Algorithmic Crowdsourcing. Denny Zhou Microsoft Research Redmond Dec 9, NIPS13, Lake Tahoe

Size: px
Start display at page:

Download "Algorithmic Crowdsourcing. Denny Zhou Microsoft Research Redmond Dec 9, NIPS13, Lake Tahoe"

Transcription

1 Algorithmic Crowdsourcing Denny Zhou icrosoft Research Redmond Dec 9, NIPS13, Lake Tahoe

2 ain collaborators John Platt (icrosoft) Xi Chen (UC Berkeley) Chao Gao (Yale) Nihar Shah (UC Berkeley) Qiang Liu (UC Irvine) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 2

3 achine learning + crowdsourcing Almost all machine learning applications need training labels By crowdsourcing we can obtain many labels in a short time at very low cost 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 3

4 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 4

5 O O O O O O O O Repeated labeling: Orange (O) vs. andarin () 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 5

6 O O O O O O O O Repeated labeling: Orange (O) vs. andarin () 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 6

7 O O O O O O O O Repeated labeling: Orange (O) vs. andarin () 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 7

8 How to make assumptions? Intuitively, label quality depends on worker ability and item difficulty. But, How to measure worker ability? How to measure item difficulty? How to combine worker ability and item difficulty? How to infer worker ability and item difficulty? How to infer ground truth? 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 8

9 A single assumption for all questions Our assumption: measurement objectivity A 2 B Invariance: No matter which scale, A is twice larger than B 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 9

10 A single assumption for all questions Our assumption: measurement objectivity A 2 B How to formulate invariance for mental measuring? 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 10

11 A single assumption for all questions Our assumption: measurement objectivity A 2 B Assume a set ℵ of equally difficult questions: R A : number of right answers W A : number of wrong answers R A /W A R B /W B 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 11

12 A single assumption for all questions Our assumption: measurement objectivity A 2 B Assume another set ℵ of equally difficult questions: R A : number of right answers W A : number of wrong answers R A /W A R B /W B 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 12

13 A single assumption for all questions Our assumption: measurement objectivity A 2 B R A /W A R B /W B = R A/W A R B /W B 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 13

14 A single assumption for all questions Our assumption: measurement objectivity A 2 B For multiclass labeling, we count the number of misclassifications from one class to another 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 14

15 easurement objectivity assumption leads to a unique model! worker i, item j labels c, k data matrix X ij true label Y j P X ij = k Y j = c = 1 Z exp[σ i c, k + τ j c, k ] worker confusion matrix itemconfusion matrix 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 15

16 Estimation procedure First, estimate the worker and item confusion matrices by maximizing marginal likelihood Then, estimate the labels by using Bayes rule with the estimated confusion matrices Two steps can be seamlessly unified in E! 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 16

17 Expectation-aximization (E) Initialize label estimates via majority vote Iterate till converge: Given the estimates of labels, estimate worker and item confusion matrices Given the estimates of worker and item confusion matrices, estimate labels 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 17

18 Prevent overfitting Equivalently formulate our solution into minimax conditional entropy Prevent overfitting by a natural regularization 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 18

19 inimax conditional entropy True label distribution: Q(Y) Define two 4-dim tensors Empirical confusion tensor Expected confusion tensor 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 19

20 inimax conditional entropy Jointly estimate P and Q by subject to 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 20

21 inimax conditional entropy Exactly recover the previous model via the dual of maximum entropy P X ij = k Y j = c = 1 Z exp[σ i c, k + τ j c, k ] Nothing but Lagrangian multipliers! Estimate true labels by minimizing maximum entropy (= maximizing likelihood) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 21

22 Regularization ove from exact matching to approximate matching: 0, i, k, c 0, j, k, c 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 22

23 Regularization ove from exact matching to approximate matching: Penalize large fluctuations: 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 23

24 Experimental results Bluebirds data (error rates) o Belief propagation: Variational Inference for Crowdsourcing (Liu et al. NIPS 2013) o Other methods in the literature cannot outperform Dawid & Skene (1979) o Some are even worse than majority voting o Data: The multidimensional wisdom of crowds (Welinder et al, NIPS 2010) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 24

25 Experimental results Web search data (error rates) o Latent trait analysis code from: o Data: Learning from the wisdom of crowds by minimax entropy (Zhou et al., NIPS 2012) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 25

