Gravitational Fields: Review


 Melissa Berry
 1 years ago
 Views:
Transcription
1 Electric Fields Review of gravitational fields Electric field vector Electric fields for various charge configurations Field strengths for point charges and uniform fields Work done by fields & change in potential energy Potential & equipotential surfaces Capacitors, capacitance, & voltage drops across capacitors Millikan oil drop experiment Excess Charge Distribution on a Conductor
2 Gravitational Fields: Review Recall that surrounding any object with mass, or collection of objects with mass, is a gravitational field. Any mass placed in a gravitational field will experience a gravitational force. We defined the field strength as the gravitational force per unit mass on any test mass placed in the field: g = F / m. g is a vector that points in the direction of the net gravitational force; its units are N / kg. F is the vector force on the test mass, and m is the test mass, a scalar. g and F are always parallel. The strength of the field is independent of the test mass. For example, near Earth s surface mg / m = g = 9.8 N / kg for any mass. Some fields are uniform (parallel, equally spaced fields lines). Nonuniform fields are stronger where the field lines are closer together. uniform field 98 N 10 kg Earth s surface nonuniform field F m Earth
3 Electric Fields: Intro Surrounding any object with charge, or collection of objects with charge, is a electric field. Any charge placed in an electric field will experience a electrical force. We defined the field strength as the electric force per unit charge on any test charge placed in the field: E = F / q. E is a vector that points, by definition, in the direction of the net electric force on a positive charge; its units are N / C. F is the vector force on the test charge, and q is the test charge, a scalar. E and F are only parallel if the test charge is positive. Some fields are uniform (parallel, equally spaced fields lines) such as the field on the left formed by a sheet of negative charge. Nonuniform fields are stronger where the field lines are closer together, such as the field on the right produced by a sphere of negative charge. uniform field q F nonuniform field q F 
4 Overview of Fields Charge, like mass, is an intrinsic property of an object. Charges produce electric fields that affect other charges; masses produce gravitational fields that affect other masses. Gravitational fields lines always point toward an isolated mass. Unlike mass, though, charges can be positive or negative. Electric field lines emanate from positive charges and penetrate into negative charge. We refer to the charge producing a field as a field charge. A group of field charges can produce very nonuniform fields. To determine the strength of the field at a particular point, we place a small, positive test charge in the field. We then measure the electric force on it and divide by the test charge: E = F / q. For an isolated positive field charge, the field lines point away from the field charge (since the force on a positive charge would be away from the field charge). The opposite is true for an isolated negative field charge. No matter how complex the field, the electric force on a test charge is always tangent to the field line at that point. The coming slides will reiterate these ideas and provide examples.
5 Electric & Gravitational Fields Compared Gravity: Electric Force: Field strength Force Intrinsic Property SI units g = W / m N / kg E = F E / q N / C Field strength is given by per unit mass or force per unit charge, depending on the type of field. Field strength means the magnitude of a field vector. Ex #1: If a 10 C charge is placed in an electric field and experiences a 50 N force, the field strength at the location of the charge is 5 N/C. The electric field vector is given by: E = 5 N/C, where the direction of this vector is parallel to the force vector (and the field lines). Ex #2: If a 10 C charge experiences a 50 N force, E = 5 N/C in a direction opposite the force vector (opposite the direction of the field lines).
6 Electric Field Example Problem A sphere of mass 1.3 grams is charged via friction, and in the process excess electrons are rubbed onto it, giving the sphere a charge of μc. The sphere is then placed into an external uniform electric field of 6 N/C directed to the right. The sphere is released from rest. What is its displacement after 15 s? (Hints on next slide.) E 
7 Sample Problem Hints E 1. Draw a vector as shown. Note that F E = q E, by definition of E, and that F E is to the left (opposite E ) since the charge is negative. 2. Instead of finding the net force (which would work), compute the acceleration due to each force separately. q E  m g 3. Find the displacement due to each force using the time given and kinematics. 4. Add the displacement vectors to find the net displacement vector.
8 Drawing an E Field for a Point Charge Let s use the idea of a test charge to produce the E field for an isolated positive field charge. We place small, positive test charges in the vicinity of the field and draw the force vector on each. Note that the closer the test charge is to the field charge, the greater the force, but all force vectors are directed radially outward from the field charge. At any point near the field charge, the force vector points in the direction of the electric field. Thus we have a field that looks like a sea urchin, with field lines radiating outward from the field charge to infinity in all direction, not just in a plane. The number of field lines drawn in arbitrary, but they should be evenly spaced around the field charge. What if the field charge were negative? Test charges and force vectors surrounding a field charge Isolated, positive point charge and its electric field
9 Single Positive Field Charge This is a 2D picture of the field lines that surround a positive field charge that is either pointlike or spherically symmetric. Not shown are field lines going out of and into the page. Keep in mind that the field lines radiate outwards because, by definition, an electric field vector points in the direction of the force on a positive test charge. The nearer you get to the charge, the more uniform and stronger the field. Farther away the field strength gets weaker, as indicated by the field lines becoming more spread out.
10 Single Negative Field Charge The field surrounding an isolated, negative point (or spherically symmetric) charge looks just like that of an isolated positive charge except the field lines are directed toward the field charge. This is because, by definition, an electric field vector points in the direction of the force on a positive test charge, which, in this case is toward the field charge. As before, the field is stronger where the field lines are closer together, and the force vector on a test charge is parallel to the field. 
