AT84AD001B and ATmega128L AVR. Application Note. Using Atmel s AT84AD001B Dual 8-bit 1 Gsps ADC with Atmel s ATmega128L AVR.

Size: px
Start display at page:

Download "AT84AD001B and ATmega128L AVR. Application Note. Using Atmel s AT84AD001B Dual 8-bit 1 Gsps ADC with Atmel s ATmega128L AVR."

Transcription

1 Using Atmel s ATAD00B Dual -bit Gsps ADC with Atmel s ATmegaL AVR Introduction With its "smart" feature (-wire serial interface), Atmel s ATAD00B dual -bit Gsps ADC provides you with digital control over the various functions offered with the dual ADC: calibration, gain and offset adjustments, DMUX ratio selection, analog and clock input mode, and partial or full standby mode. This digital control via the -wire serial interface can be managed using Atmel s ATmegaL AVR. The aim of this application note is to provide you with the relevant information for interfacing these two devices. ATAD00B and ATmegaL AVR Application Note A-BDC-0/0

2 Driving Atmel s ATAD00B ADC -wire Serial Interface with Atmel s ATmegaL AVR Atmel s ATmegaL AVR can be used to drive the -wire serial interface of the ATAD00B dual -bit Gsps ADC. This section provides a simple configuration for interfacing the AVR with the ADC. Note: All the information pertaining to the AVR contained in this document complies with the version available at the date the document was created. Before design, compliance of this information with the current version of the device should be verified. ATAD00B Dual -bit Gsps ADC -wire Serial Interface The ATmegaL AVR can drive four signals of the ATAD00B dual -bit Gsps ADC. These are: The MODE signal (pin of the -LQFP packaged device): used in the ADC to activate the -wire serial interface The CLK signal (pin of the -LQFP packaged device): input clock for the serial interface The DATA signal (pin of the -LQFP packaged device): input data for the serial interface The LDN signal (pin of the -LQFP packaged device): beginning and end of the register line for the serial interface The ADC s -wire serial interface only accepts.v CMOS digital signals while Atmel s ATmegaL must be supplied with V CC ranging from.v to V. Hence, it was necessary during the design to add a buffer and line driver with.v to tolerant I/Os used as translators in this mixed.v and environment. As the AVR can manage only four of the ADC s signals, a quad buffer is sufficient to translate the four signals from the AVR (WAKEUP, SPICLOCK, SPIDATA, SLE) to the MODE, CLK, DATA and LDN signals (.V) of the ADC. Possible devices enabling a translation between the of the AVR and the.v required by the ADC are the LCX and LCX low voltage quad buffer and line with V-tolerant I/Os or the LCX low voltage octal buffer and line with V-tolerant I/Os available from any digital buffer manufacturer. The LCX and LCX devices have the advantage of using only four inputs. Their main drawback, however, is that all four inputs cannot be connected to the same side of the device for a simplified layout. Figures to illustrate the possible application diagrams for the LCX, LCX and LCX low voltage buffers with V tolerant I/Os. ATAD00B and ATmegaL AVR

3 ATAD00B and ATmegaL AVR Figure. Application Diagram Using the LCX Buffer.V OE 0 00 nf SPICLOCK A 0 OE CLK O 0 A SPIDATA OE O DATA SLE A OE 0 LDN O A WAKEUP O MODE Table is the truth table of the LCX device. Table. LCX Truth Table Inputs Outputs OE n A n O n L L L L H H H Z Z Figure. Application Diagram Using the LCX Buffer.V.V OE 0 00 nf SPICLOCK A 0 OE CLK O 0 A SPIDATA OE O DATA SLE A OE 0 LDN O A WAKEUP O MODE

