More information

Chapter Six. Non-Newtonian Liquid

Chapter Six. Non-Newtonian Liquid Chapter Six Non-Newtonian Liquid For many fluids a plot of shear stress against shear rate does not give a straight line. These are so-called Non-Newtonian Fluids. Plots of shear stress against shear rate

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

4 The strength of the lithosphere

4 The strength of the lithosphere 4 The strength of the lithosphere Constitutive equations specify the relations between stress and strain or the time derivatives of strain and thus can be used in conjunction with the equations of motion

More information

Chapter 4 Rotating Coordinate Systems and the Equations of Motion

Chapter 4 Rotating Coordinate Systems and the Equations of Motion Chapter 4 Rotating Coordinate Systems and the Equations of Motion 1. Rates of change of vectors We have derived the Navier Stokes equations in an inertial (non accelerating frame of reference) for which

More information

Transport Phenomena I: Fluids

Transport Phenomena I: Fluids CHE 231 Transport Phenomena I: Fluids Jeff Heys Arizona State University about this class... Make sure you have a copy of the syllabus and schedule even though the schedule is tentative. Syllabus Highlights:

More information

RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,

More information

Chapter 5. Microfluidic Dynamics

Chapter 5. Microfluidic Dynamics Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics Navier-Stokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics

More information

Vocabulary: Viscosity Reynolds Number Laminar. Objectives:

Vocabulary: Viscosity Reynolds Number Laminar. Objectives: Fluid Mechanics for High School Author: Vishal Tandon Date Created: March 2010 Subject: Physics Level: High School Standards: New York State Physics Standards Standard 1 Analysis, Inquiry, and Design Standard

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

CHAPTER 2.0 ANSWER B.20.2

CHAPTER 2.0 ANSWER B.20.2 CHAPTER 2.0 ANSWER 1. A tank is filled with seawater to a depth of 12 ft. If the specific gravity of seawater is 1.03 and the atmospheric pressure at this location is 14.8 psi, the absolute pressure (psi)

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Non-Newtonian Flows. R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University. τ = ηθ

Non-Newtonian Flows. R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University. τ = ηθ Non-Newtonian Flows R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University Fluids such as water, air, ethanol, and benzene are Newtonian. This means that a plot

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 30) Lecture 3 Solids and fluids buoyant force Archimedes principle Fluids in motion http://www.physics.wayne.edu/~apetrov/phy30/ Lightning Review Last lecture:. Solids and fluids different

More information

Chapter 4 Atmospheric Pressure and Wind

Chapter 4 Atmospheric Pressure and Wind Chapter 4 Atmospheric Pressure and Wind Understanding Weather and Climate Aguado and Burt Pressure Pressure amount of force exerted per unit of surface area. Pressure always decreases vertically with height

More information

CHBE 363: Rotary Viscometer

CHBE 363: Rotary Viscometer CHBE 363: Rotary Viscometer Objectives 1. To illustrate the use of a rotary viscometer in the characterization of different types of fluids. 2. To determine the viscosity of Newtonian liquids. 3. To investigate

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Viscosity Measurement Guide

Viscosity Measurement Guide Viscosity Measurement Guide For using Viscotester 3-20-41 Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan http://www.rion.co.jp/english/ Contents Introduction...1 What is viscosity?...2 Viscosity unit:

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Systems and Units. The three systems of units are:

Systems and Units. The three systems of units are: The three systems of units are: 1. The English or the ft-lb-s System 2. The International or the m-kg-s System 3. The Laboratory or the cm-gm-s System Quantities fall into two main categories: 1. Principal

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions. Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

More information

Fundamental Concepts in Fluid Mechanics

Fundamental Concepts in Fluid Mechanics A significant portion of these notes summarizes various sections of Massey, but additional material from other sources is also included. Note that the notes are incomplete; they will be completed during

More information

HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS

HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS HANDLY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS GEOMETRY & MATH GEOMETRI & MATEMATIK Cylindrical (Tube) Volume V = p / 4 d 2 L [m 3 ] Cylindrical (Tube) Surface A = p d L [m 2 ] Rectangular Triangle