11 Point Charges of Different Magnitudes Let s compare the fields on two separate isolated point charges, one with a charge of 1 unit, the other with a charge of 2 units. It doesn t matter how many field lines we draw emanating from the 1 charge so long as we draw twice as many line coming from the 2 charge. This means, at a given distance, the strength of the E field for the 2 charge is twice that for the 1 charge. 1 2
12 Equal but Opposite Field Charges Pictured is the electric field produced by two equal but opposite charges. Because the charges are of the same magnitude, the field is symmetric. Note that all the lines that emanate from the positive charge land on the negative charge. Also pictured is a small positive charge placed in the field and the force vector on it at that position. This is the vector sum of the forces exerted on the test charge by each field charge. Note that the net force vector is tangent to the field line. This is always the case. In fact, the field is defined by the direction of net force vectors on test charges at various places. The net force on a negative test charge is tangent to the field as well, but it points in the opposite direction of the field. (Continued on next slide.)  Link #1 Link #2 Link #3
13 Here is another view of the field. Since the net force on a charge can only be in one direction, field lines never intersect. Draw the electric force on a positive charge at A, the electric field vector and B, and the electric force on a negative charge at C. The net force on a charge at D charge is directly to the left. Show why this is the case by drawing force vectors from each field charge and then summing these vectors. Equal but Opposite Field Charges (cont.) C D A  B
14 Multiple Charges: How to Determine the Field To determine the field surrounding two field charges, Q 1 and Q 2, we pick some points in the vicinity and place test charges there (red dots). Q 1 exerts a force on each, directly away from itself (blue vectors), as does Q 2 (purple vectors). The resultant vectors (black) show the direction of the net electric force and define the direction of the electric field. The net force vector on each test charge is tangent to the E field there. If we place little a tangent segment parallel with the net force at each test charge and do this at many different points, we will build a picture of the electric field. The same procedure can be used regardless of the number of field charges. Q 2 Q 1
15 Two Identical Charges With two identical field charges, the field is symmetric but all field lines go to infinity (if the charges are positive) or come from infinity (if the charges are negative). As with any field the net force on a test charge is tangent to the field. Here, each field charge repels a positive test charge. The forces are shown as well as the resultant vectors, which are tangent to the field lines.
16 Coulomb s Law Review The force that two point charges, Q and q, separated by a distance r, exert on one another is given by: F = K Q q r 2 where K = Nm 2 /C 2 (constant). This formula only applies to point charges or spherically symmetric charges. Suppose that the force two point charges are exerting on one another is F. What is the force when one charge is tripled, the other is doubled, and the distance is cut in half? Answer: 24 F
17 Field Strengths: Point Charge; Point Mass Suppose a test charge q is placed in the electric field produced by a pointlike field charge Q. From the definition of electric field and Coulomb s law E = F q = K Q q / r 2 q = K Q r 2 Note that the field strength is independent of the charge placed in it. Suppose a test mass m is placed in the gravitational field produced by a pointlike field mass M. From the definition of gravitational field and Newton s law of universal gravitation g = F m = G M m / r 2 m = G M r 2 Again, the field strength is independent of the mass place in it.
18 Uniform Field Just as near Earth s surface the gravitational field is approximately uniform, the electric field near the surface of a charged sphere is approximately uniform. A common way to produce a uniform E field is with a parallel plate capacitor: two flat, metal, parallel plates, one negative, one positive. Aside from some fringing on the edges, the field is nearly uniform inside. This means everywhere inside the capacitor the field has about the same magnitude and direction. Two positive test charges are depicted along with force vectors
19 Two Field Charges of Different Magnitude More field lines emanate from the greater charge; none of the field lines cross and they all go to infinity. The field lines of the greater charge looks more like that of an isolated charge, since it dominates the smaller charge. If you zoomed out on this picture, i.e., if you looked at the field from a great distance, it would look like that of an isolated point charge due to one combined charge. Although in this pic the greater charge is depicted as physically bigger, this need not be the case.
20 Opposite Signs, Unequal Charges The positive charge has a greater magnitude than the negative charge. Explain why the field is as shown. (Answer on next slide.) 
21 Opposite Signs, Unequal Charges (cont.)  More field lines come from the positive charge than land on the negative. Those that don t land on the negative charge go to infinity. As always, net force on a test charge is the vector sum of the two forces and it s tangent to the field. Since the positive charge has greater magnitude, it dominates the negative charge, forcing the turning points of the point to be closer to the negative charge. If you were to zoom out (observe the field from a distance) it would look like that of an isolated, positive point with a charge equal to the net charge of the system.
22 Summary of Fields due to Unequal Charges You should be able to explain each case in some detail.
23 Review of Induction Valence electrons of a conductor are mobile. Thus they can respond to an electric force from a charged object. This is called charging by induction. Note: not all of the valence electrons will move from the bottom to the top. The greater the positive charge brought near it, and the nearer it is brought, the more electrons that will migrate toward it. (See animation on next slide.) conductor
24 Review of Induction (cont.) Because of the displaced electrons, a charge separation is induced in the conductor
25 Positive Charge Near a Neutral Conductor The charge induces a charge separation on the neutral conductor.  Since it is neutral, as many lines land on the conductor as leave it. The number of field lines that go off to infinity is the same as if the charge were isolated. Viewed from afar, the field would look like that of an isolated, field charge.