4 Table is the truth table of the LCX device. Table. LCX Truth Table Inputs Outputs OE n A n O n H L L H H H L Z Z Figure. Application Diagram Using the LCX Buffer.V OE 0 00 nf SPICLOCK I 0 OE O O 0 CLK SLE I I O O LDN SPIDATA I O I O DATA WAKEUP I I O O MODE 0 I Notes:. It is highly recommended the unused inputs of the octal buffer be connected to ground (directly to ground or via a 0Ω resistor in case future signal access is required) so that the buffers will never toggle and consequently dissipate power while they are not in use.. It may be useful to connect the OE signals to ground (LCX and LCX devices) or to.v (LCX) via a 0Ω resistor in case the application s signal level needs to be changed.. The WAKEUP signal is considered here as an input for both the LCX device and the AVR. When connected to.v, the ADC s serial interface becomes active. When connected to ground, the ADC s serial interface is disabled. In the case of a demonstrator design, the serial interface can be useful to connect the WAKEUP signal to a LED to indicate that the -wire serial interface has been activated (LED lit) and to a push button (between ground and ), as illustrated in Figure on page. ATAD00B and ATmegaL AVR

5 ATAD00B and ATmegaL AVR Table is the truth table of the LCX device. Table. LCX Truth Table Inputs Outputs (O 0, O, O, O ) OE I n L L L L H H H X Z Inputs Outputs (O, O, O, O ) I n L L L L H H H X Z

6 Figure. Global Schematic Using ATAD00B ADC with ATmega AVR and LCX Buffer A AREF PF0 PF PF PF PF PF PF PF PEN PE0 PE PE PE PE PE PB PB PB PB PB XTAL XTAL PD0 PD PD PD.. KΩ KΩ KΩ RX TX ATmegaL 0 KΩ 0 KΩ pf. MHz pf LCX.V SPICLOCK SLE SPIDATA WAKEUP 0 OE I 0 O I O I O I O OE O 0 I O I O I O I 0 00nF... Mode Clk ATAD00B Dual -bit Gsps ADC. 0 Data Ldn ATAD00B and ATmegaL AVR

7 ATAD00B and ATmegaL AVR Figure. Manual Management of the WAKEUP Signal (as in a Demonstrator Design, for example) WAKEUP To LCX Device 00Ω ATmegaL -bit Microcontroller In-System Programmable Flash On the AVR side, eight bi-directional I/O ports are provided but only four bits of one port are used for the interface between the LCX device and the AVR (for the WAKEUP, SPICLOCK, SPIDATA and SLE signals). Because Port B provides the pins for the SPI channel, this is the port chosen for the four previously-mentioned signals: SPICLOCK: PB (SCK = SPI bus serial clock) SPIDATA: PB (MOSI = SPI bus Master Output/Slave Input) SLE: PB (OC0 = Output Compare and PWM Output for Timer/Counter0) WAKEUP: PB (OCA = Output Compare and PWM Output A for Timer/Counter) The other pins PB0 (SS), PB (OCB) and PB (OC/OCC) can be left floating (open). Pin PB (MISO = SPI Bus Master Input/Slave Output) must be pulled up to via a KΩ resistor so as to be forced to a high level and not left open. Pins SPICLOCK = PB and SPIDATA = PB need to be pulled down to ground via a 0 KΩ resistor to be forced to a low level (inhibition of the SPI during reset of the microcontroller). Pin SLE = PB (OC0 = Output Compare and PWM Output for Timer/Counter0) must be pulled up to via a. KΩ (or KΩ if the power consumption is not critical) resistor in order to protect the line during reset of the microcontroller (during which phase the signal becomes an input). Ports A and C of the AVR can be left floating (open) but must be internally configured with pull-ups. For Port D, pins PD, PD, PD and PD can be left unused (open) but must be internally configured with pull-ups. Pins PD, PD, PD and PD0 have to be pulled up in order to inhibit the external interrupts. For port E, pins PE and PE can be left unused (open) but must be internally configured with pull-ups. Pins PE, PE, PE and PE must be pulled up to via a. KΩ (or KΩ if the power consumption is not critical) resistor in order to inhibit the external interrupts. PE and PE0 can be used as the Programming Data Output (TX) and Input (RX) to be connected to the TX and RX of the system (in the case of the ATAD00-EB evaluation board, these signals are sent to the PC via an RS- port).