More information

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

More information

Fluids Quiz Science 8

Fluids Quiz Science 8 Fluids Quiz Science 8 Introduction to Fluids 1. What are fluids essential for? Industrial Processes 2. What devices use knowledge of fluids? Hydraulic and pneumatic devices and machines A Close-Up Look

More information

Physics 123 Fluid Mechanics Review

Physics 123 Fluid Mechanics Review Physics 123 Fluid Mechanics Review I. Definitions & Facts Density Specific gravity (= D material / D water ) Pressure Atmosphere, bar, Pascal Streamline, laminar flow Gauge pressure Turbulence Density

More information

Fluids in Motion Supplement I

Fluids in Motion Supplement I Fluids in Motion Supplement I Cutnell & Johnson describe a number of different types of flow: Compressible vs incompressible (most liquids are very close to incompressible) Steady vs Unsteady Viscous or

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air) Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2004-05 MODULE TITLE: Fluid mechanics DURATION OF EXAMINATION:

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Objectives 184 CHAPTER 4 RESISTANCE

Objectives 184 CHAPTER 4 RESISTANCE Objectives Define drag. Explain the difference between laminar and turbulent flow. Explain the difference between frictional drag and pressure drag. Define viscosity and explain how it can be measured.

More information

Physics 11 (Fall 2012) Chapter 13: Fluids

Physics 11 (Fall 2012) Chapter 13: Fluids Physics 11 (Fall 2012) Chapter 13: Fluids "Keep in mind that neither success nor failure is ever final." Roger Ward Babson Our greatest glory is not in never failing, but in rising up every time we fail.

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Lab 5: Introduction to fluids

Lab 5: Introduction to fluids Lab 5: Introduction to fluids Bio427 Biomechanics In this lab we will explore some of the biologically interesting properties of fluids, including viscosity and surface tension. There will be several workstations

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Fluid Mechanic & Fluid Machine

Fluid Mechanic & Fluid Machine Fluid Mechanic & Fluid Machine Contents Chapter Topic Page Chapter-1 Chapter-2 Chapter-3 s s s Problems Pressure and Its Measurements s s s Hydrostatic Forces on Surfaces s s s No 7 8 15 15 20 22 22 24

More information

Properties of Fluids

Properties of Fluids CHAPTER Properties of Fluids 1 1.1 INTRODUCTION A fluid can be defined as a substance which deforms or yields continuously when shear stress is applied to it, no matter how small it is. Fluids can be subdivided

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Chapter 8 Fluid Flow

Chapter 8 Fluid Flow Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

More information

Physics 6B. Philip Lubin

Physics 6B. Philip Lubin Physics 6B Philip Lubin prof@deepspace.ucsb.edu http://www.deepspace.ucsb.edu/classes/physics-6b-spring-2015 Course Outline Text College Physics Freedman 2014 Cover Chap 11-13, 16-21 Chap 11- Fluid Chap

More information

Fig. 1. The velocity distribution will be linear over the distance dx, and experiments show that the velocity

Fig. 1. The velocity distribution will be linear over the distance dx, and experiments show that the velocity Viscosity The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move in relation to

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

Sound Absorption and Sound Absorbers

Sound Absorption and Sound Absorbers Sound Absorption and Sound Absorbers Slides to accompany lectures in ME 610: Engineering 00 by A. F. Seybert Department of Mechanical Engineering Lexington, KY 40506-0108 Tel: 859-57-6336 x 80645 Fax:

More information

Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution:

Problem 1. 12ft. Find: Velocity of truck for both drag situations. Equations: Drag F Weight. For force balance analysis: Lift and Drag: Solution: Problem 1 Given: Truck traveling down 7% grade Width 10ft m 5 tons 50,000 lb Rolling resistance on concrete 1.% weight C 0.96 without air deflector C 0.70 with air deflector V 100 7 1ft Find: Velocity

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Chapter 7. External Forced Convection. Multi Energy Transport (MET) Lab. 1 School of Mechanical Engineering

Chapter 7. External Forced Convection. Multi Energy Transport (MET) Lab. 1 School of Mechanical Engineering Chapter 7 Eternal Forced Convection 1 School of Mechanical Engineering Contents Chapter 7 7-1 rag and Heat Transfer in Eternal Flow 3 page 7-2 Parallel Flow Over Flat Plates 5 page 7-3 Flow Across Cylinders

More information