26 Overview of Field Types For the following scenarios, you should be able to draw the associated electric fields correctly: 1. A uniform field 2. An isolated point charge 3. An isolated charge 4. Two identical point charges 5. Two identical point charges 6. Point charge (either sign) near neutral conductor 7. Unequal point charges of the same sign 8. Unequal point charges of the opposite sign Note that a field drawn without a direction indicated (without arrows) is incorrect. You should be able to draw vector forces on positive or negative charges placed in any field. Also, for complex fields you should be able to describe them as the appear from a distance.
27 Work done by Fields & Applied Forces To lift an object of mass m a height h in a uniform gravitational field g without acceleration, you must apply a force m g. The work you do is m g h, while the work done by the field is  m g h. When you lower the object, you do negative work and the field does positive work. Near the surface of a negatively charged object, the electric field is nearly uniform. To lift without acceleration a positive charge q in a downward field E requires a force q E. You do positive work in lifting the charge, and the field does negative work. The signs reverse when you lower the charge. m g E q m g Earth s surface q E Negatively charged surface
28 Fields: Work & Potential Energy The work your applied force does on the mass or on the charge can go into kinetic energy, waste heat, or potential energy. If there is no friction and no acceleration, then the work you do goes into a change of potential energy: U = m g h for a mass in a gravitational field and U = q E h for a charge in a uniform electric field. The sign of h determines the sign of U. (If a charged object is moved in a vicinity where both types of fields are present, we d have to use both formulae.) Whether or not there is friction or acceleration, it is always the case that the work done by the field is the opposite of the change in potential energy: W field =  U. m g E q m g Earth s surface q E Negatively charged surface
29 WorkEnergy Example Here the E field is to the right and approximately uniform. The applied force is F A to the left, as is the displacement. The work done by F A is F A d. The work done by the field is W F =  q E d. The change in electric potential energy is U =  W F = q E d. Since F A > q E, the applied force does more positive work than the field does negative work. The difference goes into kinetic energy and heat. The work done by friction is W fric < 0. So, W net = F A d  q E d  W fric = K by the workenergy theorem. F A d q q E
30 WorkEnergy Practice For each situation a charge is displaced by some applied force while in a uniform electric field. Determine the sign of: the work done by the applied force; the work done by the field; and U. 1. q is positive and displaced to the right. 2. q is negative and displaced to the right. 3. q is positive and displaced to the left. 4. q is negative and displaced to the left. q
31 Potential Gravitational potential is defined to be gravitational potential energy per unit mass. At any given height above Earth s surface, the gravitational potential is a constant since U / m = m g h / m = g h. Thus potential is independent of mass. If M > m and they re at the same height, M has more potential energy than m, but they are at the same potential. Similarly, electric potential, V, is defined to be electric potential energy per unit charge. At any given distance from a charged surface in a uniform field, the electric potential is a constant since U / q = q E d / q = E d. Thus potential is independent of charge. If Q > q and they re the same distance from the surface, Q has more potential energy than q, but they are at the same potential. In a uniform field V = E d. g m M h d q Q E Earth s surface Negatively charged surface
32 SI Units for Potential By definition, electric potential is potential energy per unit charge. So, V = U q The SI unit for electric potential is the volts. Both potential and its unit are notated by the capital letter V. Based on the definition above, a volt is defined as joule per coulomb: 1 V = 1 J C Ex: If an object with a 10 C charge is placed at a certain point in an electric field so that its potential energy is 50 J, every coulomb of charge in the object contributes to 5 J of its energy, and its potential is 5 J / C, that is, 5 V.
33 Earth s surface Equipotential Surfaces As with gravitational potential energy, the reference point for electric potential energy, and hence potential, is arbitrary. Usually what matters is a change in potential, so we just pick a convenient place to call potential energy zero. The dotted lines on the left represent equipotential surfacesplanes in which masses all have the same potential, regardless of the mass. On the 30 J/kg surface, for example, every kilogram of every mass has 30 J of potential energy. Note that equipotentials are always perpendicular to field lines. The equipotentials on the right are labeled in volts. Potential decreases with distance from a positively charged surface since a positive charge loses potential energy as it recedes from the surface. Here again the equipotentials are perpendicular to the field lines. On the 45 V surface, every coulomb of charges has 45 J of potential energy. A 2 C charge there has a potential energy of 90 J. 40 J / kg 30 J / kg 20 J / kg 10 J / kg 0 J / kg 60 V 45 V 30 V 15 V 0 V Positively charged surface
34 Contour Map Analogy Earth s gravitational field doesn t diminish much over the height of a mountain, so the field is nearly uniform and the equipotentials are evenly spaced, parallel planes. Thus the dotted lines are equally spaced (side view). As seen from above, though, the corresponding contour lines are not equally spaced. They are closer together where the potential energy changes rapidly (steep part of the mountain), and they re far apart where the energy changes gradually (gentle sloping part of mountain). Contour lines connect points of equal elevation, so walking along one mean your potential energy remains constant. They are analogous to equipotentials. side view top view steep not steep
35 Equipotential Surfaces: Positive Point Charge Imagine a positive test charge, q, approaching an isolated, positive, pointlike field charge, Q. The closer q approaches, the more potential energy it has. So, potential increases as distance decreases. Next year we ll derive this formula for potential due to a point charge: V = KQ / r. This shows that V is proportional to Q, that V 0 as r, and that V as r 0. Equipotential surfaces are always perpendicular to the field lines, for any charge configuration. For a point charge the surfaces are spheres centered at Q. Here the surfaces could be labeled from the inside out: 100V, 90 V, 80 V, and 70 V. Every 10 V step is bigger than the previous, since the field is getting weaker with distance. The gap between the 50 V and 40 V surfaces would be very large, and the gap between 10 V and 0 V would be infinite.
