An Interest Rate Model


 Russell Warner
 1 years ago
 Views:
Transcription
1 An Interest Rate Model Concepts and Buzzwords Building Price Tree from Rate Tree Lognormal Interest Rate Model Nonnegativity Volatility and te Level Effect Readings Tuckman, capters 11 and 12. Lognormal distribution, proportional volatility, basis point volatility, independent increments, limiting distribution An Interest Rate Model 1
2 Review of No Arbitrage Pricing Approac to contingent claims pricing I. starting wit te possible future payoffs of sort and longterm zeroes II. replicate te payoffs of a derivative wit a portfolio or trading strategy using two zeroes III. use te law of one price to set te claim price equal to te price of te replicating portfolio Review of RiskNeutral Probabilities Equivalent approac I. determine statecontingent claims prices from te original prices and payoffs of te zeroes II. derive "riskneutral" probabilities from te statecontingent claims prices III. represent te no arbitrage price of a derivative as te "riskneutral" expected value of its future payoff, discounted at te riskless rate. An Interest Rate Model 2
3 Starting wit RiskNeutral Probabilities Conceptually, we start wit current prices and a set of future possible payoffs, and ten derive te riskneutral probabilities. Once we ave a teory tat says tese riskneutral probabilities exist, owever, it is often more practical to start wit tem immediately. From a financial engineering standpoint, it is easier to set riskneutral probabilities of te up and down states to eac, and ten work out wat te future payoffs must be to fit current prices. Interest Rate Modeling GOAL: build interest rate models tat capture basic properties of interest rates wile also fitting te current term structure Some basic properties are nonnegative interest rates nonnormal distribution meanreversion stocastic volatility and te level effect. Tis lecture will develop a specific interest rate model and explore some of its properties. Te next lecture will sow ow to calibrate te model to fit te current term structure. An Interest Rate Model 3
4 Building Price Tree from Rate Tree and RiskNeutral Probabilities As motivation, note tat once we ave a tree of oneperiod rates ("sort" rates) and riskneutral probabilities, we can price any term structure asset. For example, suppose we assume tat sixmont rates and riskneutral probabilities are as follows: 5.54% Time 0 Time Time % 4.721% 6.915% 5.437% 4.275% Building Price Trees... Tis information will determine te price trees for te year zero, te 1year zero, and te 1.5 year zero. Examples: Te time 1, upup price of te zero maturing at 1.5: 1/( /2) = Te time 1, updown price of te zero maturing at 1.5: 1/( /2) = Te time up price of te zero maturing at time 1: 1/( /2) = Te time up price of te zero maturing at 1.5: (x x0.9735) x = An Interest Rate Model 4
5 Building Price Trees... Eventually, we can fill out te wole tree of prices for eac zero. Eac sixmont zero price in te tree comes directly from te sixmont rate. Te price of eac long zero is te discounted, riskneutral expected value of its future price. Time 0 Time Time Building Price Trees... Once we ave te tree or "model" of zero prices, we can price any interest rate derivative product. We price derivatives at teir replication cost. We compute te replication cost by discounting riskneutral expected payoffs. Pricing boils down to building te interest rate model. Time Time Time An Interest Rate Model 5
6 Lognormal Interest Rate Model Definition: A random variable Y as a lognormal distribution if ln(y) as a normal distribution (i.e., if Y=Exp(X) were X as a normal distribution). A lognormal model of interest rates gives bot nonnegative interest rates iger volatility at iger interest rates. We will work wit a discretetime binomial approximation of tis lognormal model. Log Model of Interest Rates Time 0 Te sort rate (te rate on year bonds): re re Time m +σ 1 m σ 1 Time 2 m + m 2σ Notice tat eac date te sort rate canges by a multiplicative term: m±σ e Te exponential is always positive, wic guarantees tat interest rates are always positive in tis model. re re re m m m + m 2σ 1 2 An Interest Rate Model 6