8 All the Port F pins must be connected to ground so that they are in a known fixed state (no internal pull-down is available for these pins). All the Port G pins can be left floating (open). Finally, the five remaining signal pins are to be connected as follows: PEN: Programming Enable pin for the SPI serial programming mode, to be connected to V CC, set to, to activate the SPI programming mode : master reset of the AVR, to be connected to a microcontroller supervisory circuit (for example and for information only: MCP0 from Microchip one possible configuration is given in the next section) XTAL and XTAL: input and output to and from the inverting oscillator amplifier AREF: analog reference for the A/D internal converter Finally, V CC and AV CC must be connected to a source and must be connected to ground. This gives the configuration depicted in Figure on page (AVR only). Figure. ATmegaL Application Diagram (for Use with Atmel s ATAD00B Dual -bit Gsps ADC) KΩ KΩ KΩ A AREF PF0 PF PF PF PF PF PF PF RX TX SPICLOCK SPIDATA SLE WAKEUP PEN PE0 PE PE PE PE PE PB PB PB PB PB ATmegaL KΩ 0 KΩ XTAL XTAL PD0 PD PD PD pf. MHz pf Note: Only the connected pins are shown (the unused pins are left open). ATAD00B and ATmegaL AVR

9 ATAD00B and ATmegaL AVR Reset of the ATmegaL AVR can be controlled through a voltage supervisory circuit comparable to the MCP0 device from Microchip (for information only). Such a device allows you to keep the microcontroller in reset until the system voltage has reached its final level. It also ensures that the microcontroller is reset whenever a power drop occurs. Any voltage supervisory circuit compliant with V CC set to and with a reset pulse longer than a 0 ns width (minimum/active low) would work. In Figure on page, the reset voltage level of MicroChip s supervisory device is set to V with a pulse of 0 ms. Figure. Typical Application Diagram for the Circuit 00 nf MCP0 VDD ATmegaL VSS RST Programming Atmel s ATmegaL AVR Atmel s ATmegaL AVR can be programmed through the AVR ISP (In-System Programmer) tool using AVR Studio, Atmel's Integrated Development Environment (IDE) for code writing and debugging. The programming software can be controlled from both the Windows environment and a DOS command line interface. For more information on the AVR Studio programming software, please refer to Atmel s Web site at A - or 0-pin ISP connector is required to program the AVR. For this application, an HE0 -pin connector is used: pin : PDO, AVR Programming Data Out pin : AVR target application card power supply () pin : SCK, AVR programming clock pin : PDI, AVR programming Data In pin : RST_ISP, AVR programming reset pin : ground Notes:. The ISP card s power supply comes from the AVR card (). No additional power supply is required.. The AVR is programmed in serial mode. The RST_ISP signal is used to set the AVR to programming or SPI mode.

10 This signal is sent to the AVR s so that: When RST_ISP is set to 0, = 0 also and the AVR is in reset (ISP) mode, PE0 is used as the Data In for programming of the AVR, PE is the Data Out and PB is the programming clock When RST_ISP is set to, = also and the AVR is in normal mode, PE0 = RX, PE = TX and PB = SPICLOCK The three AVR signals mentioned previously (PE0, PE and PB) therefore have two functions, both of which are controlled by the RST_ISP signal. Caution should be taken when implementing these signals, series resistors on the SCK, PDO and PDI data may be needed to manage possible conflicts, please see below and Figure on page. Similarly, the signal has two possible sources: the signal generated by the microcontroller supervisory device, and the RST_ISP signal from the ISP To control this signal and in a case where the microcontroller supervisory device is not configured with an open collector (ex. MCP0 device), two head-to-tail diodes are required, as illustrated in Figure. The line going to the signal of the AVR is then in open-collector mode and a pull-up resistor (. KΩ) to is required. Figure. Typical Application Diagram for the Circuit with the ISP Connector 00 nf MCP0 VDD VSS RST. KΩ ATmegaL PDO SCK PDI RST_ISP 0 ATAD00B and ATmegaL AVR

11 ATAD00B and ATmegaL AVR A basic diagram illustrating the interface between the ISP connector and the AVR is depicted in Figure on page. In this general case, PE and PE0 interconnections are left to the user's responsibility. If these signals conflict (for example PE is driven by both PDO and another signal), it may be necessary to add a KΩ resistor in series so that any voltage difference is dissipated in this resistor. No additional protection is required on the AVR PB signal if there is no conflict between SCK and SPICLOCK. It is nevertheless recommended the ADC be set to standby mode or the -wire serial interface be disabled by using the MODE bit during programming of the AVR. Figure. General Application Diagram for the ISP Connector and the AVR 00 nf MCP0 VDD VSS RST. KΩ ATmegaL PB PE PE0 SPICLOCK K K Depends on the application PDO SCK PDI RST_ISP If the RX and TX signals are to be connected to a transceiver (RS- connector to a PC, for example), a low voltage buffer/line driver with a -state output device can be used to multiplex the AVR s signals (PE0, PE and PB) between the ISP and the RX signals and between the TX and SPICLOCK signals. The LVQ devices are wellsuited for this application (clock driver and bus-oriented transmitter or receiver).