36 Equipotential Surfaces: Negative Point Charge The field and the equipotentials look just like that of the isolated, positive point charge. However, the field lines point in the opposite direction and the potential decreases with distance. Imagine a positive test charge, q, approaching an isolated, negative, pointlike field charge, Q. The closer q approaches, the more negative its potential energy becomes. So, V 0 as r (as with the positive field charge), but V  as r 0. Here the surfaces could be labeled from the inside out: 100V, 90 V, 80 V, and 70 V. Every 10 V step is bigger than the previous, since V = zero at infinity. (The step size  to be drawn is a matter of choice.) A 3 C charge placed on the 70 V surface has a potential energy of 210 J.
37 Equipotentials Surfaces for Multiplecharge Configurations In class practice: First experiment with the link, then draw equipotentials on the board on top of this picture. Here are the rules: Equipotentials are always perpendicular to the field lines. Equipotentials never intersect one another. The potential is large & positive near a positive charge, large & negative near a negative charge, and near zero far from all the charges. Equipotentials are close together where potential energy changes quickly (close to charges).  Link
38 Moving in an Electric Field Electric and gravitation fields are called conservative fields because, when a mass/charge moves about one, any change in potential energy is independent of path. A charge taking a straightline path from A to B undergoes a change in potential of 10 V ( V = 10 V). If a charge takes the long, curvy path, its energy increases as it approaches the field charge, and decreases as it recedes, but the change D is the same as the straightline path. In either case each coulomb of C charge gains 10 J of potential energy. A No matter what path is taken: B V C A = 20 V, and V D A = 0. V is independent of path! From A to D along the equipotential the field can do no work, since the displacement if always to E, which is to F. Recall: W = F x = F x cos.
39 Capacitors  Overview A capacitor is a device that stores electrical charge. A charged capacitor is actually neutral overall, but it maintains a charge separation. The charge storing capacity of a capacitor is called its capacitance. An electric field exists inside a charged capacitor, between the positive and negative charge separation. A charged capacitor store electrical potential energy. Capacitors are ubiquitous in electrical devices. They re used in power transmission, computer memory, photoflash units in cameras, tuners for radios and TV s, defibrillators, etc.
40 Parallel Plate Capacitor The simplest type of capacitor is a parallel plate capacitor, which consists of two parallel metal plates, each of area A, separated by a distance d. When one plate is attached via a wire to the terminal of a battery, and the other plate is connected to the  terminal, the battery pulls e  s from the plate V connected to the  terminal and battery deposits them on the other. As a whole the capacitor remains neutral, but we say it now has a charge Q, the amount of charge moved from one plate to the other. Without a resistor in the circuit, the capacitor charges very quickly. Thus the current, i, which by definition is in the opposite direction of the flow of e  s, lasts but a short time. As soon as the voltage drop across the capacitor (the potential difference between its plates) is the same as that of the battery, V, the charging ceases. The capacitor can remain charged even when disconnected from the battery. Note the symbols used in the circuit diagram to the right.  Q d i capacitor wire Q Area, A V C Q  Q
41 Parallel Plate Capacitor: E & U Because of the charge separation, an electric field exists between the plates of a charged capacitor. If it is a parallel plate variety, the field is very nearly uniform inside, with some fringing on the edges, as we ve seen before. Outside the plates the field is very weak. The strength of the E field inside is proportional to how much charge is on the capacitor and inversely proportional to how the capacitors area. (Less area means the charge is more concentrated and the field is stronger.) A charged capacitor also stores potential energy (in an amount proportional to the square of the charge) since energy is required to separate the charges in the first place. Touching a charged capacitor will allow it to discharge quickly and will result in a shock. Once discharged, the electric field vanishes and the potential energy is converted to some other form
42 Capacitance Capacitance, C, is the capacity to store charge. The amount of charge, Q, stored on given capacitor depends on the potential difference between its plates, V, and its capacitance C. In other words, Q is directly proportional to V, and the constant of proportionality is C: Q = C V Ex: A 12 V battery will cause a capacitor to store twice as much charge as a 6 V battery. Also, if capacitor #2 has twice the capacitance of capacitor #1, then #2 will store twice as much charge as #1, provided they are charged by the same battery. C depends on the type of the capacitor. For a parallel plate capacitor, C is proportional to the area, A and inversely proportional to the plate separation, d. C Q V
43 Capacitance: SI Units The SI unit for capacitance is the farad, named for the famous 19 th century scientist Michael Faraday. Its symbol is F. From the defining equation for capacitance, Q = CV, we define a farad: Q = C V implies 1 C = (1 F) (1 V) So, a farad is a coulomb per volt. This means a capacitor with a capacitance of 3 F could store 30 C of charge if connected to a 10 V battery. This is a tremendous amount of charge for a reasonable potential difference. Thus a farad is a large amount of capacitance. Many capacitors have capacitances measured in pf or ff (pico or femtofarads). m: milli = 103, μ: micro = 106, n: nano = 109, p: pico = 1012, f: femto = 1015
44 Capacitance Problem A parallel plate capacitor is fully charged by a 20 V battery, acquiring a charge of 1.62 nc. The area of each plate is 3.5 cm 2 and the gap between them is 1.3 mm. What is the capacitance of the capacitor? From Q = C V, C = Q / V = ( C) / (20 V) = F = F = 81 pf. The gap and area are extraneous μc 1.62 μc 1.3 mm 3.5 cm 2 20 V
45 V = E d As argued on the slide entitled Potential, in a uniform field, V = E d. This argument was based on an analogy with gravity and applies only to uniform fields: gravitational: U = m g h electric: U = q E d U / q = E d V = E d Since E is uniform inside a parallel plate capacitor, the voltage drop across it is equal to the magnitude of the electric field times the distance between the plates. d
46 V = E d (formal derivation) V = U q (from the definition of potential) V = W field q V= F d q (since W field =  U ) (since W = F d ) V= E d (since E = F q )
47 Millikan s Oil Drop Experiment In 1909, Robert Millikan performed an experiment to determine the charge of an electron. The charge to mass ratio of the electron had already been calculated by J. J. Thomson (discoverer of the electron) in But until Millikan s experiment, neither the mass nor the charge was known, only the ratio. By examining the motion of the oil droplets falling between two highly charged plates, he found the charge to be C. The charged plates were similar to that of a parallel plate capacitor.