26 Crowdsourced ordinal labeling Ordinal labels: web search, product rating Our assumption: adjacency confusability 1 likely to confuse unlikely to confuse 5 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 26

27 Ordinal minimax conditional entropy inimax conditional entropy with the ordinalbased worker and item constraints: for all Δ and taking values from {, <} 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 27

28 Constraints: indirect label comparison 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 28

29 Ordinal labeling model Obtain the same model except confusion matrices are subtly structured by Fewer parameter, less model complexity 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 29

30 Web search data Experimental results o Latent trait analysis code from: o Entropy(): regularized minimax conditional entropy for multiclass labels o Entropy(O): regularized minimax conditional entropy for ordinal labels o Data: Learning from the wisdom of crowds by minimax entropy (Zhou et al., NIPS 2012) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 30

31 Experimental results Price estimation data o Latent trait analysis code from: o Entropy(): regularized minimax conditional entropy for multiclass labels o Entropy(O): regularized minimax conditional entropy for ordinal labels o Data: 7 price ranges from least expensive to most expensive (Liu et al. NIPS 13) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 31

32 Why latent trait model doesn t work? When solving a given problem try to avoid solving a more general problem as an intermediate step. -Vladimir Vapnik ordinal label = score range 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 32

33 Error bounds: problem setup Observed Data: Unknown true labels: Unknown workers accuracies: Simplified model of Dawid and Skene (1979) and minimax conditional entropy 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 33

34 Dawid-Skene estimator (1979) Complete likelihood: arginal likelihood: Estimating workers accuracy by Estimating true labels by (plug-in) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 34

35 Theorem (lower bound) For any estimator, there exists a least favorable (parameter space) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 35

36 Theorem (upper bound) Under mild assumptions, Dawid-Skene estimator is optimal in Wald s sense 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 36

37 Budget-optimal crowdsourcing We propose the following formulation: Given n biased coins, we want to know which are biased to heads and which are biased to tails We have a budget of tossing m times in total Our goal is to maximize the accuracy of prediction based on observed tossing outcomes Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in Crowdsourcing (Chen et al, ICL 2013) 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 37

38 Summary easurement Objectivity aximum Conditional Entropy aximum Likelihood inimum Conditional Entropy inimax Conditional Entropy Regularized inimax Conditional Entropy inimax optimal rates Budget-optimal crowdsourcing 12/9/2013 NIPS 2013 Workshop on Crowdsourcing 38

39 Chao Gao and Dengyong Zhou. inimax Optimal Convergence Rates for Estimating Ground Truth from Crowdsourced Labels, no. SR-TR , October 2013 Dengyong Zhou, Qiang Liu, John Platt and Chris eek. Aggregating Ordinal Labels from Crowds by inimax Conditional Entropy. Submitted. Xi Chen, Qihang Lin, and Dengyong Zhou. Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in Crowdsourcing, in Proceedings of the 30th International Conference on achine Learning (ICL), 2013 Dengyong Zhou, John Platt, Sumit Basu, and Yi ao. Learning from the Wisdom of Crowds by inimax Entropy, in Advances in Neural Information Processing Systems (NIPS), December /9/2013 NIPS 2013 Workshop on Crowdsourcing 39

Globally Optimal Crowdsourcing Quality Management

Globally Optimal Crowdsourcing Quality Management Globally Optimal Crowdsourcing Quality Management Akash Das Sarma Stanford University akashds@stanford.edu Aditya G. Parameswaran University of Illinois (UIUC) adityagp@illinois.edu Jennifer Widom Stanford

More information

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC)

large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) large-scale machine learning revisited Léon Bottou Microsoft Research (NYC) 1 three frequent ideas in machine learning. independent and identically distributed data This experimental paradigm has driven

More information

Visipedia: collaborative harvesting and organization of visual knowledge

Visipedia: collaborative harvesting and organization of visual knowledge Visipedia: collaborative harvesting and organization of visual knowledge Pietro Perona California Institute of Technology 2014 Signal and Image Sciences Workshop Lawrence Livermore National Laboratory

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Likelihood: Frequentist vs Bayesian Reasoning

Likelihood: Frequentist vs Bayesian Reasoning "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200B University of California, Berkeley Spring 2009 N Hallinan Likelihood: Frequentist vs Bayesian Reasoning Stochastic odels and

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

The equivalence of logistic regression and maximum entropy models

The equivalence of logistic regression and maximum entropy models The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