12 The LVQ device has eight inputs and eight corresponding outputs and two -state output enable inputs. The latter (-state output enable inputs) can be managed by the RST_ISP signal: When RST_ISP is set to 0, OE and OE = 0 and O 0 to O are low and O to O are in high impedance When RST_ISP is set to, OE and OE = and O 0 to O are in high impedance and O to O are low Table is the truth table of the LVQ device: Table. LVQ Truth Table Inputs Outputs(O 0, O, O, O ) OE I n L L L L H H H X Z Inputs Outputs (O, O, O, O ) OE I n L X Z H L L H H H ATAD00B and ATmegaL AVR

13 ATAD00B and ATmegaL AVR Figure 0. Typical Application Diagram for the LVQ Device 00 nf MCP0 VDD VSS RST. KΩ ATmegaL PB PE PE0 PDO SCK PDI RST_ISP KΩ KΩ KΩ OE OE I0 I I I LVQ 0 O0 O O O 00 nf RX I I I I 0 O O O O TX Notes:. The unused inputs are connected to ground to prevent them from toggling.. OE and OE are connected together and to RST_ISP via a KΩ resistor.. SCK, RST-ISP and PDI are connected to I, OE and OE, and I 0 respectively via KΩ resistors in order to manage possible conflicts on the signals when the connector is used to program several AVRs.. PE0 is connected to both O 0 and O, which are respectively the inputs for SCK and RX. PE0 is generated by either SCK or RX, depending on the mode.. PE is connected to both I and I, which are the outputs for PDO and TX respectively. PE is generated by either PDO or TX, depending on the mode. Programming of the AVR itself as well as the connections of the RX and TX signals are not described in this application note as they depend on the final application. For further information on the ATAD00B dual -bit Gsps ADC, please contact the Broadband Data Conversion hotline at For more information on the AVR, please contact the AVR hotline at

14 Atmel Corporation Orchard Parkway San Jose, CA, USA Tel: (0) -0 Fax: (0) -00 Regional Headquarters Europe Atmel Sarl Route des Arsenaux Case Postale 0 CH-0 Fribourg Switzerland Tel: () -- Fax: () --00 Asia Room Chinachem Golden Plaza Mody Road Tsimshatsui East Kowloon Hong Kong Tel: () - Fax: () - Japan F, Tonetsu Shinkawa Bldg. -- Shinkawa Chuo-ku, Tokyo 0-00 Japan Tel: () -- Fax: () -- Atmel Operations Memory Orchard Parkway San Jose, CA, USA Tel: (0) -0 Fax: (0) - Microcontrollers Orchard Parkway San Jose, CA, USA Tel: (0) -0 Fax: (0) - La Chantrerie BP 00 0 Nantes Cedex, France Tel: () Fax: () ASIC/ASSP/Smart Cards Zone Industrielle 0 Rousset Cedex, France Tel: () Fax: () East Cheyenne Mtn. Blvd. Colorado Springs, CO 00, USA Tel: () -00 Fax: () 0- Scottish Enterprise Technology Park Maxwell Building East Kilbride G 0QR, Scotland Tel: () Fax: () -- RF/Automotive Theresienstrasse Postfach 0 Heilbronn, Germany Tel: () ---0 Fax: () East Cheyenne Mtn. Blvd. Colorado Springs, CO 00, USA Tel: () -00 Fax: () 0- Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France Tel: () Fax: () Literature Requests Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company s standard warranty which is detailed in Atmel s Terms and Conditions located on the Company s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel s products are not authorized for use as critical components in life support devices or systems. Atmel Corporation 00. All rights reserved. Atmel and combinations thereof, AVR and AVR Studio are the registered trademarks of Atmel Corporation or its subsidiaries. Windows is the registered trademark of Microsoft Corporation. Microchip is the registered trademark of Microchip Technology Inc. Other terms and product names may be the trademarks of others. Printed on recycled paper.