48 Millikan Apparatus and Experiment A battery connected to the plates kept the top (positive) plate at a higher potential than the lower (negative) plate. So, a nearly uniform, downward E field existed between the plates. An atomizer sprayed tiny oil droplets (of radii about 1 μm) from above the plates, some of which fell through a hole in the positive plate into the E field. Due to friction during the spraying, some of the drops were charged, either positively or negatively. A negatively charged drop that makes it into the hole will not undergo free fall, since it experiences an upward electric force between the plates. The radius, mass, and charge of the drops varied, but by adjusting the potential difference across the plates, Millikan could make a drop hover. Continued switch
49 Oil Drop Experiment (cont.) A drop suspended in midair has no net force on it. This means the downward weight, m g, was negated by an upward electric force, q E. Millikan could vary E by adjusting the potential difference across the plates (V = E d). So, the excess charge on the drop is: q = m g / E = m g d / V. But m needed to be calculated in order to determine q. To find the drop s mass, he turned off the electric field by opening the switch and disconnecting the battery. The drop then began to fall, but it quickly reached terminal velocity in the air. The greater the falling speed, the greater the drag force, and by measuring terminal speeds, Millikan could calculate the mass. Continued  q E m g switch d
50 Oil Drop Experiment (cont.) At this point Millikan could calculate the charge on a drop. But without knowing the number of excess electrons on the drop, he couldn t determine the charge of an electron. So, he altered the charge on the drop with Xrays (not shown). The Xrays ionized the surrounding air, which, in turn, altered the charge on the drops. The drops were now no longer in equilibrium, so Millikan adjusted the E field until equilibrium was reestablished. Since at equilibrium q = mgd / V, and all quantities on the right side of the equation were known, Millikan could repeat this Xray procedure numerous times and calculate the many different charges that a drop could attain. He found that the charge on a drop was always a multiple of C. As you know, we now call this amount of charge e, the elementary charge. His experiment showed that charge is quantized, existing in discrete bundles (in this case, electrons) and that the charge on an electron is C.
51 Excess Charge on a Conductor Any excess charge placed on a conductor will immediately distribute itself over the surface of the conductor. No excess charge will remain inside. On a spherical conductor the excess charge will be distributed evenly. If electrons are added, they themselves will spread out. If electrons are removed, electrons in the conductor will replace them, leaving all excess positive charge on the surface. Excess charge placed on an insulator pretty much stays put. Now lets add some extra charges. The new charges repel themselves and reside only on the surface.
52 Excess Charge on a Pointy Conductor Excess charge, which always resides on the surface of a conductor, will collect in high concentrations at points. In general, the smaller the radius of curvature, R, the greater the charge density (charge per unit area). The reason for this is that when R is large, neighboring charges push a charge nearly tangent to the surface (left pic). But where R is small (as near a point), neighboring charges are mostly pushing a charge outward, away from the surface instead of away from each other (right pic). This allows the charges be reside closer together. small R, high charge density uniform R, uniform charge density vector forces due to neighboring charges large R, low charge density
53 Electric Fields In & Around Charged Conductors E is always zero inside any conductor, even a charged one. If this were not the case, mobile valence electrons inside the conductor would be accelerated by the E field, leaving them in a state of perpetual motion. Outside a charged conductor E is greater where the charge density is greater. Near points, E can be extremely high. Surrounding a sphere the field is radially symmetric, just the field due to a point charge. E = 0 inside E is radially symmetric outside. small R, strong E large R, weak E E = 0 inside
54 Shielding Electric Fields A box or room made of metal or with a metal liner can shield its interior from external electric fields. Valence e  s in the metal will respond to the field and reorient themselves until the field inside the box no longer exists. The external field (black) points right. This causes a charge separation in the box (e  s migrating left), which produces its own field (red), negating the external field. Thus, the net field inside is zero. Outside, the field persists
55 Credits /~duffy/py106/electricfield.html&h=221&w=370&sz=4&tbnid=y0qny4b133kj:&tbnh=70&tbnw=117&start=3&pre v=/images%3fq%3delectric%2bfield%26hl%3den%26lr%3d Spark Picture: electric field lines: java, placing and moving test charges and regular charges: java animation, placing test charges: lesson, pictures, units: java electric field: lesson with animations, explanations: Robert Millikan: Millikan Oil Drop:
Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,
1 E L E C T R O S TAT I C S 1. Define lines of forces and write down its properties. Draw the lines of force to represent (i) uniform electric field (ii) positive charge (iii) negative charge (iv) two
More informationPHYSICS 212 ELECTRICAL ENERGY AND CAPACITANCE WORKBOOK ANSWERS
PHYSICS 212 CHAPTER 16 ELECTRICAL ENERGY AND CAPACITANCE WORKBOOK ANSWERS STUDENT S FULL NAME (By placing your name above and submitting this for credit you are affirming this to be predominantly your
More informationA2 Physics  Electric Fields Q&A Revision Sheet
Give the equation relating to the force between point charges in a vacuum If 'F' (the force) is negative what does that mean? If 'F' (the force) is positive what does that mean? State Coulomb's Law F is
More informationConsider a plate of finite width carrying an excess positive charge. In isolation, the charge will migrate to both surfaces.