7 Description of te Model is te amount of time between dates in te tree measured in years. For example, in a semiannual tree, =. In a montly tree, = 1/12 = Eac value in te tree represents te sort rate or interest rate for a zero wit maturity. Eac date te (riskneutral) probability of moving up or down is. Te parameters of te model are te drift terms m 1, m 2,...wic are known (nonstocastic) but can cange eac period and te proportional volatility σ wic is constant. Example: SemiAnnual Tree Suppose (details later) te time steps are 6 monts (=) te current 6mont rate is 5.54% te drift over te first 6 monts is m1= te drift over te second 6 monts is m2 = te proportional volatility σ=0.17 An Interest Rate Model 7
8 Example: SemiAnnual Tree Time 0 Time Time 1 Te sort rate 5.54% 6.004% 4.721% 6.915% 5.437% 4.275% For example, at time, up, te 6mont zero rate is e = e x 1+ x X exp(x) X+1 Diff exp(x) X X An Interest Rate Model 8
9 Volatility and te Level Effect Te volatility of te sort rate itself is not constant, but is instead approximately proportional to te level of te sort rate. To see tis, note tat for small x: Terefore, e x 1+ x m+ σ re r( 1+ m + σ ) re m σ r( 1+ m σ ) vol(new r) old r σ ) Example of te Level Effect Time Time % 6.915% 5.437% Suppose we arrive at te up state at time so te current spot rate is 6.004%. Te future spot rate is eiter 6.915% or 5.437%. Te (riskneutral) expected future spot rate is (6.915%+5.437%) =6.176%. Te volatility of te future spot rate is ( ) 2 + ( ) 2 = 74 bp An Interest Rate Model 9
10 Example of te Level Effect... Time Time % 5.437% 4.275% In te down state at time te current spot rate is 4.721%. Te future spot rate is eiter 5.437% or 4.275%. Te (riskneutral) expected future spot rate is (5.437%+4.275%)=4.856%. Te volatility of te future spot rate is ( ) 2 + ( ) 2 = 58 bp Basis Point Volatility In tis model, Time Time 1 volatility is 6.915% proportional to te 6.004% level of te interest vol = 74 bp rate % Te parameter σ is 4.721% called te vol = 58 bp 4.275% proportional volatility. Te unannualized basis point volatility is approximately rσ : up state : = 72 bp down state : = 57 bp Te annualized basis point volatility is approximately rσ. An Interest Rate Model 10
11 Te Log of te Sort Rate ln( r) + m + m σ ln(r) ln( r) + m 1 + σ ln( r) + m 1 σ ln( ) + m + m r 1 2 ln( r) + m + m2 1 2σ Canges in te Log of te Sort Rate Te log of te rate always canges by an additive term, m + σ m σ Te mean cange is m. Te standard deviation of te cange is a constant, σ. Te standard deviation of te annual cange is σ. Wy? Te annual cange is te sum of te canges over eac period. Tere are 1/ canges eac year. Te canges or increments are independent (tere is no mean reversion in tis model), so te variance of te sum is te sum of te variances: 2 σ = σ 2 1 An Interest Rate Model 11
12 Te Limiting Distribution Suppose we old fixed te total calendar time spanned by te tree, but divide te time into smaller intervals ( goes to zero), so tat te number of intervals goes to infinity. Ten te distribution of te log of te terminal sort rate approaces a normal distribution te distribution of te terminal sort rate approaces a lognormal distribution. Review: Using te Interest Rate Tree to Build a Bond Price Tree Time 0 Time 6.004% 1 Sort rate 5.54% =1/( /2) Zero maturing at time Zero maturing at time 1? 4.721% =1/( /2) Te tree implies tat te price of te zero maturing at time 1 is x( )x = An Interest Rate Model 12
RiskNeutral Probabilities
RiskNeutral Probabilities Concepts Riskneutral probabilities Riskneutral pricing Expected returns True probabilities Reading Veronesi, Chapter 9 Tuckman, Chapter 9 RiskNeutral Probabilities No Arbitrage
More informationOption Pricing Using the Binomial Model
Finance 400 A. Penati  G. Pennacci Option Pricing Using te Binomial Moel Te CoxRossRubinstein (CRR) tecnique is useful for valuing relatively complicate options, suc as tose aving American (early exercise)
More informationOPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (riskneutral)
More informationOptimal Pricing Strategy for Second Degree Price Discrimination
Optimal Pricing Strategy for Second Degree Price Discrimination Alex O Brien May 5, 2005 Abstract Second Degree price discrimination is a coupon strategy tat allows all consumers access to te coupon. Purcases
More informationDerivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
More informationMath 113 HW #5 Solutions
Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten
More informationProof of the Power Rule for Positive Integer Powers
Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive
More informationInstantaneous Rate of Change:
Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over
More information7.6 Complex Fractions
Section 7.6 Comple Fractions 695 7.6 Comple Fractions In tis section we learn ow to simplify wat are called comple fractions, an eample of wic follows. 2 + 3 Note tat bot te numerator and denominator are
More informationNo Arbitrage Pricing of Derivatives
No Arbitrage Pricing of Derivatives Concepts and Buzzwords Replicating Payoffs No Arbitrage Pricing Derivative, contingent claim, redundant asset, underlying asset, riskless asset, call, put, expiration
More informationDynamic Trading Strategies
Dynamic Trading Strategies Concepts and Buzzwords MultiPeriod Bond Model Replication and Pricing Using Dynamic Trading Strategies Pricing Using Risk eutral Probabilities Onefactor model, noarbitrage
More informationa. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
More informationGeometric Stratification of Accounting Data
Stratification of Accounting Data Patricia Gunning * Jane Mary Horgan ** William Yancey *** Abstract: We suggest a new procedure for defining te boundaries of te strata in igly skewed populations, usual
More informationUnderstanding the Derivative Backward and Forward by Dave Slomer
Understanding te Derivative Backward and Forward by Dave Slomer Slopes of lines are important, giving average rates of cange. Slopes of curves are even more important, giving instantaneous rates of cange.
More information2 Limits and Derivatives
2 Limits and Derivatives 2.7 Tangent Lines, Velocity, and Derivatives A tangent line to a circle is a line tat intersects te circle at exactly one point. We would like to take tis idea of tangent line
More informationFinite Difference Approximations
Capter Finite Difference Approximations Our goal is to approximate solutions to differential equations, i.e., to find a function (or some discrete approximation to tis function) tat satisfies a given relationsip
More information11.2 Instantaneous Rate of Change
11. Instantaneous Rate of Cange Question 1: How do you estimate te instantaneous rate of cange? Question : How do you compute te instantaneous rate of cange using a limit? Te average rate of cange is useful
More information2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
More informationLet's Learn About Notes
2002 Product of Australia Contents Let's Learn About Notes by Beatrice Wilder Seet Seet 2 Seet 3 Seet 4 Seet 5 Seet 6 Seet 7 Seet 8 Seet 9 Seet 0 Seet Seet 2 Seet 3 Basic Information About Notes Lines
More information2.0 5Minute Review: Polynomial Functions
mat 3 day 3: intro to limits 5Minute Review: Polynomial Functions You sould be familiar wit polynomials Tey are among te simplest of functions DEFINITION A polynomial is a function of te form y = p(x)
More informationThis supplement is meant to be read after Venema s Section 9.2. Throughout this section, we assume all nine axioms of Euclidean geometry.
Mat 444/445 Geometry for Teacers Summer 2008 Supplement : Similar Triangles Tis supplement is meant to be read after Venema s Section 9.2. Trougout tis section, we assume all nine axioms of uclidean geometry.
More informationDERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
More informationSolution Derivations for Capa #7
Solution Derivations for Capa #7 1) Consider te beavior of te circuit, wen various values increase or decrease. (Select Iincreases, Ddecreases, If te first is I and te rest D, enter IDDDD). A) If R1
More informationACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
More informationThe modelling of business rules for dashboard reporting using mutual information
8 t World IMACS / MODSIM Congress, Cairns, Australia 37 July 2009 ttp://mssanz.org.au/modsim09 Te modelling of business rules for dasboard reporting using mutual information Gregory Calbert Command, Control,
More informationf(a + h) f(a) f (a) = lim
Lecture 7 : Derivative AS a Function In te previous section we defined te derivative of a function f at a number a (wen te function f is defined in an open interval containing a) to be f (a) 0 f(a + )
More informationLecture 10. Limits (cont d) Onesided limits. (Relevant section from Stewart, Seventh Edition: Section 2.4, pp. 113.)