CSE 473: Artificial Intelligence Autumn 2010

CSE 473: Artificial Intelligence Autumn 2010 CSE 473: Artificial Intelligence Autumn 2010 Machine Learning: Naive Bayes and Perceptron Luke Zettlemoyer Many slides over the course adapted from Dan Klein. 1 Outline Learning: Naive Bayes and Perceptron

More information

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

The Artificial Prediction Market

The Artificial Prediction Market The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory

More information

Monotonicity Hints. Abstract

Monotonicity Hints. Abstract Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Making Sense of the Mayhem: Machine Learning and March Madness

Making Sense of the Mayhem: Machine Learning and March Madness Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

Xi Chen Curriculum Vitae

Xi Chen Curriculum Vitae Xi Chen Curriculum Vitae IOMS Dept., NYU Stern B-School, 44 West 4th St., 8-50 New York, NY 10012 phone: 212-998-4017 email: xichen@nyu.edu Education 2008 2013 Carnegie Mellon University, School of Computer

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

More information

CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 yuille@stat.ucla.edu Abstract Probability distributions on structured representation.

More information

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore. CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

More information

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S

Linear smoother. ŷ = S y. where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S Linear smoother ŷ = S y where s ij = s ij (x) e.g. s ij = diag(l i (x)) To go the other way, you need to diagonalize S 2 Online Learning: LMS and Perceptrons Partially adapted from slides by Ryan Gabbard

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Inflation. Chapter 8. 8.1 Money Supply and Demand

Inflation. Chapter 8. 8.1 Money Supply and Demand Chapter 8 Inflation This chapter examines the causes and consequences of inflation. Sections 8.1 and 8.2 relate inflation to money supply and demand. Although the presentation differs somewhat from that

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

The primary goal of this thesis was to understand how the spatial dependence of

The primary goal of this thesis was to understand how the spatial dependence of 5 General discussion 5.1 Introduction The primary goal of this thesis was to understand how the spatial dependence of consumer attitudes can be modeled, what additional benefits the recovering of spatial

More information

Sparse modeling: some unifying theory and word-imaging

Sparse modeling: some unifying theory and word-imaging Sparse modeling: some unifying theory and word-imaging Bin Yu UC Berkeley Departments of Statistics, and EECS Based on joint work with: Sahand Negahban (UC Berkeley) Pradeep Ravikumar (UT Austin) Martin

More information

GLM, insurance pricing & big data: paying attention to convergence issues.

GLM, insurance pricing & big data: paying attention to convergence issues. GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - michael.noack@addactis.com Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.

More information

Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing

Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and

More information

Penalized regression: Introduction

Penalized regression: Introduction Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

More information

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics

More information

Model Validation Techniques

Model Validation Techniques Model Validation Techniques Kevin Mahoney, FCAS kmahoney@ travelers.com CAS RPM Seminar March 17, 2010 Uses of Statistical Models in P/C Insurance Examples of Applications Determine expected loss cost

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Load Balancing and Switch Scheduling

Load Balancing and Switch Scheduling EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load

More information

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the p-value and a posterior

More information

Multiclass Classification. 9.520 Class 06, 25 Feb 2008 Ryan Rifkin

Multiclass Classification. 9.520 Class 06, 25 Feb 2008 Ryan Rifkin Multiclass Classification 9.520 Class 06, 25 Feb 2008 Ryan Rifkin It is a tale Told by an idiot, full of sound and fury, Signifying nothing. Macbeth, Act V, Scene V What Is Multiclass Classification? Each

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

Efficient Curve Fitting Techniques

Efficient Curve Fitting Techniques 15/11/11 Life Conference and Exhibition 11 Stuart Carroll, Christopher Hursey Efficient Curve Fitting Techniques - November 1 The Actuarial Profession www.actuaries.org.uk Agenda Background Outline of

More information

Performance Metrics for Graph Mining Tasks

Performance Metrics for Graph Mining Tasks Performance Metrics for Graph Mining Tasks 1 Outline Introduction to Performance Metrics Supervised Learning Performance Metrics Unsupervised Learning Performance Metrics Optimizing Metrics Statistical

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach

Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach Outline Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain 2012 Presented By : KHALID ALKOBAYER Crowdsourcing and Crowdclustering

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

MapReduce Approach to Collective Classification for Networks

MapReduce Approach to Collective Classification for Networks MapReduce Approach to Collective Classification for Networks Wojciech Indyk 1, Tomasz Kajdanowicz 1, Przemyslaw Kazienko 1, and Slawomir Plamowski 1 Wroclaw University of Technology, Wroclaw, Poland Faculty