3 Conductors 3.1 Electric field and electric potential in the cavity of a conductor Conductors (eg metals) are materials in which charges move freely, whereas insulators (eg glass, rubber, wood) are materials
More informationELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects
ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?
More informationphysics 111N electric potential and capacitance
physics 111N electric potential and capacitance electric potential energy consider a uniform electric field (e.g. from parallel plates) note the analogy to gravitational force near the surface of the Earth
More informationAP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.
Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = 4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?
More informationElectrical Energy, Potential and Capacitance. AP Physics B
Electrical Energy, Potential and Capacitance AP Physics B Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to separate two opposite charges, work
More informationElectric Forces and Fields. Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles
Electric Forces and Fields Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles 1 Friction causes these effects Pollen sticks to bees Dust sticks to TV Static cling of clothes
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationEquipotential and Electric Field Mapping
Experiment 1 Equipotential and Electric Field Mapping 1.1 Objectives 1. Determine the lines of constant electric potential for two simple configurations of oppositely charged conductors. 2. Determine the
More informationPSS 27.2 The Electric Field of a Continuous Distribution of Charge
Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight ProblemSolving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.
More informationGauss's Law. Gauss's Law in 3, 2, and 1 Dimension
[ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationChapter 24 Capacitance, Dielectrics, Electric Energy Storage. Copyright 2009 Pearson Education, Inc.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage Units of Chapter 24 Capacitors Determination of Capacitance Capacitors in Series and Parallel Electric Energy Storage Dielectrics Molecular
More informationSlide 1 / 33. Electric Charge and Electric Field
Slide 1 / 33 Electric Charge and Electric Field Slide 2 / 33 Electric Charge When you rub a rod with a piece of fur both objects become charged and you can pick up small pieces of paper. This natural phenomenon
More information13. In the circuit shown the amount of charge on the plates of capacitor is 5 V
CAPACITORS 1. A parallel plate air capacitor consists of two circular plates of 2m 2 area separated by 1mm. If the gap between plates is doubled then its capacitance will be 1. Halved 2. Doubled 3. 4 times
More information3. As shown in the diagram below, a charged rod is held near, but not touching, a neutral electroscope.
1. As a positively charged rod is brought near to but not allowed to touch the knob of an uncharged electroscope, the leaves will diverge because negative charges are transferred from the electroscope
More informationChapter 16 Electric Forces and Fields
Chapter 16 Electric Forces and Fields 2. How many electrons does it take to make one coulomb of negative charge? A. 1.00 10 9 B. 6.25 10 18 C. 6.02 10 23 D. 1.66 10 18 E. 2.24 10 4 10. Two equal point
More informationCoefficient of Potential and Capacitance
Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that
More informationChapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohiostate.edu/~humanic/  Chapter 18 Electric Forces and Electric Fields
More information2. In Newton s universal law of gravitation the masses are assumed to be. B. masses of planets. D. spherical masses.
Practice Test: 41 marks (55 minutes) Additional Problem: 19 marks (7 minutes) 1. A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude
More informationPHYS 3324 Lab Millikan Oil Drop Experiment: Demonstration of the Quantization of Charge
PHYS 3324 Lab Millikan Oil Drop Experiment: Demonstration of the Quantization of Charge Background reading Read the introduction below before answering the Prelab Questions Prelab Questions 1. A typical
More informationChapter 26. Capacitance and Dielectrics
Chapter 26 Capacitance and Dielectrics Capacitors Capacitors are devices that store electric charge Examples where capacitors are used: radio receivers filters in power supplies energystoring devices
More information21.1 Coulomb s Law  Electric Charge  Conductors and Insulators  Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved
INTRODUCTION We will understand how electric and magnetic fields affect charged particles Lorentz Force Law: we will learn to describe how electric and magnetic fields are produced by charged particles
More informationPS6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More informationELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
More information3/22/2016. Chapter 26 The Electric Field. Chapter 26 Preview. Chapter 26 Preview. Chapter Goal: To learn how to calculate and use the electric field.