AT84AD001B and ATmega128L AVR

AT84AD001B and ATmega128L AVR Application Note. Introduction With its smart feature (-wire serial interface), ev s ATAD00B dual -bit Gsps ADC provides you with digital control over the various functions offered with the dual ADC: calibration,

More information

8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter

8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog

More information

8-bit. Quick Start Guide. Microcontrollers. Connecting to a target board with the AVR JTAGICE mkii. JTAGICE mkii. Introduction

8-bit. Quick Start Guide. Microcontrollers. Connecting to a target board with the AVR JTAGICE mkii. JTAGICE mkii. Introduction Connecting to a target board with the AVR JTAGICE mkii Introduction JTAGICE mkii is Atmel s on-chip debugging tool for the AVR microcontroller family. The JTAGICE mkii supports debugging with AVR s traditional

More information

8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector

8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing

More information

8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.

8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1. AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive

More information

How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction

How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when

More information

8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter

8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse

More information

AT90PWM2/3... Programming Guide

AT90PWM2/3... Programming Guide AT90PWM2/3... Programming Guide Section 1 AT90PWM2/3 Programming Guide 1.1 Introduction This document is intended for AT90PWM2/3 users, it focuses on fuse bit programming and configuration. It also provides

More information

AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface

AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).

More information

AVR32111: Using the AVR32 PIO Controller. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32111: Using the AVR32 PIO Controller. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32111: Using the AVR32 PIO Controller Features All I/O pins are configurable - PIO controllable - Module controllable Highly flexible - Set/Clear registers - Read status - Module operation - Level change

More information

8-bit Microcontroller. Application Note. AVR314: DTMF Generator

8-bit Microcontroller. Application Note. AVR314: DTMF Generator AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design

More information

Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements

Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in

More information

AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer

More information

AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction

AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows

More information

AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction

AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example

More information

General Porting Considerations. Memory EEPROM XRAM

General Porting Considerations. Memory EEPROM XRAM AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103

More information

AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.

AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features. AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting

More information

AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a Hard Disk Drive to an AT91RM9200 Microcontroller. 1. Scope. 1.1 Reference Documents

AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a Hard Disk Drive to an AT91RM9200 Microcontroller. 1. Scope. 1.1 Reference Documents Interfacing a Hard Disk Drive to an AT91RM9200 Microcontroller 1. Scope This describes the AT91RM9200 hardware and software interface for a hard disk drive. The AT91RM9200 embeds a CompactFlash Glue Logic

More information

Flash Microcontrollers. Application Note. Using the STK500 as an AT89C51Rx2 Target Board

Flash Microcontrollers. Application Note. Using the STK500 as an AT89C51Rx2 Target Board Using the STK500 as an AT89C51Rx2 Target Board Features Use of STK 500 as a Development Board for 80C51 Microcontrollers Supports AT89C51Rx2, T89C51AC2, T89C51CC01, and Similar Devices Uses an Additional

More information

Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations

Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications

More information

8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory

8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)

More information

AT91 ARM Thumb Microcontrollers. Application Note. Using the EBLoad Tool to Download Applications to the AT91 Evaluation Boards.

AT91 ARM Thumb Microcontrollers. Application Note. Using the EBLoad Tool to Download Applications to the AT91 Evaluation Boards. Using the EBLoad Tool to Download Applications to the AT91 Evaluation Boards Introduction EBLoad from RTJ Computing (1) is a software tool used to download a user application into the memory of an AT91

More information

AT89C5131A Starter Kit... Software User Guide

AT89C5131A Starter Kit... Software User Guide AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3

More information

AVR512: Migration from ATmega48/88/168 to ATmega48P/88P/168P. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR512: Migration from ATmega48/88/168 to ATmega48P/88P/168P. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR512: Migration from ATmega48/88/168 to ATmega48P/88P/168P Features General Porting Considerations Register and bit names Low-frequency Crystal / Timer/Counter Oscillator 1 Introduction This application

More information

AVR303: SPI-UART Gateway. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR303: SPI-UART Gateway. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR303: SPI-UART Gateway Features Communicate with a SPI slave device using a RS232 terminal SPI Modes 0 3, bit order and slave select (SS) is supported SPI clock frequency 28kHz to 1.8MHz when using a

More information

AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer

More information

8-bit Microcntroller. Application Note. AVR243: Matrix Keyboard Decoder. Features. Introduction. ATmega162. * 0 # Alt4. Status LEDs.