More information

Predicting borrowers chance of defaulting on credit loans

Predicting borrowers chance of defaulting on credit loans Predicting borrowers chance of defaulting on credit loans Junjie Liang (junjie87@stanford.edu) Abstract Credit score prediction is of great interests to banks as the outcome of the prediction algorithm

More information

The Gravity Model: Derivation and Calibration

The Gravity Model: Derivation and Calibration The Gravity Model: Derivation and Calibration Philip A. Viton October 28, 2014 Philip A. Viton CRP/CE 5700 () Gravity Model October 28, 2014 1 / 66 Introduction We turn now to the Gravity Model of trip

More information

Some Essential Statistics The Lure of Statistics

Some Essential Statistics The Lure of Statistics Some Essential Statistics The Lure of Statistics Data Mining Techniques, by M.J.A. Berry and G.S Linoff, 2004 Statistics vs. Data Mining..lie, damn lie, and statistics mining data to support preconceived

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon

More information

BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION

BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION BIG DATA PROBLEMS AND LARGE-SCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION Ş. İlker Birbil Sabancı University Ali Taylan Cemgil 1, Hazal Koptagel 1, Figen Öztoprak 2, Umut Şimşekli

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

Support Vector Machine. Tutorial. (and Statistical Learning Theory)

Support Vector Machine. Tutorial. (and Statistical Learning Theory) Support Vector Machine (and Statistical Learning Theory) Tutorial Jason Weston NEC Labs America 4 Independence Way, Princeton, USA. jasonw@nec-labs.com 1 Support Vector Machines: history SVMs introduced

More information

Large Margin DAGs for Multiclass Classification

Large Margin DAGs for Multiclass Classification S.A. Solla, T.K. Leen and K.-R. Müller (eds.), 57 55, MIT Press (000) Large Margin DAGs for Multiclass Classification John C. Platt Microsoft Research Microsoft Way Redmond, WA 9805 jplatt@microsoft.com

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing. Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

More information

Bayesian Predictive Profiles with Applications to Retail Transaction Data

Bayesian Predictive Profiles with Applications to Retail Transaction Data Bayesian Predictive Profiles with Applications to Retail Transaction Data Igor V. Cadez Information and Computer Science University of California Irvine, CA 92697-3425, U.S.A. icadez@ics.uci.edu Padhraic

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2015 Collaborative Filtering assumption: users with similar taste in past will have similar taste in future requires only matrix of ratings applicable in many domains

More information

Finding the M Most Probable Configurations Using Loopy Belief Propagation

Finding the M Most Probable Configurations Using Loopy Belief Propagation Finding the M Most Probable Configurations Using Loopy Belief Propagation Chen Yanover and Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel

More information

Distributed Structured Prediction for Big Data

Distributed Structured Prediction for Big Data Distributed Structured Prediction for Big Data A. G. Schwing ETH Zurich aschwing@inf.ethz.ch T. Hazan TTI Chicago M. Pollefeys ETH Zurich R. Urtasun TTI Chicago Abstract The biggest limitations of learning

More information

Optimal Income Taxation with Multidimensional Types

Optimal Income Taxation with Multidimensional Types 1 Optimal Income Taxation with Multidimensional Types Kenneth L. Judd Hoover Institution NBER Che-Lin Su Northwestern University (Stanford Ph. D.) PRELIMINARY AND INCOMPLETE November, 2006 2 Introduction

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Maximum Margin Clustering

Maximum Margin Clustering Maximum Margin Clustering Linli Xu James Neufeld Bryce Larson Dale Schuurmans University of Waterloo University of Alberta Abstract We propose a new method for clustering based on finding maximum margin

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

What Is Probability?