Chapter 26 The Electric Field Chapter Goal: To learn how to calculate and use the electric field. Slide 262 Chapter 26 Preview Slide 263 Chapter 26 Preview Slide 264 1 Chapter 26 Preview Slide 265
More informationSQA Advanced Higher Physics Unit 2: Electrical Phenomena
SCHOLAR Study Guide SQA Advanced Higher Physics Unit 2: Electrical Phenomena Andrew Tookey HeriotWatt University Campbell White Tynecastle High School HeriotWatt University Edinburgh EH14 4AS, United
More information1. Two charges +Q and 3Q are placed in opposite corners of a square. The work required to move a test charge q from point A to point B is:
Electric Potential & Capacitance Multiple Choice 1. Two charges +Q and 3Q are placed in opposite corners of a square. The work required to move a test charge q from point A to point B is: (A) dependent
More information3. A capacitor C has a charge Q. The actual charges on its plates are: A. Q, Q B. Q/2, Q/2 C. Q, Q D. Q/2, Q/2 E. Q, 0 ans: C
Chapter 25: CAPACITANCE 1. The units of capacitance are equivalent to: A. J/C B. V/C C. J 2 /C D. C/J E. C 2 /J 2. A farad is the same as a: A. J/V B. V/J C. C/V D. V/C E. N/C 3. A capacitor C has a charge
More informationCHAPTER 21: ELECTRIC CHARGE AND ELECTRIC FIELD
CHAPTER 21: ELECTRIC CHARGE AND ELECTRIC FIELD As you may already know, according to our present understanding of the universe, there are four fundamental interactions, or forces: gravitation, electromagnetism,
More informationGeneral Physics I Can Statements
General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can
More informationChapter 26A  Capacitance. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 6A  Capacitance A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Objectives: After completing this module, you should be able to: Define
More informationChapter 20  Solutions
Chapter 20  Solutions Electric Fields and Forces Description: Electric forces and electric fields. Learning Goal: To understand Coulomb's law, electric fields, and the connection between the electric
More information4/16/ Bertrand
Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 1019 Coulombs. Charge distribution
More information252: Capacitance. 252: Capacitance. Dr. Iyad SAADEDDIN
Dr. Iyad SAADEDDIN Chapter 5: Capacitance 5: What is physics Capacitance, C, is the ability of a body to store an electrical l charge Any object that t can be electrically ll charged exhibits capacitance
More informationACME STUDY POINT. is added in parallel. Are (a) the potential difference across C 1. and (b) the charge q 1. of C 1
QUESTION FOR SHORT ANSWER Q.1 The electric strength of air is about 30, 000 V/cm. By this we mean that when the electric field intensity exceeds this value, a spark will jump through the air. We say that
More information1 of 9 10/27/2009 7:46 PM
1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]
More informationSolution Derivations for Capa #5
Solution Derivations for Capa #5 1) A positive charge of Q = 5.30 µc is fixed in place. From a distance of r i = 4.40 cm a particle of mass m = 6.00 g and charge q = +3.70 µc is fired with an initial speed
More informationElectrical discharge in air e.g. lightning
Static Electricity electron transfer causes static electricity results from an imbalance of charges can occur by induction, friction, and contact You need to describe the direction of motion of charges
More informationChapter 18 Electric Forces and Electric Fields. Key Concepts:
Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent
More informationChapter 25: Capacitance
Chapter 25: Capacitance Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. Albert Einstein 25.1 Introduction Whenever
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More informationGeneral Physics (PHY 2130)
General Physics (PHY 2130) Lecture 8 Forces Newton s Laws of Motion http://www.physics.wayne.edu/~apetrov/phy2130/ Classical Mechanics Describes the relationship between the motion of objects in our everyday
More informationPhysics 202 Spring 2010 Practice Questions for Chapters 2124
Note: Answer key is at end. Physics 202 Spring 2010 Practice Questions for Chapters 2124 1. A uniformly positively charged spherical conductor is placed midway between two identical uncharged conducting
More informationChapter 17: Electric Potential
hapter 17: Electric Potential Electric Potential Energy Electric Potential How are the Efield and Electric Potential related? Motion of Point harges in an Efield apacitors Dielectrics 1 Electric Potential
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More informationSPH4U Gravitational, Electrical and Magnetic Fields Lesson 1 Newtonian Gravitation Page 1 of 4
NEWTONIAN GRAVITATION Universal Law of Gravitation There is a gravitational force of attraction between any two objects. If the objects have masses m 1 and m 2 and their centres are separated by a distance
More information1farad = 1F = 1 C V. The permittivity constant can be expressed in terms of this new unit as: C2 = F (5.3)
hapter 5 apacitance and Dielectrics 5.1 The Important Stuff 5.1.1 apacitance Electrical energy can be stored by putting opposite charges ±q on a pair of isolated conductors. Being conductors, the respective
More informationFall 12 PHY 122 Homework Solutions #4
Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 1030 C.m at a point 4.1 x 109 m away if this point is (a)
More informationphysics 112N electric charges, forces and fields
physics 112N electric charges, forces and fields static electricity like charges repel, unlike charges attract physics 112N 2 atomic origin of charge physics 112N 3 conductors and insulators materials
More informationChapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles
Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar
More information1 of 8 2/25/2010 5:32 PM
Chapter 26 Homework Due: 8:00am on Monday, February 22, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View] Charging a Conducting
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPhysics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings
Signed in as Richard Sonnenfeld, Instructor Help Sign Out Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library Essential
More informationAP Physics Scoring Guidelines
AP Physics 1 2015 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home
More informationPotential and voltage. Electric forces exert on any charge placed in the electric field
Potential and voltage q F Electric forces exert on any charge placed in the electric field The electric field E has the magnitude and the direction (it is a vector) The direction of the field is taken
More informationChapter 14 Magnets and
Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally
More informationJanuary 30. Physics 272. Spring Prof. Philip von Doetinchem
Physics 272 January 30 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272  Spring 14  von Doetinchem  140 Summary General