8-bit Microcntroller. Application Note. AVR243: Matrix Keyboard Decoder. Features. Introduction. ATmega162. * 0 # Alt4. Status LEDs. AVR243: Matrix Keyboard Decoder Features 64-key Push-button Keyboard in 8 x 8 Matrix No External Components Required Wakes Up from Sleep Mode on Keypress Easily Implemented into Other Applications Low

More information

AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction

AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions

More information

Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit

Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two

More information

High Speed USB Design Guidelines. Application Note. AT85C51SND3Bx Microcontrollers. 1. Introduction

High Speed USB Design Guidelines. Application Note. AT85C51SND3Bx Microcontrollers. 1. Introduction High Speed USB Design Guidelines 1. Introduction This document provides guidelines for integrating a AT85C51SND3Bx high speed USB device controller onto a 4-layer PCB. The material covered can be broken

More information

MP3 Player Reference Design Based on AT89C51SND1 Microcontroller... User Guide

MP3 Player Reference Design Based on AT89C51SND1 Microcontroller... User Guide MP3 Player Reference Design Based on AT89C51SND1 Microcontroller... User Guide Table of Contents Section 1 Introduction...1 1.1 Web Site download... 1 1.2 Abbreviations... 2 Section 2 Overview...3 2.1

More information

AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR

AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using

More information

AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts

More information

AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction

AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency

More information

8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory

8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size

More information

8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier

8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr

More information

AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.

More information

3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary

3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum

More information

USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview

USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate

More information

AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features

AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from

More information

DataFlash. Application Note. CASON Package Pad Landing Recommendations. Introduction

DataFlash. Application Note. CASON Package Pad Landing Recommendations. Introduction CASON Package Pad Landing Recommendations Introduction This application note provides PCB designers with a set of guidelines for successful board mounting of Atmel s DataFlash memories housed in the Chip

More information

AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements

More information

AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.

AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features. AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly

More information

AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency

More information

Low-voltage Highly Selective IR Receiver IC T2527. Features. Applications. Description

Low-voltage Highly Selective IR Receiver IC T2527. Features. Applications. Description Features No External Components Except P Diode Supply-voltage Range: 2.7 V to 3.6 V Available for Carrier Frequencies in the Range of 30 khz to 56 khz; Adjusted by Zener-diode Fusing Enhanced Bandpass

More information

AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation

More information

8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16

8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16 AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists

More information

8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface

8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function

More information

8-bit RISC Microcontroller. Application Note. AVR042: AVR Hardware Design Considerations. Features. Introduction. Supply Voltage

8-bit RISC Microcontroller. Application Note. AVR042: AVR Hardware Design Considerations. Features. Introduction. Supply Voltage AVR042: AVR Hardware Design Considerations Features Providing Robust Supply Voltage, Digital and Analog Connecting the RESET Line SPI Interface for In-System Programming Using External Crystal or Ceramic

More information

Hexadecimal Notation. Least Significant Bit. Most Significant Bit. Analog-to-Digital. Digital-to-Analog. Sampling and Hold. Differential Non Linearity

Hexadecimal Notation. Least Significant Bit. Most Significant Bit. Analog-to-Digital. Digital-to-Analog. Sampling and Hold. Differential Non Linearity Analog-to-digital Converter in the AT91M55800A Introduction Analog-to-digital converters translate analog measurements, characteristic of most phenomena in the real world, to digital format, used in information

More information

8-bit Microcontroller. Application Note. AVR180: External Brown-out Protection

8-bit Microcontroller. Application Note. AVR180: External Brown-out Protection AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution

More information

8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements

8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded

More information

AT91 ARM Thumb Microcontrollers. Application Note. AT91SAM7S64 USB Certification. 1. Introduction

AT91 ARM Thumb Microcontrollers. Application Note. AT91SAM7S64 USB Certification. 1. Introduction AT91SAM7S64 USB Certification 1. Introduction This Application Note describes the USB certification process for the AT91SAM7S64 ARM Thumb -based microcontroller that contains a USB V2.0 Full Speed Device.