What Is Probability? 1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher

More information

How To Check For Differences In The One Way Anova

How To Check For Differences In The One Way Anova MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

False Discovery Rates

False Discovery Rates False Discovery Rates John D. Storey Princeton University, Princeton, USA January 2010 Multiple Hypothesis Testing In hypothesis testing, statistical significance is typically based on calculations involving

More information

Subordinating to the Majority: Factoid Question Answering over CQA Sites

Subordinating to the Majority: Factoid Question Answering over CQA Sites Journal of Computational Information Systems 9: 16 (2013) 6409 6416 Available at http://www.jofcis.com Subordinating to the Majority: Factoid Question Answering over CQA Sites Xin LIAN, Xiaojie YUAN, Haiwei

More information

L4: Bayesian Decision Theory

L4: Bayesian Decision Theory L4: Bayesian Decision Theory Likelihood ratio test Probability of error Bayes risk Bayes, MAP and ML criteria Multi-class problems Discriminant functions CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

Classification by Pairwise Coupling

Classification by Pairwise Coupling Classification by Pairwise Coupling TREVOR HASTIE * Stanford University and ROBERT TIBSHIRANI t University of Toronto Abstract We discuss a strategy for polychotomous classification that involves estimating

More information

BALANCE LEARNING TO RANK IN BIG DATA. Guanqun Cao, Iftikhar Ahmad, Honglei Zhang, Weiyi Xie, Moncef Gabbouj. Tampere University of Technology, Finland

BALANCE LEARNING TO RANK IN BIG DATA. Guanqun Cao, Iftikhar Ahmad, Honglei Zhang, Weiyi Xie, Moncef Gabbouj. Tampere University of Technology, Finland BALANCE LEARNING TO RANK IN BIG DATA Guanqun Cao, Iftikhar Ahmad, Honglei Zhang, Weiyi Xie, Moncef Gabbouj Tampere University of Technology, Finland {name.surname}@tut.fi ABSTRACT We propose a distributed

More information

Big Data for Security: Challenges, Opportunities, and Experiments

Big Data for Security: Challenges, Opportunities, and Experiments Big ata for Security: Challenges, Opportunities, and Experiments Prat yusa K. Manadhat a HP Labs Joint work with Stuart Haber, William Horne, Prasad Rao, and Sandeep Yadav Big at a is everywhere 2 Enterprises

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee minyong@stanford.edu Seunghee Ham sham12@stanford.edu Qiyi Jiang qjiang@stanford.edu I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

Learning with Local and Global Consistency

Learning with Local and Global Consistency Learning with Local and Global Consistency Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 7276 Tuebingen, Germany

More information

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Foundations of Machine Learning On-Line Learning. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Foundations of Machine Learning On-Line Learning Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Motivation PAC learning: distribution fixed over time (training and test). IID assumption.

More information

Economics 1011a: Intermediate Microeconomics

Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Economics 1011a: Intermediate Microeconomics Lecture 11: Choice Under Uncertainty Tuesday, October 21, 2008 Last class we wrapped up consumption over time. Today we

More information

Survey on Multiclass Classification Methods

Survey on Multiclass Classification Methods Survey on Multiclass Classification Methods Mohamed Aly November 2005 Abstract Supervised classification algorithms aim at producing a learning model from a labeled training set. Various

More information

Learning with Local and Global Consistency

Learning with Local and Global Consistency Learning with Local and Global Consistency Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf Max Planck Institute for Biological Cybernetics, 7276 Tuebingen, Germany

More information

Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks

Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks CS 188: Artificial Intelligence Naïve Bayes Machine Learning Up until now: how use a model to make optimal decisions Machine learning: how to acquire a model from data / experience Learning parameters

More information

Bayesian Factorization Machines

Bayesian Factorization Machines Bayesian Factorization Machines Christoph Freudenthaler, Lars Schmidt-Thieme Information Systems & Machine Learning Lab University of Hildesheim 31141 Hildesheim {freudenthaler, schmidt-thieme}@ismll.de

More information

13.0 Central Limit Theorem

13.0 Central Limit Theorem 13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

More information

Several Views of Support Vector Machines

Several Views of Support Vector Machines Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min

More information

CS570 Data Mining Classification: Ensemble Methods

CS570 Data Mining Classification: Ensemble Methods CS570 Data Mining Classification: Ensemble Methods Cengiz Günay Dept. Math & CS, Emory University Fall 2013 Some slides courtesy of Han-Kamber-Pei, Tan et al., and Li Xiong Günay (Emory) Classification:

More information

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on

Pa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classifica6on Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classifica6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output

More information

Project Planning and Project Estimation Techniques. Naveen Aggarwal

Project Planning and Project Estimation Techniques. Naveen Aggarwal Project Planning and Project Estimation Techniques Naveen Aggarwal Responsibilities of a software project manager The job responsibility of a project manager ranges from invisible activities like building

More information

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. by Philip Kostov and Seamus McErlean Working Paper, Agricultural and Food Economics, Queen

More information