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationCapacitance, Resistance, DC Circuits
This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple
More informationPhysics 30 Worksheet #10 : Magnetism From Electricity
Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron
More informationEXPERIMENT IV. FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND. FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD (µ o )
1 PRINCETON UNIVERSITY PHYSICS 104 LAB Physics Department Week #4 EXPERIMENT IV FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD (e/m OF ELECTRON ) AND FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD
More informationClicker Question. Two small objects each with a net charge of +Q exert a force of magnitude F on each other. F +Q
A hollow metal sphere is electrically neutral (no excess charge). A small amount of negative charge is suddenly placed at one point P on this metal sphere. If we check on this excess negative charge a
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationAP Physics B Free Response Solutions
AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible
More informationElectric Potential Energy. Voltage and Capacitance. Electric Work. Electric Potential: Voltage 6/1/2016
Electric Potential Energy Voltage and Capacitance Chapter 17 Potential Energy of a charge Wants to move when it has high PE Point b U = max K = min Point a U = min K = max Electric Work Charge moving between
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2015
Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s
More informationPH2025D Final Comprehensive Exam (August 10, 2007)
NAME SCORE PH2025D Final Comprehensive Exam (August 0, 2007) You may not open the textbook nor notebook. A letter size information may be used. A calculator may be used. However, mathematics or physics
More informationCapacitance and Dielectrics
Capacitance and Dielectrics George Gamow was a famous nuclear physicist and cosmologist who once wrote an entertaining and humorous series of books for the layman in which many of the mysteries of modern
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More information1 of 7 3/23/2010 2:45 PM
1 of 7 3/23/2010 2:45 PM Chapter 30 Homework Due: 8:00am on Tuesday, March 23, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationElectric Currents. Electric Potential Energy 11/23/16. Topic 5.1 Electric potential difference, current and resistance
Electric Currents Topic 5.1 Electric potential difference, current and resistance Electric Potential Energy l If you want to move a charge closer to a charged sphere you have to push against the repulsive
More informationPHYS2020: General Physics II Course Lecture Notes Section II
PHYS2020: General Physics II Course Lecture Notes Section II Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and
More informationACTIVITY 1: Gravitational Force and Acceleration
CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationLesson 10: Electric Fields
Lesson 10: Electric Fields Just like the force due to gravity, the force due to electric charges can act over great distances. Keep in mind that most forces we deal with in everyday life are not like this.
More informationPhysics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 16 9/7/2012 1:10 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
More informationPHYS 202 (DDE) Solved problems in electricity 1
PHYS 202 (DDE) Solved problems in electricity 1 1. Common static electricity involves charges ranging from nanocoulombs to microcoulombs. How many electrons are needed to form a charge of 2.00 nc? How
More informationChapter 29. Magnetic Fields
Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass 800 BC Uses a magnetic needle Probably an invention of Arabic or Indian origin Greeks Discovered magnetite
More informationElectrostatics Problems
Name AP Physics B Electrostatics Problems Date Mrs. Kelly 1. How many excess electrons are contained in a charge of 30 C? 2. Calculate and compare the gravitational and electrostatic force between an electron
More information3.6 Solving Problems Involving Projectile Motion
INTRODUCTION 12 Physics and its relation to other fields introduction of physics, its importance and scope 15 Units, standards, and the SI System description of the SI System description of base and
More informationNewton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009
Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined
More information1. A 20F capacitor is charged to 200 V. Its stored energy is:
University Physics (Prof. David Flory) Chapt_28 Sunday, February 03, 2008 Page 1 Name: Date: 1. A 20F capacitor is charged to 200 V. Its stored energy is: A) 4000 J B) 4 J C) 0.4 J D) 2000 J E) 0.1 J
More informationLesson 04: Newton s laws of motion
www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.
More informationTwo kinds of electrical charges
ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces
More informationExam 1 Solutions. PHY2054 Fall 2014. Prof. Paul Avery Prof. Andrey Korytov Sep. 26, 2014
Exam 1 Solutions Prof. Paul Avery Prof. Andrey Korytov Sep. 26, 2014 1. Charges are arranged on an equilateral triangle of side 5 cm as shown in the diagram. Given that q 1 = 5 µc and q 2 = q 3 = 2 µc
More informationReview D: Potential Energy and the Conservation of Mechanical Energy
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Nonconservative Force... 2 D.1.1 Introduction...
More informationCenter of Mass/Momentum
Center of Mass/Momentum 1. 2. An Lshaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the Lshaped
More informationChapter 3. Gauss s Law
3 3 30 Chapter 3 Gauss s Law 3.1 Electric Flux... 32 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 34 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 39 Example
More informationAP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to
1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.
More informationFaraday s Law; Inductance
This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, selfinductance, inductance, RL circuits, and energy in a magnetic field, with some
More informationCHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS
CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
More informationProgetto Orientamento in rete
Progetto Orientamento in rete Unità 1: Newton s law of gravitation and Gravitational field Unità 2: Gravitational potential energy Unità 3: Coulomb s law and Electric field Unità 4: Magnetic field Prof.ssa
More informationObjectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
More informationFall 97 Test 1, P. 2
2102 Fall 97 Test 1 Fall 97 Test 1, P. 2 Fall 97 Test 1, P. 3 Fall 97 Test 1, P. 4 Fall 97 Test 1, P. 5 5. (10 points) A spherical rubber balloon has a charge uniformly distributed over is surface. The
More information