More information

Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction

Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements

More information

Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1

Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1 ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System

More information

ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction

ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel

More information

AVR042: AVR Hardware Design Considerations. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR042: AVR Hardware Design Considerations. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR042: AVR Hardware Design Considerations Features Providing robust supply voltage, digital and analog. Connection of RESET line. SPI interface for In-System Programming. Using external crystal or ceramic

More information

Application Note. C51 Microcontrollers. Driving Unipolar Stepper Motors Using C51/C251. Introduction. Description

Application Note. C51 Microcontrollers. Driving Unipolar Stepper Motors Using C51/C251. Introduction. Description Driving Unipolar Stepper Motors Using C51/C251 Introduction Stepper motors are commonly used in accurate motion control. They allow to control any motion with high precision by counting the number of steps

More information

Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)

Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2) Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)

More information

AT89LP In-System Programming. Application Note. AT89LP In-System Programming Specification. 1. Overview. 2. The Programming Interface

AT89LP In-System Programming. Application Note. AT89LP In-System Programming Specification. 1. Overview. 2. The Programming Interface AT89LP In-System Programming Specification 1. Overview The Atmel AT89LP microcontrollers feature 2K bytes to 64K bytes of on-chip Flash program memory. Some devices may also support Flash data memory.

More information

8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB

8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System

More information

Two-wire Automotive Temperature Serial EEPROM

Two-wire Automotive Temperature Serial EEPROM Features Standard-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Automotive Temperature Range 40 C to125 C Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K) Two-wire

More information

AVR1001: Getting Started With the XMEGA Event System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1001: Getting Started With the XMEGA Event System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1001: Getting Started With the XMEGA Event System Features Flexible routing of peripheral events - 8 configurable event channels - Signal filtering Ability to control peripherals independent of CPU

More information

Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers

Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,

More information

Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations

Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal

More information

AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR444: Sensorless control of 3-phase brushless DC motors Features Robust sensorless commutation control. External speed reference. Overcurrent detection/protection. Basic speed controller included. Full

More information

8-bit RISC Microcontroller. Application Note. AVR335: Digital Sound Recorder with AVR and DataFlash

8-bit RISC Microcontroller. Application Note. AVR335: Digital Sound Recorder with AVR and DataFlash AVR5: Digital Sound Recorder with AVR and DataFlash Features Digital Voice Recorder 8-bit Sound Recording 8 khz Sampling Rate Sound Frequency up to 4000 Hz Maximum Recording Time 4 /4 Minutes Very Small

More information

2-wire Serial EEPROM AT24C1024. Advance Information

2-wire Serial EEPROM AT24C1024. Advance Information Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol

More information

2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)

2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8) Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire

More information

USB Test Environment ATUSBTEST- SS7400. Summary

USB Test Environment ATUSBTEST- SS7400. Summary Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets

More information

16K (2K x 8) Parallel EEPROMs

16K (2K x 8) Parallel EEPROMs Features Fast Read Access Time - 150 ns Fast Byte Write - 200 µs or 1 ms Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer Automatic Clear Before Write Direct Microprocessor

More information

AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS

AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled

More information

AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction

AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information

More information

DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17

DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17 Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for

More information

AVR1308: Using the XMEGA TWI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1308: Using the XMEGA TWI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1308: Using the XMEGA TWI Features Introduction to TWI and the XMEGA TWI module Setup and use of the XMEGA TWI module Implementation of module drivers Master Slave Code examples for master and slave

More information

AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,

More information

Two-wire Serial EEPROM AT24C1024 (1)

Two-wire Serial EEPROM AT24C1024 (1) Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol

More information

AVR053: Calibration of the internal RC oscillator. 8-bit Microcontrollers. Application Note. Preliminary. Features. Introduction

AVR053: Calibration of the internal RC oscillator. 8-bit Microcontrollers. Application Note. Preliminary. Features. Introduction AVR053: Calibration of the internal RC oscillator Features Calibration using STK500, AVRISP, or JTAGICE Calibration using 3 rd party programmers Adjustable RC frequency with +/-1% accuracy Tune RC oscillator

More information

AVR351: Runtime calibration and compensation of RC oscillators. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR351: Runtime calibration and compensation of RC oscillators. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR351: Runtime calibration and compensation of oscillators Features Use of the Oscillator Sampling Interface in calibration. Slow oscillator frequency prediction. Ultra Low Power oscillator frequency

More information

AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using

More information

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,

More information

AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.

AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note. AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,

More information

APPLICATION NOTE. Atmel AVR32715: AVR UC3B 32-bit Microcontroller Schematic Checklist. Atmel AVR UC3 32-bit Microcontroller. Features.

APPLICATION NOTE. Atmel AVR32715: AVR UC3B 32-bit Microcontroller Schematic Checklist. Atmel AVR UC3 32-bit Microcontroller. Features. APPLICATION NOTE Features Atmel AVR32715: AVR UC3B 32-bit Microcontroller Schematic Checklist Power circuit Reset circuit Clocks and crystal oscillators USB connection JTAG and Nexus debug ports Introduction

More information

AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse. 32-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse. 32-bit Microcontrollers. Application Note. Features. 1 Introduction AVR32415: AVR32 AP7 Linux PS/2 keyboard and mouse Features Linux serio driver using the PSIF module. Supports PS/2 keyboard and mouse. Supports multiple devices. 1 Introduction PS/2 protocol is a very

More information

AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors

AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position

More information

AVR602: Using the ATtinyX3U Top Module. 8-bit Microcontrollers. Quick Start Guide. ATtinyX3U Top Module for STK600. Features

AVR602: Using the ATtinyX3U Top Module. 8-bit Microcontrollers. Quick Start Guide. ATtinyX3U Top Module for STK600. Features AVR602: Using the ATtinyX3U Top Module Features Complete Starter Kit for ATtiny43U - Top Module Easily Connects to the STK 600 Fully Configured Boost Circuitry No Additional Components Required - Variable

More information

Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module

Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module AVR307: Half Duplex UART Using the USI Module Features Half Duplex UART Communication Communication Speed Up To 230.4 kbps at 14.75MHz Interrupt Controlled Communication Eight Bit Data, One Stop-bit, No

More information

Dual-port Capabilities

Dual-port Capabilities Replacement of a RAM with Atmel FreeRAM in VHDL FreeRAM Features Atmel s AT0K family of FPGAs includes distributed blocks of RAM throughout the device. These blocks are called FreeRAM. Atmel s FreeRAM

More information

8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver

8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio

More information

8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming

8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and

More information

AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source

More information

32-megabit 2.7-volt Only DataFlash AT45DB321B. Features. Description. Pin Configurations

32-megabit 2.7-volt Only DataFlash AT45DB321B. Features. Description. Pin Configurations Features Single 2.7V - 3.6V Supply Serial Peripheral Interface (SPI) Compatible 20 MHz Max Clock Frequency Page Program Operation Single Cycle Reprogram (Erase and Program) 8192 Pages (528 Bytes/Page)

More information

Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction

Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction AVR280: USB Host CDC Demonstration 1. Introduction The RS232 interface has disappeared from the new generation of PCs replaced by the USB interface. To follow this change, applications based on UART interface

More information

Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA

Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits

More information

2-wire Serial EEPROM AT24C512

2-wire Serial EEPROM AT24C512 Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for

More information

3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description

3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum

More information

AVR1504: Xplain training - XMEGA Event system. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction

AVR1504: Xplain training - XMEGA Event system. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction AVR1504: Xplain training - XMEGA Event system Prerequisites Required knowledge Basic knowledge of microcontrollers and the C programming language Completed AVR1500: Xplain training XMEGA Basics Recommended

More information

AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.

More information

AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.

AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features. AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This

More information

AVR1300: Using the XMEGA ADC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1300: Using the XMEGA ADC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR100: Using the XMEGA ADC Features Up to 12 bit resolution Up to 2M samples per second Signed and unsigned mode Selectable gain Pipelined architecture 4 virtual channels Result comparator Automatic calibration

More information