Lecture 10 Limits (cont d) Onesided its (Relevant section from Stewart, Sevent Edition: Section 2.4, pp. 113.) As you may recall from your earlier course in Calculus, we may define onesided its, were
More informationf(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.
Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,
More information1 Derivatives of Piecewise Defined Functions
MATH 1010E University Matematics Lecture Notes (week 4) Martin Li 1 Derivatives of Piecewise Define Functions For piecewise efine functions, we often ave to be very careful in computing te erivatives.
More informationStrategic trading in a dynamic noisy market. Dimitri Vayanos
LSE Researc Online Article (refereed) Strategic trading in a dynamic noisy market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt and Moral
More informationA.4. Rational Expressions. Domain of an Algebraic Expression. What you should learn. Why you should learn it
A6 Appendi A Review of Fundamental Concepts of Algebra A.4 Rational Epressions Wat you sould learn Find domains of algebraic epressions. Simplify rational epressions. Add, subtract, multiply, and divide
More informationForward Contracts and Forward Rates
Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16
More informationThe differential amplifier
DiffAmp.doc 1 Te differential amplifier Te emitter coupled differential amplifier output is V o = A d V d + A c V C Were V d = V 1 V 2 and V C = (V 1 + V 2 ) / 2 In te ideal differential amplifier A c
More informationP.4 Rational Expressions
7_0P04.qp /7/06 9:4 AM Page 7 Section P.4 Rational Epressions 7 P.4 Rational Epressions Domain of an Algebraic Epression Te set of real numbers for wic an algebraic epression is defined is te domain of
More informationTrapezoid Rule. y 2. y L
Trapezoid Rule and Simpson s Rule c 2002, 2008, 200 Donald Kreider and Dwigt Lar Trapezoid Rule Many applications of calculus involve definite integrals. If we can find an antiderivative for te integrand,
More informationDifferentiable Functions
Capter 8 Differentiable Functions A differentiable function is a function tat can be approximated locally by a linear function. 8.. Te derivative Definition 8.. Suppose tat f : (a, b) R and a < c < b.
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationTheoretical calculation of the heat capacity
eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: DulongPetit, Einstein, Debye models Heat capacity of metals
More information1 Density functions, cummulative density functions, measures of central tendency, and measures of dispersion
Density functions, cummulative density functions, measures of central tendency, and measures of dispersion densityfunctionsintro.tex October, 9 Note tat tis section of notes is limitied to te consideration
More informationMath WarmUp for Exam 1 Name: Solutions
Disclaimer: Tese review problems do not represent te exact questions tat will appear te exam. Tis is just a warmup to elp you begin studying. It is your responsibility to review te omework problems, webwork
More informationLecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function
Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between
More informationM(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
More informationCan a LumpSum Transfer Make Everyone Enjoy the Gains. from Free Trade?
Can a LumpSum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lumpsum transfer rules to redistribute te
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationOptions. + Concepts and Buzzwords. Readings. PutCall Parity Volatility Effects
+ Options + Concepts and Buzzwords PutCall Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options
More informationSection 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
More information2.28 EDGE Program. Introduction
Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.
More informationAdvanced Fixed Income Analytics Lecture 6
Advanced Fixed Income Analytics Lecture 6 Backus & Zin/April 28, 1999 Fixed Income Models: Assessment and New Directions 1. Uses of models 2. Assessment criteria 3. Assessment 4. Open questions and new
More informationHardness Measurement of Metals Static Methods
Hardness Testing Principles and Applications Copyrigt 2011 ASM International Konrad Herrmann, editor All rigts reserved. www.asminternational.org Capter 2 Hardness Measurement of Metals Static Metods T.
More informationCHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
More informationTangent Lines and Rates of Change
Tangent Lines and Rates of Cange 922005 Given a function y = f(x), ow do you find te slope of te tangent line to te grap at te point P(a, f(a))? (I m tinking of te tangent line as a line tat just skims
More informationFinite Volume Discretization of the Heat Equation
Lecture Notes 3 Finite Volume Discretization of te Heat Equation We consider finite volume discretizations of te onedimensional variable coefficient eat equation, wit Neumann boundary conditions u t x
More informationSAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
More informationACTIVITY: Deriving the Area Formula of a Trapezoid
4.3 Areas of Trapezoids a trapezoid? How can you derive a formula for te area of ACTIVITY: Deriving te Area Formula of a Trapezoid Work wit a partner. Use a piece of centimeter grid paper. a. Draw any
More informationStrategic trading and welfare in a dynamic market. Dimitri Vayanos
LSE Researc Online Article (refereed) Strategic trading and welfare in a dynamic market Dimitri Vayanos LSE as developed LSE Researc Online so tat users may access researc output of te Scool. Copyrigt
More informationThe EOQ Inventory Formula
Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of
More informationWeek #15  Word Problems & Differential Equations Section 8.2
Week #1  Word Problems & Differential Equations Section 8. From Calculus, Single Variable by HugesHallett, Gleason, McCallum et. al. Copyrigt 00 by Jon Wiley & Sons, Inc. Tis material is used by permission
More informationCollege Planning Using Cash Value Life Insurance
College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded
More informationThe Derivative as a Function
Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)
More informationLecture 3: Put Options and DistributionFree Results
OPTIONS and FUTURES Lecture 3: Put Options and DistributionFree Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distributionfree results? option
More information2.15 Water Quality Management. Introduction
Introduction In May 2001, Government released a report entitled Source to Tap  Water Supplies in Newfoundland and Labrador (Source to Tap report). Te report was prepared in response to drinking water
More informationLecture 4: The BlackScholes model
OPTIONS and FUTURES Lecture 4: The BlackScholes model Philip H. Dybvig Washington University in Saint Louis BlackScholes option pricing model Lognormal price process Call price Put price Using BlackScholes
More informationThe classical newsvendor model under normal demand with large coefficients of variation
MPRA Munic Personal RePEc Arcive Te classical newsvendor model under normal demand wit large coefficients of variation George Halkos and Ilias Kevork University of Tessaly, Department of Economics August
More informationChapter 10: Refrigeration Cycles
Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators
More informationVerifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
More informationChapter 7 Numerical Differentiation and Integration
45 We ave a abit in writing articles publised in scientiþc journals to make te work as Þnised as possible, to cover up all te tracks, to not worry about te blind alleys or describe ow you ad te wrong idea
More informationInvestigating CostEfficient Ways of Running a Survey of Pacific Peoples. Undertaken for the Ministry of Pacific Island Affairs
Investigating CostEfficient Ways of Running a Survey of Pacific Peoples Undertaken for te Ministry of Pacific Island Affairs by Temaleti Tupou, assisted by Debra Taylor and Tracey Savage Survey Metods,
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationLecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Putcall
More informationPressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:
Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force
More informationWelfare, financial innovation and self insurance in dynamic incomplete markets models
Welfare, financial innovation and self insurance in dynamic incomplete markets models Paul Willen Department of Economics Princeton University First version: April 998 Tis version: July 999 Abstract We
More informationBinary Search Trees. Adnan Aziz. Heaps can perform extractmax, insert efficiently O(log n) worst case
Binary Searc Trees Adnan Aziz 1 BST basics Based on CLRS, C 12. Motivation: Heaps can perform extractmax, insert efficiently O(log n) worst case Has tables can perform insert, delete, lookup efficiently
More informationChapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
More informationLecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing
Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common
More informationThe Derivative. Not for Sale
3 Te Te Derivative 3. Limits 3. Continuity 3.3 Rates of Cange 3. Definition of te Derivative 3.5 Grapical Differentiation Capter 3 Review Etended Application: A Model for Drugs Administered Intravenously
More informationTHE NEISS SAMPLE (DESIGN AND IMPLEMENTATION) 1997 to Present. Prepared for public release by:
THE NEISS SAMPLE (DESIGN AND IMPLEMENTATION) 1997 to Present Prepared for public release by: Tom Scroeder Kimberly Ault Division of Hazard and Injury Data Systems U.S. Consumer Product Safety Commission
More informationIntroduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
More informationFUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing
FUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing I. PutCall Parity II. OnePeriod Binomial Option Pricing III. Adding Periods to the Binomial Model IV. BlackScholes
More informationLecture 11: RiskNeutral Valuation Steven Skiena. skiena
Lecture 11: RiskNeutral Valuation Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena RiskNeutral Probabilities We can
More information6. Differentiating the exponential and logarithm functions
1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose
More informationVOL. 6, NO. 9, SEPTEMBER 2011 ISSN ARPN Journal of Engineering and Applied Sciences
VOL. 6, NO. 9, SEPTEMBER 0 ISSN 896608 0060 Asian Researc Publising Network (ARPN). All rigts reserved. BIT ERROR RATE, PERFORMANCE ANALYSIS AND COMPARISION OF M x N EQUALIZER BASED MAXIMUM LIKELIHOOD
More informationThe Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a nondividend paying stock whose price is initially S 0. Divide time into small
More informationWhat is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.
Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in and outflows
More informationAn inquiry into the multiplier process in ISLM model
An inquiry into te multiplier process in ISLM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 0062763074 Internet Address: jefferson@water.pu.edu.cn
More informationShell and Tube Heat Exchanger
Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion
More informationOne Period Binomial Model
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
More information第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model
1 第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model Outline 有 关 股 价 的 假 设 The BS Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
More informationPricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts
Pricing Options: The Binomial Way FINC 456 Pricing Options: The important slide Pricing options really boils down to three key concepts Two portfolios that have the same payoff cost the same. Why? A perfectly
More informationChapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted discount rate. Part D Introduction to derivatives. Forwards
More information2.13 Solid Waste Management. Introduction. Scope and Objectives. Conclusions
Introduction Te planning and delivery of waste management in Newfoundland and Labrador is te direct responsibility of municipalities and communities. Te Province olds overall responsibility for te development
More informationEquilibrium Forward Curves for Commodities
THE JOURNAL OF FINANCE VOL. LV, NO. 3 JUNE 2000 Equilibrium Forward Curves for Commodities BRYAN R. ROUTLEDGE, DUANE J. SEPPI, and CHESTER S. SPATT* ABSTRACT We develop an equilibrium model of te term
More informationDeveloping Countries in Competition for Foreign Direct Investment
Seinar in International Econoics 5 Marc 2015 Developing Countries in Copetition for Foreign Direct Investent oran Vukšić Institute of Public Finance, Zagreb Tis seinar series is an activity in te fraework
More informationSurface Areas of Prisms and Cylinders
12.2 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G.10.B G.11.C Surface Areas of Prisms and Cylinders Essential Question How can you find te surface area of a prism or a cylinder? Recall tat te surface area of
More informationFlux Linkage and Inductance
Lecture 19 Flux Linkage and nductance Sections: 8.10 Homework: See omework file LECTURE 19 slide 1 te sum of all fluxes piercing te surfaces bounded by all turns (te total flux linking te turns) N, Wb
More informationDiscovering Area Formulas of Quadrilaterals by Using Composite Figures
Activity: Format: Ojectives: Related 009 SOL(s): Materials: Time Required: Directions: Discovering Area Formulas of Quadrilaterals y Using Composite Figures Small group or Large Group Participants will
More information2.23 Gambling Rehabilitation Services. Introduction
2.23 Gambling Reabilitation Services Introduction Figure 1 Since 1995 provincial revenues from gambling activities ave increased over 56% from $69.2 million in 1995 to $108 million in 2004. Te majority
More informationCatalogue no. 12001XIE. Survey Methodology. December 2004
Catalogue no. 1001XIE Survey Metodology December 004 How to obtain more information Specific inquiries about tis product and related statistics or services sould be directed to: Business Survey Metods
More informationCF4103 Financial Time Series. 1 Financial Time Series and Their Characteristics
CF4103 Financial Time Series 1 Financial Time Series and Their Characteristics Financial time series analysis is concerned with theory and practice of asset valuation over time. For example, there are
More information1.6. Analyse Optimum Volume and Surface Area. Maximum Volume for a Given Surface Area. Example 1. Solution
1.6 Analyse Optimum Volume and Surface Area Estimation and oter informal metods of optimizing measures suc as surface area and volume often lead to reasonable solutions suc as te design of te tent in tis
More information